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On the basis of an exactly soluble model of a random field, a formula is obtained for the density of states 
averaged over the random amplitudes. The possibility of the appearance of singularities in the density of 
states at the band-edges of an ideal one-dimensional periodic system is analyzed, and the reasons for their 
appearance are elucidated. A slightly modified model in which these singularities disappear is proposed. 
The question of the degree of localization of the states is also considered. 
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The solution of the model problem of a one-dimen
sional chain of equally-spaced centers with o-function 
potentials with random amplitudes gives an exact and 
also somewhat unusual result[l, 2] (see also the three
dimensional generalization(3]). The possibility of an 
exact solution of the problem for arbitrary values of 
the random-scatter parameter is highly attractive, but 
the appearance of Singularities in the density of states 
at the upper edges of the ~i.llowed bands[l] and the pe
culiar behavior of the degree of localization in the same 
parts of the spectrum [2], which differs sharplr from the 
behavior in the disordered model of a liquid[4 , require 
a detailed investigation with the purpose of elucidating 
the reasons for the appearance of these Singularities. 
It is extremely important to clarify how sensitive these 
results are to variation of the model. 

The latter should be emphasized once more, since 
a model problem can sometimes give not only quantita
tive but also qualitative results that are speCific to just 
this model. Inasmuch as the one-dimensional formula
tion of the problem can acquire real physical meaning, 
e.g., in multi-layer structures (superlattices), it is 
natural to carryover the results of[l, 2] to the case of 
such systems. In the effective-mass approximation 
these results can be used immediately, with the trivial 
replacement of the true electron mass by the effective 
mass. Then the theoretical possibility of observing ef
fects associated with the singularities in the density of 
states would arise, if such singularities exist at all in 
a real random field. On the other hand, the use of the 
effective-mass approximation is not so necessary-in a 
model super lattice it is possible to take exact account 
of the arbitrary one-dimensional periodic field of the 
lattice[5]. Moreover, starting from[1, 5,61, it turns out 
to be possible to obtain a general solution of the problem 
of the energy spectrum of an arbitrary one-dimensional 
periodiC system with a model random field. At the same 
time, we shall elucidate the reasons for the appearance 
of the singularities and show that in a somewhat improved 
model the indicated singularities disappear. 

1. PERIODIC SYSTEM WITH A 
RANDOM POTENTIAL 

We shall consider a one-dimensional system pos
sessing translational invariance (a one-dimensional 
perfect lattice), and impose on it an additional random 
field 

V(x)= I:Unli(x-xo-na). (1) 

Here the Un are random quantities with the probability 
density used in[l, 2], a is the lattice constant of the one-
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dimensional lattice, n = 0, ± 1, ± 2, . " , and, without 
limiting the generality, we can assume that O:sxo:S a/2. 

We shall take the arbitrary periodic field of the one
dimensional lattice into account exactly in terms of the 
Green function in this field [61, which possesses the well
known property: 

G(x+na, x'+na)=G(x. x'). (2) 

The solution of the problem with the random field (1) is 
carried out in the same way as in[ll. We remark only 
that the averaging over the random amplitudes does not 
depend on the presence of the periodic field. The subse
quent solution of the problem is analogous to that car
ried through in[51, except that the amplitude of the ii-func
tion potentials becomes complex. The final dispersion 
equation takes the form (compare with[l, 5 l) 

cos ka=cos ~a-1,G(xo, xo)sin pa. (3) 

Here f3 is the quasi-wavenumber of an electron in the 
perfect lattice, Yl is the parameter determining the ran
dom scatter, and k is the "quasi-wavenumber" in the 
presence of the random field and is complex here; the 
mean value of the random amplitude is included in the 
periodic field. The Green function G(xo, xo) of the perfect 
lattice depends on f3 and a. (a. = (2mE)1I2, fJ. = 1), and the 
dependence of f3 on the energy E is given by the disper
sion law of the perfect lattice. 

The formula (3) is valid in the case when the energy 
runs over values in the allowed bands of the perfect lat
tice. Within the forbidden bands the spectrum is deter
mined from an equation obtainable by analytic continua
tion (f3 = iy, y> 0) of Eq. (3): 

cos ka=ch 1a-i1,G(xo, xo)sh 1a. (4) 

The averaged denSity of states in the case of (3) takes 
the form 

1 {a p(E)=-Re -Yi-[cos pa-1,G(xo• xo)sin pal' 
na aE 

x [cos pa-1,G (xo, X o) sinpa)-'}, (5) 

and analytic continuation of this formula gives the form 
of the density of states in the forbidden bands. 

Before going over to the general case of an arbitrary 
ideal periodic potential, it is sensible to consider the 
particular model case when the potential is g~ven in the 
form of the simple Kronig-Penney model, with the known 
expression for the Green function[6 l: 

) i Isinaal [ 2P sin axo sin a (a-xo) ] 
G,(xo,xo =--.-- 1+ . 

2a Sill pa aa Sill aa 
cos ~a=cos aa+(aa)-tPsin aa. (6) 
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For Xo = 0 the Green function (6) vanishes at the upper 
edges of the allowed bands (aa = 1Tn), and precisely this 
case was considered in[l]. If we put Xo = a/2, it is not 
difficult to see that the expression (6) vanishes at the 
lower edges of the even-labeled allowed bands. The den
sity of states (5) has exactly the same singularities at 
these points. In this case, the density of states no longer 
possesses singularities at the upper edges of the allowed 
bands. For intermediate values of xo(O < Xo < a/2), the 
Green function (6) can vanish only within the forbidden 
bands, and thus the density of states (5) has no singu
larities anywhere. Proceeding from what has been said, 
it may be stated that the appearance of singularities in 
the density of states in the given model of a random field 
is caused by fortuitous circumstances: the vanishing of 
the Green function at the band-edges. If we go over to a 
more realistic model of the random field, or slightly 
smear out the Ii -functions, these singularities disappear. 

It is not difficult to understand the reason for the 
appearance of the Singularities. In fact, the appearance 
of a finite density of states in the forbidden band is a 
consequence of the finite probability of the appearance 
of discrete levels. Inasmuch as the amplitudes of the 
Ii-function potentials are random and independent in the 
model under consideration, the levels corresponding to 
them are random, but, nevertheless, interdependent. 
The interdependence of the levels here arises because 
of the overlap of the wavefunctions of the local states. 
In the case of one Ii-function disturbing potential, the 
energy level in the forbidden band is determined by the 
well-known equation 

l+UnG(xo, xo) =0. (7) 

In the particular case Xo = 0 the Green function 
G(xo, xo) given by the expression (6) vanishes at the up
per edges of the allowed bands and is positive in the for
bidden bands. Then levels corresponding to positive 
values of Un are not in a forbidden band (more precisely, 
these levels are pressed toward the lower edge of a for
bidden band), and only levels that are split off from the 
upper allowed band correspond to negative Un' Because 
of this, the density of states (5) has singularities at 
such points. 

Going over to the general case of an arbitrary peri
odic field, we represent the Green function in this field 
in the form (E - +0) 

G,(x x )=_ ~ hp,., (xo) I' (8) 
0, ° ~E-E,(~)+ie' 

'.' 
where EI({3) is the dispersion law, depending on the 
quasi-wavenumber (3 and the band index l; 1/11 (3(xo) are 
the Bloch wavefunctions. ' 

In the region of the forbidden bands the Green func
tion (8) is real and, as is not difficult to see, monotonic
ally increasing in each of them. Inside each forbidden 
band, with the sole exception of the first low-lying one, 
it changes sign; consequently, at a certain energy value 
the function (8) vanishes. The positions of the zeros of 
the Green function in the forbidden bands undoubtedly 
depend on the specific periodiC field. In particular, there 
may be fortuitous cases in which these zeros coincide 
with the edges of the forbidden bands. The Green func
tion (6) has precisely such nontypical behavior. 

In the region of the allowed bands the Green function 
(8) has the imaginary part 

ImG(xo, xo)=nap,(E) I¢,. ,(xo) I', 
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where PI(E) is the one-dimensional denSity of states of 
the ideal system. 

Since the zone boundaries are determined by the con
dition sin (3a = 0, and the density of states Pl (E) has singu
larities at thes e boundaries, the expression 

iJ 
1'.=11 1m G(xo. xo)sin ~a==-1111jJ,.,(xo) l'aEcos ~a. (9) 

remains finite, generally speaking, More precisely, at 
the actual band-edges we have the asymptotic form 
(n' = 0, 1) 

(10) 

where m* is the effective electron mass near the edge 
of the corresponding band. 

Next, starting from formula (5), we see that the 
averaged density of states can have singularities only 
at the band-edges, provided that the expression (10) 
vanishes. At other points of the spectrum there are no 
singularities at all, even in the case when the expression 
(9) vanishes for {3a 1= 1Tn. The above has a clear physical 
interpretation. The vanishing of the modulus squared of 
the wavefunction, or of the probability of finding a par
ticle, at a certain point at which a Ii-function potential is 
localized leads to the result that this potential cannot be 
observed. Because of this, the corresponding points in 
the spectrum do not undergo any changes, and, in par
ticular, the singularities in the density of states at the 
band-edges can remain. In our somewhat generalized 
model these Singularities are completely absent, if we 
disregard fortuitous cases. In fact, near the band-edges 
the effective-mass approximation is usually valid, so 
that the Bloch wavefunctions can be replaced by plane 
waves. Then we have, simply, D. =y,m*a, and the den
sity of states (5) does not depend on the parameter Xo. 
The latter fact is also clear physically. Near the band 
edges the electron wavelength is considerably greater 
than the lattice constant, so that the precise pOint, within 
the limits of the lattice constant, at which the potential 
is localized plays practically no role. 

Thus, the formula (5) obtained for the averaged den
sity of states gives the general solution of the problem of 
an arbitrary one-dimensional periodic system with a 
model random field of the form considered. It is impor
tant to stress that no restrictions are imposed on the 
random-scatter parameter Yl, and this gives us the pos
sibility of treating systems with large deviations from 
ideality. 

The general formula (5) can also be applied in the 
case of a super lattice with a random field. Here a 
knowledge of the corresponding Green function is re
quired. In the case of a model superlattice this is known 
(cf.[5]), and the model problem of a superlattice with a 
random field can thereby be solved completely. Here the 
arguments put forward above, concerning the averaged 
density of states, remain valid, except that the term 
"band" must be replaced by the customary name "mini
band" . 

2. LOCALIZED CHARACTER OF THE STATES 

The idea exists that in one-dimensional disordered 
systems all states are localized (cf.[7]). This question 
has become the subject of frequent studies, including 
some on exactly soluble models. The localized charac
ter of the states has been proved for a number of mod
els (cfP' 7, 8J), but the universality of this idea cannot be 
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regarded as finally settled for all states (cf.[2, 9]). In the 
model Wlder consideration this question is discussed 
in [2], where, alongside localized states, there are also 
nonlocalized states. It is precisely to the latter states 
that the singularities in the density of states correspond. 
However, as we saw in Sec. 1, the appearance of the 
singularities is due to fortuitous causes, and, therefore, 
the peculiar behavior of the degree of localization near 
the upper edges of the allowed bands[2] needs recon
sideration. In our case an expression for the degree of 
localization can be obtained in the pattern of[2], but with 
allowance for the changes necessary for our model (see 
Sec. 1). As a result it turns out that the imaginary part 
of the complex quasi-wavenumber of (3), or more pre
cisely, k~, serves as the degree of localization. For it 
we can easily obtain the expression 

k,a=ln [l'1+z+iz], (11) 

where 

2z=(A'-1+i'1')+[ (A'-1+i'1')'+4i'1']"'. 
A=cos ~a-l,Re G(xo, xo)sin ~a. 

The singularities in the density of states (5) arose 
because of the vanishing of the expression (9) for ~. 
In our model, for Yl > 0, the quantity A is nonzero, and 
therefore the degree of localization k2a is always posi
tive and depends on the energy in a complicated way 
through formula (11). At the very edges of the bands it 
is easy to obtain the asymptotic form (sin (3a '" 0): 

k,a='I6,. for i'1<1, k,a=ln (2i'1) for i'1~1. 

Thus, in the model Wlder consideration all states are 
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fOWld to be localized (in the sense in which this is dis
cussed in[71), the degree of localization being determined 
by the imaginary part of the complex quasi-wavenumber. 
Its real part determines the density of states (5), viz., 

1 dk. -
P (E) = --, k,a= arc sin l' y, 

n dE 

2y=1-A'-tl.'+[ (t-A'-tl.')'+4tl.'l"'. 

In conclusion, the author thanks V. L. Bonch-Bruevich 
for useful discussions. 
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