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The process of scattering of an intense electromagnetic wave by an electron in a homogeneous magnetic 
field is considered. The quasi-energy spectrum of the electron is found; it depends significantly on the 
polarization of the electromagnetic wave. The reason for the appearance of the complex pattern of the 
electron band spectrum is made clear. The energy spectrum of photons emitted by the electrons in the field 
of a circularly polarized electromagnetic wave is investigated. It is shown that photon frequency shift t..w, 
which depends on the intensity I of the electromagnetic wave, is greatest when the electrons in the initial 
state possess momenta that correspond to the point of intersection of the dispersion curves in the quasi
energy spectrum. Estimates of the probabilities of the scattering process are given. 

PACS numbers: 03.50.J 

1. INTRODUCTION 

In the present work, the emission of a photon by an 
electron is considered in a homogeneous magnetic field 
H, and in the field of a circularly polarized electromag
netic wave which is propagated along H. As in [1), the 
interaction of the electron with the external field is 
taken into account with the use of the exact solutions of 
the Dirac equation, and the interaction with the quantized 
electromagnetic field, by first-order perturbation theory. 

According to the results of this research, the quasi
energy spectrum of the electron in an external field de
pends essentially on the polarization of the electromag
netic wave. In the case of elliptic polarization, the spec
trum consists of four energy bands, and in the case of 
circular polarization of three bands. The difference be
tween the spectrum of the electron for counterclockwise 
and clockwise circularly polarized electromagnetic waves 
is also significant. The features of the quasi-energy spec
trum of the electron can easily be understood by starting 
from the classical relativistic equations of motion of a 
particle in an external field.[2-4) The solution of the 
equations of motion shows that a new mode of electron 
excitations is generated in the external field. This mode 
is characterized by the dispersion law Po - Pz = const 
(Po and Pz are the energy and the z component of the 
momentum). The mixing of these excitations with the or
dinary ones, which are determined by the dispersion 
law P~ = p2 + m2 , also leads to a complicated picture of 
the band spectrum of the electrons. 

The energy spectrum of the photons that are emitted 
by an electron in the field of a circularly polarized elec
tromagnetic wave is determined by an equation of third 
order. The solution of this equation has been studied in 
detail for 1 - cos e <~ 1 (cos e = k' k' Ilkllk' I; k and k' are 
the wave vectors of the electromagnetic wave and the 
wave vector of the emitted photon, respectively). It is 
shown that the frequency shift t;w' of the photon, which 
depends on the intensity I of the electromagnetic wave, 
is most Significant if the electrons in the initial state 
have momenta corresponding to the point of intersection 
of the dispersion curves in the quasi-energy spectrum, 
in this case t;w' ~ %. 

2. TRANSITION MATRIX ELEMENT AND THE 
QUASI-ENERGY SPECTRUM OF THE ELECTRON 

The scattering of the electromagnetic field described 
by a vector potential (Ax(T) and Ay(€) are arbitrary func
tions of T = t - z) 
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A,=(A,(T), AvCr), 0) (1) 

by an electron in the presence of a homogeneous mag
netic field H, which is speCified by the vector P9tential 

A,=(-yH,O, 0), (2) 

with emission of a photon with 4-momentum k'= (w' k') 
is characterized by the matrix element 

M._ •. = ie. fd'xx,!;t) (x)? e;··'qr~+)(x). (3) 
"1'200' J 

Here IJ1 r (X)(xt,l (x» is the wave function of the electron 
in the external field A1 + A2 , which describes the sta
tionary state of the particle in the homogeneous mag
netic field (2) as t _ -"" (t - +""); p' = P~, Pz, n' , a'; 
P = Px, Pz, n, a; eo = lei; e' = (eil, e') is the 4-vector of 
the polarization of the photon emitted by the system. 
The wave functions >V~ (x) and xp)(x) are expressed in 
the following fashion 10 terms of the functions ,p$)(x), 
which are given in the Appendix: 

qr ;+) (x) =1/';+) (x) I,.--~, x~+) (x) =1/';+) (x) I "_+~' 

Omitting the intermediate calculations, which are 
similar to those which are given in [1), we write out the 
formula for the matrix element (3) in the case of ellip
tically polarized electromagnetic wave with frequency 
w (for definiteness, we shall assume that a1 > 0): 

A, = (a, cos oo't, a, sin oo't, 0). (4) 

We have 

Mp _ p ' = ie,"I'2n'(oo'ponppo'np')-"'6(px'+kx'-p,) 1: Il(P:+k:-P,-soo) 

Here we have used the notation 

(0'0 (1) ':, .," 1 'S" { . . . B •.•• ~ = -; (2 n n!2 n n !)-"2;" dcpexp Iscp+IF.·.sm2cp 
o 

+_i_ [-kx'(N.+N.l+k .. (g •. +g.)-ld •.• I'} 
2~ . 

~ , 
g.= - ~>_(J,.P\' (kPeoa,+~eoa,)coscp, 

N. = - ~'.!(kP)2 (kPe,a,+~eoa2)sincpl 

d.,. ~ ~ [g.·-g.+k: -i(N •. -N.+k:»), k=oon, 
2)"~ 
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(5) 
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F. _ e,'(a,'-a,') W-(kP)(kP')](kP'-kP) 
07- 8 W-(kP')']W-(kP)'] ' 

P,_ ,=P,_ =-1Il e,'(a.'+a,') kP+g~ 
p p, 4 ~2_ (kP)' . 

(6) 

The parameter g = 2a,ad (a~ + a~) determines the polari
zation of the electromagnetic field: for 0 < g < 1, the 
electromagnetic field is elliptically clockwise-polarized, 
and for -1 ( g < 0, elliptically counter-clockwise po
larized; the values of this parameter g = ± 1 and g = 0 
correspond to circular and linear polarizations, respec
tively. 

The following important point should be emphasized 
here. In the case of a monochromatic electromagnetic 
wave (4), which is switched on lWd off with adiabatic 
slowness (a, -e-E1tl ,a2 -e-Elt}E -+0) thewavefunc
tion 1Jp (x) behaves like e-iEpt+iPzz as t ~ -'" (Ep 
= [m2 + P~ + /3(2n + 1_0-)]'/2; We shall write out only 
that part of the wave function which depends on t and z; 
consequently, as t - -'" , the quantity Pz becomes the z 
component of the momentum of the electron. As is usual, 
we shall assume that the wave function and the vector po
tential A, obey cyclic boundary conditions (along the z 
axis) and therefore the quantities Pz and kz = W take on 
the quantized values Pz = 21Tll,/L, W= 21Tll2/L (L is the 
length of the principal region, n" n2 = 0, ± 1, ... ). 
According to quantum mechanics (see, for example, [5]) 

as a result of the time evolution of the wave function 
under the action of the electromagnetic field, the electron 
energy undergoes a shift that depends on the intensity I 
of the electromagnetic field. It is important here that a 
shift in the momentum, which depends on I, cannot arise, 
since such a shift would mean the destruction of the 
boundary conditions imposed on the wave function. That 
no shift in momentum actually occurs can be easily es
tablished by direct calculation by computing the value of 
U(t)l{Ip(x), where the function ?/Ip(t) describes the station
ary state of the electron in the field (2) and U(t) the op
erator of the time evolution of the system under the ac
tion of the external field. 

In the problem considered here, the electron energy 
shift that depends on I is determined from the formulas 
(6). Eliminating po and Pz from them, and using the fact 
that kp = kP, we obtain the following dispersion equation, 
which connects the quasi-energy of the electron Po with 
its momentum (more accurately, the quasi-momentum) 
P z : 

P '-P '-m'-~(2n+l- ) + e,'(a,'+a,') kP(kP+g~) 0 (7) 
, , cr 2 ~2_(kP)' . 

This equation has been studied in[l] for the case of lin
ear polarization of the electromagnetic field (g = 0). 
According to (7), the quasi-energy spectrum of the elec
tron in an external field depends Significantly on the po
larization of the electromagnetic field. The spectrum con
sists of four bands for -1 < g < 1, and of three bands for 
g = ± 1, and is different for clockwise and counterclock
wise polarizations. More significant is the difference be
tween the spectra of the electron for counterclockwise 
and clockwise Circularly polarized electromagnetic 
waves: in the case of clockwise polarization, the spec
trum consists of two electron bands and one positron 
band, and in the case of counterclockwise polarization, 
of one electron band and two positron bands (see the 
figure). 

As explained in ['], radical restructuring of the energy 
spectrum of the electron in an external field takes place 
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Quasi-energy spectrum of the electron in the field of a circularly 
polarized electromagnetic wave and in a homogeneous magnetic field: 
a-clockwise polarization; b-counterclockwise polarization. 

as a result of virtual absorption processes and the simul
taneous emission by the electron of several field quanta, 
i.e., the formation of new bands has the same nature as 
the Lamb shift of levels in the hydrogen atom. However, 
these considerations do not explain why the edges of the 
energy bands are not shifted under the action of the elec
tromagnetic field, but rather new bands are formed. 

The answer to this question can be obtained from a 
solution of the classical relativistic equations of motion. 
As is well known, [~4] the quantity Po - Pz (Po and P z are 
the energy and the z component of the momentum of the 
electron is ail integral of the motion of the electron in 
the field of the electromagnetic wave (4) and in the mag
netic field (2). Upon satisfaction of the condition of cyclo
tron resonance (1 - vz = '.vH (wH = eoH/Po, vz = Pz/Po) 
or, what amounts to the same thing, the condition kP = /3, 
the electron is accelerated in resonant fashion by the 
electromagnetic field. The motion of the electron, the 
energy and momentum of which satisfy the given condi
tion, is infinite in the plane perpendicular to the direction 
of propagation of the wavep- S ] while, in the absence of 
resonance the motion of the electron remains finite. What 
has been pointed out above means that in the external 
field considered by us, a new mode of electron excitations 
appears, characterized by the dispersion law kP = (3. 
Under the action of the electromagnetic field, a mixing of 
these new excitations with the ordinary ones takes place, 
the dispersion law for which is given by the formula P~ 
= p2 + m2• As a result, new bands also appear in the en
ergy spectrum. 

The fact that the energy spectra of the electron are 
different in the case of counterclockwise and clockwise 
circularly polarized electromagnetic fields is also easily 
understood from classical considerations. Actually, in the 
case of clockwise polarization, the electric field of the 
wave, rotating in the same direction as the electron in the 
magnetic field, is capable of resonance acceleration of 
the electron, while for a positron, rotating in the opposite 
direction, the electric field cannot have a resonance ef
fect. For this reason, there are two electron bands and 
only one positron band (see Fig. a). It is also obvious 
that in the case of elliptical polarization (-1 < g < 1), 
the spectrum should consist of four branches (since, of 
the two circularly polarized components into which the 
elliptically polarized wave can decompose, one acts on 
the electron states and the other on the positron reson
antly). We note that a change in the direction of the mag-
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netic field to the opposite direction changes the band 
picture: in the case of the clockwise circularly polarized 
wave there will be two positron bands and one electron 
band, and in the case of counterclockwise polarization, 
the opposite will hold. 

In what follOWS, we limit ourselves to a consideration 
of the case of a circularly polarized electromagnetic 
wave (g = ± 1) and assume that the condition 

6""~¢:i (a""a" m"""m'+~(2n+1-a)), (8) 
m' 

is satisfied. We calculate the pOSition of the energy bands 
of the electron at the momentum 

(9) 

which corresponds to the intersection of the new reson
ance branch of electron excitations (kP = (3) with the or
dinary (P~ = P~ +m*2). Putting kPi = '.0> (POi-Pz) (POi 
= POi (P z) is the dispersion equation for the energy bands, 
see the figure), we obtain the following values for this 
quantity in the case Pz - p~ll for a plane polarized wave: 

I e,'a'w e,au) f I w,,-w I i p+--±-_- or -- ¢: , 
8m' V2 W 

kPI,2 = 2 2 • 

~ + e, a WH ± e,aWH for ~ ~ 1, 
9m' WH (10) 

kP,-l 
-wm· - e/'Q! w f I IDH-(J) \ 1 

4m' or -w- ¢: , 

(WH == /m*). In the case of a counterclockwise circularly 
polarized wave, the branches of the spectrum intersect 
at p~2\ = - pill (see drawing). The location of the branches 
of the spectrum at this point is determined by Eqs. (10), 
if we replace kPi by -kPi in them (i = 1, 2, 3). 

The shift of the energy bands of the electron, which 
depends on the intensity I of the electromagnetic field, 
is more significant for those bands which arise upon 
mixing of the resonant and ordinary branches of exci
tations. According to (10), the shift of the bands men
tioned is proportional to If while the shift of the remain
ing positron band is proportional to 1. It can be shown 
that, far away from the point of intersection of the 
branches (Pz = pil\ the shift of all three bands is pro
portional to 1. 

3. ENERGY SPECTRUM OF THE EMITTED 
PHOTONS AND THE SCATTERING PROBABILITY 

From the conservation laws 

P'+k'=P+sk, 

where P = (Po,Pz ), P'= (Po, Pi), k'= (w', kz), s = 0, 
± 1, ... , corres ponding to the process considered, it is 
easy to obtain the following equation, which determines 
the energy spectrum of the photons irradiated by the 
electron in the external field: 
h '( , , ,~kk' k --2k P+sk) +~ (2n-a-21l +0 ) +2skP~eo'a ') ,= O. 

(~+kP) (p+kP±kk 

(11) 
Here the upper sign corresponds to clockwise and the 
lower to counterclockwise circular polarization of the 
electromagnetic wave. 

Using the relations (5) and (6), we obtain the following 
formula for the probability (per unit time) of €mission of 
a photon, summed over the momenta of the final states: 
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I w' Po-P.cosS 
g(OJ')= 2-(1-cos'0)-2 -

CD (!) 

(i-cosS) [2s± 

+ . eo'a'p ] I 
- (p+kP±kk')'. ' 

k: 
cosS=-, , 

W 

(12) 

where dn is the element of solid angle in the direction of 
the emitted photons, ~i denotes the sum over all roots 
of the dispersion equation (11). 

In the general case, Eq. (11) has three roots for fixed 
values of the number s and of the quantum numbers of 
the electron, while at cos e = 1, this equation has only 
a single root and at cos e = - 1, two roots. At the same 
tima, two of the three roots of the dispersion equation 
(as cos e _ 1) become infinite or, as cos e - - 1, one 
does so. The fact that the roots of the dispersion equa
tion become infinite is connected with the fact that the 
order of this equation decreases for cos e = ± 1: for 
cos e = ± 1, the superfluous roots take on infinitely large 
values. It is easy to show, using Eq. (12), that the proba
bility of photon emission with frequency w' _ <Xl is in
finitely small; therefore, the infinitely large (in mag
nitude) roots of (11) cannot be considered. It is easy to 
obtain solutions of Eq. (11) for 1 -cos () « 1 (in accord 
with what was said above, one should take into account 
only a single root (wD of Eq. (11) in this case. Making 
use of the fact that in the case considered kk'« I (3-kPl, 
we have (for clockwise circular polarization of the elec
tromagnetiC wave) 

, 1 [( ,a-a' ) ] 
W, =y ~ n-Il -~ +skP , 

(13) 
kY [ eo'a2~w ] F=-+ P,+SW+---. (I-cosa). 

OJ 2(p-kP)' 

As was shown in the previous section, the amount of 
the shift of the energy bands of the electron is greater 
close to the point of intersection of the dispersion curves. 
Therefore, the greatest interest attaches to the study of 
the scattering of an electromagnetic wave by electrons 
with momenta P z near p~l\ (for clockwise polarization of 
the wave). With the help of Eq. (13), we obtain, for 
Pz = p~l) 

~""s+(n-n'- a-a') (lT~£) forw""wH, 
• W 2 n 

:"= [1+(1- cos a) :~, r {(II-n' - (J~J' + s)( i (14) 

__ '1-'/,(i-cosa)w'/w".' ) ~ -} ~ 
-r £ ~s£ for W;>WH. 

'1 + (1- cos e) w'/Wu' 

According to (14), the frequency shift of the photon (which 
depends on the electromagnetic field) is proportional to 
If, while, in the absence of a homogeneous magnetic 
field (H = 0) the frequency shift of the photon in the Comp
ton effect is proportional to r.[7]We also note the very 
strong dependence of the photon frequency wi on the value 
of the angle e. 

We give the formula for the coefficients B~a~q~ for , 
the case in which we can neglect the dependence on cp 
of the function p == 2Idp'pI2. The latter can be done for e« 1-cos e « ~ if w = wH or for 1;2 ~ 1 -~os e ~~, 
if W » wHo We get (taking into account only the polari
zations x and y of the emitted photon, al = a2 = a) 
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+2iiPe+D._n'+,,+1 [+a,m·!..,,,+ l2(n' + 1); I,'+I,,,J. 

Here e± = ex ± iey; 

D,s.D.(x p )=(2n)-1 J dcpex p{ isq;+i :' (kx' Sill <p-k,' coscp)}, 
, 

,~_kp+I/,kk' { 2_" for w""Wn, 
%p=eoaw (p-kP) (~-kP+kk') . CL" = 1 for ",:;'61n, 

In'n"'o/n',. (p) = ( ;'\ ) ,{, P''''-·'/'e-v/'L,:'-''(p) , 

1 ~ (kk')' 
P - (e a)' --::-~~;-::--'-;-:::-,-;-:-;-;;--"2 ' (~-kP)'(~-kP+kk')' 

In Eqs. (15), the upper and lower signs refer to the upper 
and lower electron bands on figure a, respectively. 

In accord with Eqs. (15), the role of the s-quantum 
processes of emission and absorption increases with in
crease in the value of the angle e. It can also be shown 
that the probability of emission of a photon decreases 
with increase in the angle e and at e = 1/' becomes expo
nentially small. 

In conclusion, we write down the numerical estimate 
of the probability of emission of the photon within the 
solid angle defined by the inequality e < cos e < ~, for 
H = 105 Oe, W = 1.9 X 1014 sec- 1 and E = 3 x 106Y/cm 
(E is the intensity of the electric component of the elec
tromagnetic field). Taking it into account that in the ap
proximation considered here, 

we get (we set n = n' = 0) 

. J w aWn' 0' -1( 0 ') dQ Ol,O> --w-"" 1 sec ~""1 - . 

The authors express their gratitude to Ya. B. Zel'do
vich for interest in the research. 

APPENDIX 

WAVE FUNCTIONS OF THE ELECTRON 

The exact solutions of the Dirac equations in tlle ex
ternal field Al + A2 can be represented in the form (s ee[ 1]) 

"'~~) (X)=Cpnaexp{ -ip,t+ipxx+ip,:+iy!l'p- 2~P j d,' R p(,')} 

" 
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[gp+eoAx-i(Np+e,A,) Jf{n+f~2nf{n_1 . ) 

(np+m)f{n 

[gp+e,Ax-i(Np+e,A y) JlI,,+jI~2I1Ifn_1 

(np-m)f{n 

( 

(np+m)f{n ' 
(A.1) 

Here 

Upn-I= -[gp+eoAx+i(Np+eoAy)JIfn-l'f;Ifn+l ,) 

(-np+m)Hn 

[gp+eoAx+i(Np+eoA,) JHn +l'IlH.+! 

~=eoH; HneHn(~p); ~p=(-~y+Px-gp)/}~ 

gp""gp(,) = - J- j dT [eOA.(T)COS -!- (,-,') +eoAx(T) sin J-, ('-")] , 
np np np 

" 

NpssNp(,) = - J-'J d-r' [eoA,(-r')Sin-!- (,-T) 
np np 

'. 

-eoAx ('t') cos -!- (,-,')] , 
np 

n=(i, 0, 0, i), 

Rp( 't) = (N p+eoAy)'-g;+ (e,A.) '+2p.(gp+eoA x). 

The rest of the notation has the same meaning as in [11 

(see Eq. (3)).1\ 

l)We note that the wave functions used in [1 J describe the behavior of 
the electrons in a uniform magnetic field directed along the negative 
axis and in the field of a linearly polarized electromagnetic wave 
propagating in the z direction. 
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