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The possibility of scattering of atoms by a strong resonant field of standing wave is studied. Two scattering 
regimes are considered, when the phase varies in a random manner and stochastic acceleration (heating) of 
the atoms occurs, and when the phase varies in a regular manner. The atomic diffusion coefficient due to 
quantum and classical gradient-force fluctuations is calculated by means of the kinetic equation and by 
taking recoil into account. The possibilities of heating metastable atoms in a beam and of isotope separation 
are discussed. 

PACS numbers: 32.1O.M, 03.50.1 

1. INTRODUCTION 

The possibility of accelerating atoms by pressure of 
light has been under discussion of late.[1-4] When light 
acts on a massive dielectric or on a dense gas, the ac
celeration due to the pressure is usually small and can 
be neglected. But when it comes to a low-density gas, 
then the effect of light pressure can become quite ap
preciable. 

Since the force acting on an atom in an electromag
netic field is resonant in character, it becomes possible 
to use light pressure for such applications as separa
tion of isotopes and of excited and unexcited atoms. 
Thus, Pic que and Vialle[5] and Schieder et al.[6] have 
deflected a beam of sodium atoms by pressure from a 
mercury lamp and from a laser. If metastable helium 
atoms (or helium-like ions) are separated from an 
atomic beam with the aid of light pressure, then it be
comes possible to effect lasing on a principal resonant 
transition located in the far ultraviolet or the soft x
ray region.[4] 

Let us explain first the physical nature of the con
Sidered phenomena. The forces acting on an atom in a 
resonant field can be mainly of three types. 

1) In a field of a plane traveling wave, the atom is 
acted upon by the force due to the scattering of photons 
with a spontaneous emission rate y(1,2] 

(1) 

where W is the probability of populating the upper 
working level. At saturation we have W = Y2. The 
change of the critical energy of the atom under the in
fluence of the force (1) is conveniently expressed in 
terms of the number of scattered photons N = yt/2: 

E,=Mv'l2= (fik) 'N'/2M. (2) 

Since the acceleration is coherent in this case, the 
change of the energy Ek is proportional to N2 • To im
part to an atom an energy comparable with thermal en
ergyat room temperature we need N ~ 103_104. 

2) We consider now the field of a standing wave 

E(x)e-'·'+c.c., E(x) =Eo cos (kx+cp). (3) 

In this case the atom is acted also by a gradient force 
whose form near resonance is given apprOximately by 
(D is the dipole moment of the transition)l) 

F,.,naV(x)/i)x, V=dE(x)/fi. (4) 

If the variation of the phase of the wave (3) is given by 
cp ~ t 2, then the atoms captured by the wave can be co-
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herently accelerated to high energies, on the order of 
several keVp,4] On the other hand, if the phase varies 
randomly with time, then stochastic acceleration (heat
ing) of the atoms occurs. The energy Einc of the atoms 
in the case of this incoherent acceleration is propor
tional to the effective number N' of the scattered 
quanta 

E inc = (fik) 'N'/2M, N'=tVo'/r, Vo=dEolfi. (5) 

We have introduced here the width r of the spectrum of 
the phase fluctuations, which is defined by the relation 

< (cp(t)-cp(O»'>=2rt. (6) 

It is important that the heating rate is proportional to 
the radiation power. Comparing cases (2) and (5), we 
have 

einc=~=(~)'/rt. (7) 
e. N' 1 

In cases of practical interest we have Einc / Ek ~ 102 

(see Sec. 3). 

3) When the atom moves in the field of a standing 
wave, a certain phase difference is produced between 
the dipole moment of the atom and the field, owing to 
the spontaneous emiSSion. The atom is therefore acted 
upon by a certain average force that depends in resonant 
fashion on the velocity of the atom relative to the wave. 

In this paper we investigate in detail the acceleration 
of atoms by forces of the second and third type. We cal
culate the average force and the diffusion coefficient of 
the atoms in velocity space. We discuss the possibility 
of using this acceleration mechanism to heat atoms and 
separate isotopes. We note that the phenomenon under 
consideration is analogous to some degree to the 
Kapitza-Dirac effect (electron scattering by a standing
wave field). The difference lies in the large mass of the 
atoms (which permits the use of a quasiclassical ap
proximation) and in the resonant character of the inter
action with the field. 

2. SOLUTION OF KINETIC EQUATIONS 

The rate of heating of the atoms is determined by 
fluctuations of the dipole moment. To take consistent 
account of the classical and quantum fluctuations, we 
start with the quantum kinetic equation for the density 
matrix of the atoms. The exact kinetic equation with 
allowance for the recoil effect, which was solved by 
Kol'chenko, Rautian, and Sokolovskil[8] for the case of 
a weak electromagnetic field, is quite complicated. 
This equation can be Simplified by treating the recoil 
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by perturbation theory and expanding the Hamiltonian of 
the system in terms of the parameter 11k/Mv « 1 (v is 
the velocity of the atoms relative to the standing 
wave)P1 In this approximation the initial system of 
equations for the atom distribution function f(xvt) and 
for the dipole-moment distributions p(xvt) (measured 
in units of d), and the population difference between the 
lower and upper levels q (xvt) take the following forms: 

!!i=~ (~~+c,c,). 
dt M ax au (8) 

dp Ii av af 
Tt+(i~+l/2)P=iVq+ 2Ma;;a;' (9) 

~~ + yq=-lf+2i(pV'-c.c.). (10) 

Here d/ dt = a/ <1 t + va / a x is the total deri vati ve with 
respect to time. 

The problem consists of calculating the average ac
celeration and the diffusion coefficient of the atoms in 
velocity space. We are interested in the case of a 
strong field and of noise that is not too narrow-band: 

vo>r>r;, r,=k(liVoIM)"'. 

r 0 is the frequency of the small oscillations of the 
atoms captured in the periodic potential V(x). At 

(11) 

r < r 0, the captured atoms follow adiabatically the 
variation of the field, and there is no heating. The cri
terion for the onset of stochastic acceleration is the 
inequality r > r 0' The condition r » r 0 makes it pos
sible to use perturbation theory and obtain for the atom 
distribution function a Fokker-Planck equation. We note 
that in the cases of greatest practical interest we have 
r ~ y. Therefore we neglect the spontaneous relaxation 
in comparison with r wherever this is permissible. 

At arbitrary values of the detuning, our problem is 
quite complicated. We consider therefore two limiting 
cases: t, < rand t, > r. We start with the case of large 
t,. At t, » r the solution of (9) can be obtained in the 
form of an expansion in 1/ t, : 

p "'~ (Vq-~~~) +i (~+.1..)~. (12) 
j. 2M ax au dt 2 j.' 

Substituting (12) in (8) and (10), we get 

dq (1 1 de) M a8 af 
Tt(He)+ 1+"2 18 +2dt- q=-lf+ 4M ijx B;;' (13) 

dt M 08 aq 4V' 
di= 4M ()xav' 8=""X'. (14) 

The dimensionless field intensity E(xt) consists of 
constant and rapidly-alternating parts 

8=8,+8" 8o=2Vo'/~Z, 8.=8oCos(2kx+2<p). 

The functions f and q are similar in form. Solving Eq. 
(13), it suffices to use for the function f in the right
hand side the slow part fo(v) of this function 

[ M. ()8(X't') af,] x -1/0 +----- . 
4M ax au (15) 

The function q(xvt) contains here a slow part and a 
fast part. The latter, however, drops out after a verag
ing over the fast oscillations with aE/ax in (14). We 
arrive as a result at a Fokker-Planck equation for the 
distribution function fo(vt): 
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a/, a ( a/,) -=- -a(u)f,+D(v)-.- • at au au 
1 dEok'v sgn ~ 

a(u)= M(4f'+(kv)') C(~), 

D (M)' f(1+80) ( V (8' )') 
(v)= 2M (4I"+(ku)') 1- 1- Heo . 

(16) 

(17) 

(18) 

The function C(t,) was calculated earlier ([41, Fig. 3). 
Thus, formulas (16)-(18) are solutions of the posed 
problem for the case t, > r. 

We consider now the case of small detunings. Putting 
A = 0, we obtain 

(k dE,)' r 
D (v) - -::2-::-:M::'c2 (=[':-:-+:":"(k:-u-:CrC7"",) 

~=O. 
(19) 

The Diffusion Coefficient 

Summing the results of the calculations for the reso
nant and nonresonant cases, we can represent the dif
fusion coefficient graphically in the form shown in Fig. 
1. Curve 1 corresponds to the low-velocity limit, when 
kv « r. It follows from (18) and (19) that D(O) as a 
function of the detuning A at the maximum exceeds 
D(O) in the plateau region r < A < 2Vo by a factor of 
four. The phySical cause of this behavior of the diffusion 
coefficient is the following: 

At low atom velocities the diffusion coefficient is 
proportional to the random-field correlation time, 
D ~ r- 1 • In the case of exact resonance the atom acts 
with the field amplitude E(t) and the diffusion coefficient 
is proportional to the quantity 

SOOdt(E(t)E(O» =~" 
(E'(O» r 

o 

(20) 

In the nonresonant case the atom interacts with intensity 
E2(t) and the diffusion coefficient is given by 

SOO dt <E,'(t)E,' (0» 

(E,'(O» 4r' (21 ) 
o 

i.e., in the nonresonant case the field correlation time 
is decreased by a factor of four. 

Curve 2 pertains to the case kv » r. The effective 
correlation time in this case is r/(kv)2. On going from 
the resonant region to the nonresonant one, r increases 
by four times and k increases by two times, so that the 
diffusion coefficient does not change essentially at 
t, < 2Vo. 

Average Effective Force 

The dependence of the acceleration a (the average 
effective force) on the detuning t, is determined by the 
function C(t,). At A > 0 we have a> 0 and we are 
dealing with an accelerating force; at t, < 0 the aver-

D 

FIG. 1 
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age force is a decelerating one. At small ~ we have 
a ~ ~, and at low radiation intensity a ~ €3. In con
trast to the case of a monochromatic standing wave, 
considered earlier in[4] The denominator in the formula 
(17) for the average force contains 4r2 in place of y2. 

At ~ ~ ~m ~ 0.2Vo the function C(~) reaches a 
maximum Cm ;::$ 0.1. Thus, the maximum acceleration 
is given approximately by the formula 

2.5 ·10-' 1 dEok'v 
am'" M(f'+(kv)'/4)' 

3. HEATING AND ACCELERATION OF ATOMS 

(22) 

We now estimate with the aid of the kinetic equation 
(16) the effect of acceleration and heating of the atoms. 
We consider first the limit of low velocities, kv < r. In 
this case the equations of motion for the first two mo
ments (th~ average velocity v and the mean-squared 
velocity v2 ) take the form 

ii 
ii=

-r ' 
oa I 't-t-

-Tv' 1:=0' 

V'=2D(0)+2v'h (23) 

If the atoms had a zero velocity at t = 0, then we obtain 
for the mean-squared velocity 

v'=D (0) -r(e""-l). 

For short times t < T we have 

r;;=2D(0)t. 

Heating of Atoms 

(24) 

(25) 

In the initial stage of heating it is desirable to have 
small r. However, the atom heating linear in time 
[Eq. (25)] continues only so long as kv < r. At kv> f' 
the heating rate slows down and v2 ~ (t)1/2. Therefore 
to accelerate the atoms in the linear regime (25) to a 
velocity Vo we must have r ~ kvo. From this condition 
we obtain for the radiation intensity the relation 

Eo'=(ku,t) _I (Mvo'/d)', (26) 

where t is the heating time. We have used the maximum 
diffusion coefficient, taken at ~ = O. 

Let us estimate with the aid of this relation the radia
tion power needed to heat the He(2 3S) atoms by a reso
nant field (wavelength 1.06 mJ.l.) to a temperature 300o K. 
At t = 10-4 sec the required power is 105 wi cm2 • Then 
r = 6 x 109 Hz, and ro = 2 x 108 Hz, so that the condition 
r > ro is satisfied with a large margin. 

Isotope Separation 

To effect separation, a given isotope traveling in the 
atom beam with velocity Vo must be imparted a small 
transverse velocity avo, where a « 1 is the scattering 
angle (see Fig. 2). In this case r = akvo and t = llvo, 
where 1 is the width of the light beam. Then the field in
tensity needed to scatter the atoms through a given 
angle a is determined by the relation 

Eo'=a'(kl)-I (Mvo'/d)'. (27) 

Assuming the atom energy in the beam to be 300o K, 
1 = 1 cm, and a = 0.1 for radiation at resonance with 
the D line of the sodium atom, we obtain the required 
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FIG. 2 

power 2 kW/cm2 • Of course, at smaller values of a we 
need less radiation power. We note that in the experi
ments[5,S] the typical order of magnitude of the scatter
ing angle was a ~ 10-4. 

Acceleration of Atoms 

With increasing r, the acceleration decreases like 
r-2, and the diffusion coefficient is D ~ r-1. Therefore, 
when the width of the spectrum is appreciably larger 
than the natural line width, the heating turns out to be 
more effective than the acceleration. By way of illustra
tion we present the values of the acceleration time T 

for the particular cases considered above. Thus, at 
those values of the parameters for which we estimated 
the heating of the He(2~) atoms we obtain, using (22), 
T = 3.5 X 10-4 sec. This is about three times longer than 
the heating time. In the case of small-angle deflection 
of the Na atoms, exceeds the heating time by approxi
mately 15 times. 

The average effective force can be used more ef
fiCiently in the field of a monochromatic uniformly ac
celerated waves. We put cp = wt 2 • Depending on the 
wave acceleration, wlk, the atom will be acted upon by 
a different average force. The maximum possible ac
celerating force is[4] 

Fm =O.11 (dEoM)"· (28) 

This force can accelerate the He(2~) atoms to 105 
cml sec in a field of 105 wi cm2 within 10-5 sec. The ac
celeration time is in this case one-tenth the heating 
time. To obtain an accelerated traveling wave we must 
change the frequency of one of the opposing waves by 
6 x 106 Hz within an acceleration time 10-5 sec. 

To deflect sodium atoms through an angle a = 0.1 
with the aid of an accelerated wave, the required radia
tion power is 125 wi cm2 • Then the field frequency 
should change by 6 x 108 Hz within the acceleration time 
10-5 sec. 

4. CONCLUSION 

Resonant radiation of power 102_105 W/cm 2 can thus 
be used to heat or accelerate atoms in the energy inter
val 10-4 to 10-2 eV. We are dealing here with relatively 
small flight acceleration times ~ 10-5 sec. 

Deflection of atoms under the influence of t\y! light 
pressure produced by spontaneous emission was ob
served in recent experiments. [5,6] In the present study 
we considered atom acceleration caused by induced 
transitions. To principal regimes are possible: heating 
of the atoms in a standing-wave field with random 
phase, and acceleration with a field of an accelerated 
traveling wave. In strong field, the acceleration of the 
atoms by induced transitions is more effective than that 
by spontaneous transitions. For comparison we indicate 
that in the cases considered here the atom energy ac
quired by heating is approximately 100 times larger 
than that provided by the accelerating force (1) in the 
same time interval. 
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Note added in proof (24 April 1975). The scattering of atoms by the field of a 
standing monochromatic wave was recently considered by A. P. Kazantsev and C. I. 
Surdutovich (ZhETF Pis. Red. 21, 346 (1975), JETP Lett. 21, 158 (1975)). 

I)We note that far from resonance IiA ;::: dEo (~ = w - Wo is the detuning 
of the field frequency relative to the transition frequency vol the 
gradien t force is (2) 

d [dE(z) I' 
F~----

dx liil. 

At IiA - dEo we have approximately formula (4). At IiA < dEo, as the 
resonance is approached, the average gradient force tends to zero, 
owing to the saturation effect, and the fluctuations of this force in
crease. [l,4,7) At IiA = 0 the fluctuating gradient force can be repre
sented in the form ±d[dE(x))/dx. (7) Since both the average and the 
fluctuating forces lead to scattering of the atoms, we can assume ap
proximately that formula (4) holds also for the frequency interval 
1iA:S dE. 
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