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An analysis of the spectrum of deep inelastic scattering of neutrons (k = 14.1 A -I) is carried out on the 
basis of the regularized Gauss-Newton iteration process. As a mathematical model, a double Gaussian 
shape is employed, under the assumption that the scattering law can be represented by two Gaussian 
curves corresponding to the contributions from the condensate and supercondensate parts. From the 
viewpoint of the statistical criterion a model with a single Gaussian is the more satisfactory at T = 4.2 'K, 
indicating that there is no Bose condensate at this temperature. A model with two Gaussians is the best at 
T = 1.2'K, the Bose condensate fraction being Po/p = O.036±O.OI4. 

PACS numbers: 61.12.Fy, 67.40.-w 

1. INTRODUCTION 

Although the connection between the superfluidity of 
He II and the presence of a Bose condensate is not a 
direct one,PJ the hypothesis was put forth long ago that 
there is a condensate of atoms with zero momentum 
below the temperature of the A. transition in liquid 
He 4 y,3] This hypothesis is based primarily on the 
analogy with the nonideal Bose gas;l3 J however, to date 
no sufficiently realistic, exactly solvable model of a 
nonideal Bose system has been found in which the inter­
action did not destroy the Bose condensate. l4J The first 
estimate of the possible fraction of Bose condensate in 
a system of bosons which interact like solid spheres 
and which have the observed density of He4 was pro­
posed by Onsager and Penrose;l5j po/p = 0.08. Further 
estimates, made from theoretical considerations, vary 
from a to 0.55.[4-7J 

Hohenberg and PlatzmanlBJ were first to analyze the 
possibility of experimental observation of the Bose con­
densate with the help of strongly inelastic neutron scat­
tering, when coherent scattering goes over at high en­
ergy and momentum transfers to scattering of neutrons 
by individual He 4 atoms. In this case, in the opinion of 
the authors of lBJ , a "condensate peak" should be ob­
served against the background of a certain broad distri­
bution for the doubly differential cross section. The 
ideas of Hohenberg and Platz man were developed fur­
ther by Puff and Tenn,l9J who relied essentially on the 
exact relations for the dynamic structure factor S( k, w) 
that follow from the rule of sumsyo,llJ 

Along with the theoretical investigations, experi­
ments have been carried out, beginning with the work of 
Cowley and Woods[l2J, to observe and estimate the frac­
tion of Bose condensate in He 4 at temperatures below 
the A. transition. l 13-15J In recent studies, neutron scat­
tering with a high transfer of energy and momentum has 
been used for this purpose (k = 14.33 A-1). 

The results of these studies are given in Table 1. It 
should be noted that in reduction of the experimental 
data by least squares in l9,13,14], various models were 
used for the asymptotic behavior of S(k, w) at high 
momentum transfers. Thus, a double Gaussian approx­
imation was used inl9J as the model for S( k, w) with a 
fixed width of the condensate fraction, and inl14J the 
model that described the shape of S( k, w) contained a 
non-Gaussian increment of the form 
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exp{ -((w - wo(k))4/a 4 J). This fact makes it difficult 
to compare the results obtained. ll 

The purpose of the present study was to establish the 
amount of Bose condensate in superfluid helium more 
precisely within the framework of a model with two 
Gaussians (see also[15]). The experiment was carried 
out with improved statistical accuracy. The integrated 
count in the inelastic-scattering peak amounted to 
~2 x 105 pulses, and the data were reduced by the 
regularized Gauss-Newton iterative process proposed 
inl17,lBJ. 

2. HIGH-ENERGY NEUTRON SCATTERING IN 
LlaUID He4 

It is known that the cross section of inelastic coher­
ent scattering of neutrons by a system of atoms of one 
type at a temperature (3-1 = kBT has the form 

d'a _ Mn' kl I-(k) I'N S(k,Ol) (1) 
dO dE, - (2n) 'Ii' 'k;" v 1-e-" ' 

where Mn is the mass of the neutron, nk = n( ki - kf) 
is the transferred momentum, w = Ei = Ef is the trans­
ferred energy, and v( k) is the Fourier transform of the 
interaction potential of the neutron with the helium 
atom. In the range of energy and momentum transfer 
conSidered, one can make use of the pseudopotential 
approximation, and e-{3w « 1. Equation (1) can then be 
rewritten in the form of the cross section per scatterer 
atom: 

1 d'a ab ( Ol) 'f, 
N dO dE, =Sn' l-T, S(k,Ol), (2) 

where IJb = (1 + Mn/MHe)24rra2 and a is the scattering 
length, The expression for the Van-Hove function 
S( k, w) in terms of the correlation function of the 
dehsity-density type has the form[19] 

1 +- dt 
S(k,Ol)=-S d'rS ile-"'+"'I'([p(r,t),p(O,O)]>, (3) 

P _~ 

where p (r, t) = w+( r, t) w( r, t) is the operator of the 
number denSity of particles in the Heisenberg repre­
sentation, p = (p (r, t), and (. .. ) is the thermodynamic 
average. 

For an ideal Bose gas, it is not difficult to obtain 

SoCk, Ol)=2n.£.~{6[Ol-Olo(k) ]-Il[Ol+Olo(k) l} (4) 
P 

+[ ~]'" (pA') -. In {l-exp{-~[ (Ol+ooo)'/4Olo-l1]} } 
Ol o (k) i-exp {-M (Ol-Olo) '/4Olo-l1]} 
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TABLEr 

Literature Date k, A-I T, K rolf} 

Cowley and Woods [UI 1968 5.1 1.1 0.17±0.10 
Puff and Tenn ['I (data of 

[")) 
1970 14.33 1.27 0.06±0.03 

Harling [13J 1971 14.33 1.27 O.088±0.013 
Mook. Sherm and Vilkinson e4 ] 1972 14.33 1.2 0.024±O.01 
Results of present study· 1974 11.1 1.2 0.036±0.0!4 

*In a previous paper of the authors F5], processing was carried out without 
account of the dependence of the width 11,2 on the transferred momentum (see 
(12». The resuIt of [15] is Po/p: 0.029 ± 0.013. 

from (3). Here wo(k) = h 2k2/2MHe, A = (21Th2P/MHel/2, 
J.l is the chemical potential, Po ({3, p) the number density 
of particles with momentum equal to zero, and 
{3 = (kBTrl. The temperature dependence of J.l({3, p) 
and po({3, p) at fixed denSity p, and also the value of 
the critical temperature of the Bose condensate for an 
ideal gas are well knownYI 

Thus the function So( k, w) is divided into two terms: 
the first, S~C(k, w) corresponds to scattering on the 
Bose condensate and has the shape of o-like peaks, and 
the second, So (k, w), which is connected with scatter­
ing by supercondensate Bose particles, is a relatively 
broad distribution in w. The latter term in the strongly 
inelastic scattering region (w ~X>, k2 ~ 00, h 2 k2/2MHe W 

finite) has the form 

SoCk, 00) ~ [_n_p_] ':'_e'_" [exp {_J3_(oo_---,-oo_o(_k_) )_'} 
000 (k) PA' 400o 

{ • (oo+oo,(k»'}] -exp -~ 
400, ' 

(5 ) 

where {3wo (k)>> 1 and (3\ w ± Wo (k) \ » 1. We now note 
that for large energy and momentum transfers, formula 
5) for the scattering by supercondensate atoms also 
holds for liquid He 4, since the scattering system in this 
region of k and w behaves as an almost free one.2) In 
this case S( k, w) for scattering of high-energy neutrons 
has a Gaussian shape at high but fixed momentum 
transfers and is centered on the dispersion curve of 
free atoms ± Wo (k), while its width is determined by 
the kinetic energy per atom in the liquid He4 .[BI In order 
to make these arguments more convincing, we note that 
the experimental curves for S( k, w) in the strongly in­
elastic region at a fixed k and T = 4.2°K > TA have the 
form of Gaussians whose centers lie in the vicinity of 
the free-atom dispersion curve wo(k). We can also add 
some considerations based on the rules of sums. The 
Van Hove function is odd in w and for large k satisfies 
the relations[1l,151 

, 00 1 +00 

~ S doo IS (k, 00) I "'2n, - S doo ooS (k, 00) =2"000 (k), 
2 2 

1 '.~ . (E> 
"2 J d61oo'S(k,oo)~2"oo,(k) [ ooo'(k)+4 N oo,(k) l (6) 

H we now use these relations to determine S(k, w) in 
the region of large transfers at T > TA, we find that a 
Gaussian formula of the form 3) 

[ 
11 ] 'j,{ [ 1 (2 (E> )_. 

S(k,oo)"" '/,(E>oo,(k)/N exp -4 3N oo ,(k) (7) 

1 2 (E) -. 
X(oo-oo,(k»' ]- exp [- -:d 3N ooo(k») (<0+00 0 (k»']) 

satisfies the first two equations of (6) identically and 
the third with asymptotic accuracy, ( E) [wo (k))'""I/N 
« 1. Thus the rule of sums for large momentum trans­
fers (6) allows us to fix the normalization, width and 
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position of the Gaussian form (7) that is odd in w, the 
choice of which for S( k, w) in strongly inelastic scat­
tering is dictated by physical considerations. It follows 
from them that S(k, w) for liquid He4 in this region of 
k and w behaves in a fashion similar to So (k, w) for an 
ideal Bose gas, and (%)j3-1 =(E )o/N (see (5» is re­
placed by the real kinetic energy of the atom in liquid 
He\ (E )/N (cf. (7) and (5». Analysis of the experi­
mental data for T = 4.2 oK> TA and constant k thus 
allows us to establish the average kinetic energy of the 
atoms of the liquid He\ which is equal to (E )/N, and 
to compare it with the corresponding theoretical calcu­
lations. 

We now consider the features of high-energy neutron 
scattering in the case of the presence of a Bose con­
densate in liquid He4 at T < TA. The corresponding con­
tribution to the Van Hove function for the ideal system 
S~C (k, w) has the form of a 0 function with amplitudes 
~po/ p and with carriers on the dispersion curve of 
free particles wo(k) =h 2k2/2MHe (see (4»). For He II, 
the 0 functions of S~C (k, w) should smear out, inas­
much as the lifetime T of the atom in the Bose conden­
sate is finite because of the interaction: T- 1 ~ 
~ h[pa(kW/MHePl where a(k) is the He4 _He 4 scatter­
ing cross section, which falls off slowly with increas­
ing4) k, and p is the density. Consequently, we can as­
sume that S(k, w) has the form 

S (k, 00) =SBC(k, (0) +s (k. 01) 

= :' {1'~:) f[exP{-1'-'(OI-wo)'}-exP{-1'-'(OI+WO)'}] 

+ (1- £0.) {~}.'{'exp{-y,-, (OO-OOo)'}-exp{ -1'-' «,)+wo)'}]. (8) 
P 1,(k). 

for strongly inelastic scattering of high-energy neutrons 
by He II at T < TA 5) (compare with (4»). Here the quan­
tity 'Y l(k) is determined by the interaction of the Bose 
condensate atoms in the final state (finite lifetime T): 

1 fi'[pcr(k=O)l' 
'(, (k) = w,(k). 

21n 2 !WHO 

The second term corresponds to scattering by super­
condensate atoms, and we get 

(9 ) 

y,(k)= [~ (~> -~ 1.(k) ] (1-~)-' OOo(k). (10) 
3 Iv p wo(k) p 

from the sum rules (6) for 'Y2 (k). 
Equation (8) is basic for the subsequent numerical 

analysis of the experimental data. 

3. DESCRIPTION OF EXPERIMENT 

The experiment was carried out on an IBR-30 pulsed 
reactor in an operating regime with linear acceleration, 
using a DIN-1M spectrometer.[201 A monochromatic 
beam of neutrons with energy Ei = 189.4 MeV was ana­
lyzed, after scattering on the sample at an angle of 
122.62° , by the time-of -flight method between the sam­
pIe and the detector. 

Values of the transferred momentum that were most 
favorable for the experiment were chosen in the range 
k ~ 13-15 A-I. The lower bound is determined by the 
closeness of the approach to unity of the ratio of the 
energy transferred in the neutron scattering to the 
energy of the free helium atom that corresponds to the 
momentum k: Wo (k) = h 2k2/2MHe. This ratio is of the 
order of 0.96 at k = 14.1 A-I in our experiment.[21 j This 
interval is limited above by the resolving power of the 
spectrometer. In this experiment, the width of the 
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resolution function in the region of the "helium" peak 
was equal to ~9 MeV. We did not strive for the limiting 
parameters of the resolution function, since the con­
densate part of the "helium" peak is broadened by the 
interaction in the final state to the extent that it is not 
possible to separate it in explicit form. Therefore, 
attention was concentrated on lowering the statistical 
error and obtaining the highest possible accuracy in 
measurement of the shape of the "helium" peak (see 
the figure). Over the time of the neutron-scattering 
experiment at 1.2c K, the integrated count in the 
"helium" peak amounted to ~2 x 105 pulses. 

The experimental spectra of inelastic neutron scat­
tering by liquid helium at temperatures of 1.2 and 
4.2"K are shown in the figure. The width of the time­
spectrum analyzer channel was 8 J.l.sec 0 The total time of 
measurement amounted to 240 hr. The measurements 
at the different temperatures were not normalized. The 
energy resolution, indicated by the horizontal line on 
the figure, was determined with the help of a vanadium 
sample and converted for the inelastic-scattering 
region. 

The background was measured during evacuation of 
the helium vapor over the liquid at the bottom of the 
cryostat. The center of the elastic peak is located in the 
172nd channel. The relatively large scatter in the re­
sults at the wings of the "helium " peak is explained by 
the fact that the background was measured over times 
less than the effect and was not smoothed but was calcu­
lated from the channel. The experimental results were 
corrected for the effectiveness of the detector. 

4. MATHEMATICAL MODEL AND ANALYSIS OF 
EXPERIMENTAL RESULTS 

The experimental spectra for the doubly-differential 
inelastic-scattering cross section were obtained at a 

N r-~IZ~O~lr'0 __ -T~~~ ____ ~80~ ____ ~7rO __ E~I~m~eV 
5000 

~OOO 

3000 /.2 K 

2000 

lUUO 

3000 
UK 

2000 

1000 .'. 

250 300 

FIG. 1. Experimental spectra of neutrons scattered by liquid helium 
at temperatures of 1.2 and 4.2°K (Ei = 189.4 MeV, () = 122.62°, time of 
measurement at a single temperature -100 hr). The solid lines indicate 
the theoretical curves, which consist of two Gaussians with Pol P = 0.036. 
The dashed line is the curve referring to the supercondensate fraction; 
n is the number of the analyzer channel, and N the number of pulses 
counted in the channel. 
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fixed angle e. Therefore, we use the kinematic relation 

k'(Ei' 'v, 0) ~n-' ·2M;,{2E,-w-2 cos O[Ei(Ei-w) l"}, (11) 

for investigation of these data with the help of Eq. (8). 
This relation expresses the transferred momentum k 
in terms of the transferred energy w = Ei - Ef and the 
scattering angle (}. For the numerical analysis, we 
used the following mathematical model for the double 
differential cross section 

1 ( d'a ) -:v dQdEf =y(t) 

as a function of the time of flight t: 

) ab. (1"). (:le')' to [(2 .. .,(-'-1.5to-'+w./+o.53(tt')-')'1 y(t ~---, - - --exp - _ 
'<:T- p y, (. 21,c -

ao ( p, ) ( ::IC')' i to [ 
-, 4:1' 1 --r- -;- ("xjJ--

(2.ot- i -1.oto -'+wo"+O.o3(tto) -') '1 
21':!c- 2 

( t-413.86 ) 
+a+b ---8- -- 218 , 

This expression is obtained with the help of the kine­
matic relation (11) from the two-Gaussian model for 
S(k, w) (8) and Eq. (2) (the exponentials of the form 
exp[-yj-1(w + wo)2] were omitted in (8) as unimportant)_ 

The conversion from the energy to time of flight t 
was perfonned by the formulas 

E, =_c_ EI=~ w~c (_1 __ ~) 
t0 2 ' f ' to~ t~ , 

(13 ) 

where c = 603.53 X 10 6 meV-J.l.sec2, and to corresponds 
to the center of the elastic peak. The connection be­
tween t and the time analyzer channel number n has 
the form tn = 413.86 + n . 8. In expressions (12), the 
possibile existence of a linear background 
a + b (( t-413 .86)/8-218) and a shift in the positions of 
the desired Gaussians w~ and w~ relative to the energy 
of the free particles wo(k) was also taken into account 
(see notes 2), 3». 

A numerical analysis of the experimental data 6) was 
carried out on the basis (12), reducing to solution of an 
overdetermined nonlinear set of equations obtained for 
different values of n, for the unknowns p 0/ p, Y 1, Y 2, a, 
b, w~, and w~ (the latter two being set equal to one 
another). For both temperatures, the number of equa­
tions used in analysis of the experimental data was 
NT1 = NT2 = 121, and the number of unknowns mi was 
varied from 5 to 7. 

It is important to emphasize that numerical analysis 
of the exponential dependences is a problem whose solu­
tion depends strongly on small distortions of the initial 
data; therefore to obtain a correct result it is necessary 
to apply special stable methods of solutionP7) In our 
case, the analysis was carried out on the basis of the 
regularized iterative process of Gauss-Newton(17,18) 
(library program C<Z)MPIL, C-401, Dubna). The result­
ant nonlinear systems were solved with statistical 
weights of the form IJn2(n = 1, 2, , .. ,NT), where an are 
the standard deviations of the measured quantities. This 
makes it possible to use the closeness to unity of the 
quantity xUsdi = 1, 2; Si = NT - mi is the number of 
degrees of freedom) as a statistical criterion of the 
quality of the approximations found7) (22). The results of 
the numerical analysis of the experimental data for T 1 
= 1.2°K and T2 = 4.2°K (seel1S) are given in Table II, 
together with the statistical criteria of the approximation 
XUSi.(18) The quantities XUS1 correspond to the re­
sults of approximation of the differential cross section 
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TABLE II 

Parameters I 

-V, 
WOf! 

%12 

XI 2/ S j 

Model with a single Gaussian 

340.5±15 I 434.2±8 
4.42±0.11 4.02±0.1:-' 

129.2 97.2 
1.13 0.85 

Model with two Gaussians 
366.6±1O.6 

4.45±O.12 
41.2±17.1 
4.45±0.06 

100,3 
0.88 

0.036±0.014 

434.5±15 
4,02±0.15 
45.8±43 

4.02±0.14 
87.7 

0.77 
0.017 ±0.011 

Note: The quantities lh 9"~ and w~, w~ are 
expressed here in Me V. 

by a single Gaussian with the number of unknowns 
ml'" 5; the xVS2 describe the results of the analysis 
within the framework of the model with two Gaussians, 
m2'" 7. Account of the resolution function reduces to 
convolution of expression (13) with this function. Since 
the convolution operation does not change the ratio of 
the areas, which is ~Po/p, account of the resolution 
function is unimportant for determination of the Bose 
condensate, since it affects only the determination of 
the width of the experimental peak. The width of the 
function which describes the Bose condensate contribu­
tion turns out in our case to be somewhat greater than 
the width of the resolution function. 

5. CONCLUSION 

As a result of this analysis, it has been established 
that the model with two Gaussians for the doubly-differ­
ential cross section of inelastic neutron scattering by 
Het describes the experimental data sufficiently well. 
It was also established that complication of the model 
by the addition of new Gaussians does not improve it. 

Further, on comparison of the quantities X i/ s 1 and 
xV S2 for the two temperatures (see Table II), we 
verify that the model with two Gaussians is better from 
the viewpoint of the statistical criterion at T 1 '" 1.2°K 
(see Sec. 4), and the model with one at T '" 4.2°K. As is 
seen from Table II, we obtain the estimate (3.6 ± 1.4)% 
for the value of the fraction of the Bose condensate 
Po/po However, the problem of the origin of the non­
Gaussian corrections and their effect on the amount of 
BC determined remains unresolved (see[14]). We hope 
to turn our attention in the future to study of this prob­
lem. In conclusion, we also note that to lower the inter­
action of the helium atoms in the final state, the Bose 
condensate must be studied at high energies of the inci­
dent neutrons and with improvement of the resolution 
function. 

The authors thank I. M. Frank, V. V. Orlov, and 
L. P. Pitaevskil for their interest in the work and for 
participation in a discussion of the results. 

I)The experimental data of [14] were subjected to further analysis by 
Jackson. [16] This paper also gives a short review of the state of the 
problem of the Bose condensate in Hell. 

2)If we leave out of account the interaction of the helium atoms with 
one another in the final state, an approximation that evidently im­
proves with increasing energy and momentum transfer. [8] 
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3) Actually, the interaction in the final state leads to a certain shift of 
the position of the Gaussians (7) from the free-particle dispersion 
curve (see note2) and Sees. 3 and 4). 

4)ln the transfer region to be considered below, a(k) differs little from 
a(k = 0) "" 2 X 1O-IScm2. 

S)See Note2). 

6)The experimental data that were reduced can be found in [15]. 
7) 

x'~ ~ [y(t»)-:(n)]', 

~ aJ!" 

where yen) is the experimental count in the n-th channel of the anal­
yzer (see [,5]) and y(tn) is the function (12). 
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