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A concrete scheme is considered of an experiment on the radiation and detection of gravitational waves 
under laboratory conditions. The scheme includes both a source and a receiver of radiation. The source of 
gravitational waves is an electromagnetic resonator in the form of a torus in which an alternating 
electromagnetic field is excited. Interference of the radiated gravitational waves leads to the picture of a 
standing cylindrical gravitational wave in the focal region of the radiator-near its symmetry axis. In the 
focal region there is placed a detector - an electromagnetic resonator in which a certain initial 
electromagnetic field is produced. As a result of the interaction with the gravitational wave an additional 
electromagnetic field appears in the detector which is capable of being observed. In the limiting case of a 
close positioning of the detector and the radiator at the boundary of the wave zone, a formula is derived 
relating the parameters of the radiator and the detector. The formula is obtained from the condition that 
the ratio of signal to noise in the detector be equal to unity. Preliminary estimates show that the 
construction of a system with the choice of parameters required for the realization of such an experiment 
presents a very difficult technical problem, but apparently soluble in principle. 

PACS numbers: 04.30., 04.90. 

The negative result [1-4J of carefully repeated Weber's 
experiments forces one to suppose that in the universe 
there do not occur such grandiose and frequent proces
ses which are accompanied by gravitational radiation 
accessible to already existing receivers. This forces 
one to embark on the lengthy and laborious path of in
creasing the sensitivity of receivers, and also to turn to 
a detailed study of the possibilities for the production 
and detection of gravitational waves under laboratory 
conditions. 

The hope for the success of a laboratory experiment 
is associated with the possibility of a close positioning of 
the radiator and the detector, of an optimal choice of 
their shape, of the fullest possible utilization of the effect 
of resonance reception, etc. It is clear that if the size of 
the source exceeds the wavelength of the radiated wave, 
then for its effective operation one requires coherence 
of the whole volume of the radiator (so-called interfer
ence "focusing" of gravitational radiation). The concept 
of in-phase radiation propagated "from all sides" into a 
given region of space leads us to the picture of a stand
ing wave. The standing gravitational wave is produced 
not because the wave is reflected from walls (the effect 
of reflection of a gravitational wave is negligibly small). 
but in virtue of the interference of waves freely propa
gating from different parts of the radiator. Placing the 
detector in the focal region of the radiator and seeking 
its resonance response to the produced alternating gravi
tational field we thereby utilize the geometry of the sys
tem in an optimum manner. Of course, there remains 
the problem of obtaining a sufficiently large amplitude of 
the gravitational wave and of an as complete as possible 
utilization of resonance (a detector with a very high Q is 
required). 

Specifically, as a radiator (Sec. 1) we consider an 
electromagnetic (EM) resonator of toroidal shape (torus 
of rectangular cross section), in which a periodic EM 
field is produced. In the focal region of the radiator 
near its axis of symmetry the radiated gravitational 
waves have the nature of cylindrically-symmetric stand
ing waves. Into the focal region an EM resonator is 
placed-a detector of cylindrical form in which a certain 
initial EM field is present (Sec. 2). Under the action of 
the gravitational wave the state of the EM field in the 

787 SOy. Phys.·JETP, Vol. 41, No.5 

detector is altered and it is proposed to detect this 
change (Sec. 3). The possibilities and advantages of EM 
generators and detectors of gravitational waves have 
been discussed already [5 ,6J • Here we have given calcu
lations of a concrete scheme including a radiator and a 
detector, with the gravitational waves being standing 
waves. 

In order to obtain an idea of the size of the system 
capable of creating and recording gravitational waves 
we have considered the limiting case of a close position
ing of the detector and the radiator-at the boundary of 
the wave zone. In this case the radiator and the detector 
themselves are also of the dimensions of the order of a 
wavelength of the gravitational wave. Utilizing formulas 
derived for the wave zone at the limit of their applica
bility we obtain a limitation interrelating the parameters 
of the system. This limitation can, for example, be 
satisfied by the following choice of parameters (Sec. 3): 
the characteristic intensity of the EM fields in the radia
tor of the detector ~ 3 x 105 G, the Q of the resonator
detector ~ 7 x 1013, the wavelength of the gravitational 
wave ~ 103 cm, the accumulation time for the signal 
4 x 105 sec, the total volume of the whole system 
~25 x 109 cm3 • Of course, such an experiment appears 
to be exceedingly difficult, but, nevertheless, its real
ization does not presuppose that" senselessly extremal" 
conditions must be satisfied, and from this point of view 
there remains a basis for optimism. . 

1. EXCITATION OF STANDING GRAVITATIONAL 
WAVES 

The source of the gravitational field is an alternating 
EM field in a cavity bounded by two coaxial cylindrical 
surfaces of radii R1 and R2 and the planes z = - I./2 and 
z = I./2. Thus, the resonator consists of a toroid of 
rectangular cross section. The solution of the problem 
of EM oscillations in an ideal resonator of such a shape 
is known (cf., for example, [7 J). For the sake of definite
ness we choose an oscillation of the E type with fields 
independent of the coordinate cpo In terms of the so
called natural components the intensities of the electric 
and the magnetic fields satisfying the required boundary 
conditions are 
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E.=losin ~n (z+ ~ )Sincot, E,=I,cos~n (Z+~ ) sin cot, (1) 

where 

mn( L) . H.= I. cos - z + - cos cot, 
L 2 

mn 
10 = 'T[aJ, {xr}+bN, {xr~], 

kL 
/.=-/., 

mn 
j,=x[aJ. {xr} +bN. {xr} ]; 

J and N with indices denote Bessel and Newnann func
tions of corresponding orders. The characteristic fre
quencies w = ck are obtained from the equation k2 = K~ 
+ (m1T/L)2, where m is an integer and Kn are the roots of 
the equation 

J. {xR,}N.(xR,} =J. {xR,}N. (xR,). (2) 

The constants a and b are related by the equations 

aJ.(xR,}+bN.(xR,} =0, aJ.(xR,) +bN.(xR,) =0, 

of which only one is independent as a consequence of (2). 
In the final analysis a and b can be expressed in terms 
of the total energy stored in the resonator 

L R. 

8 = - S (f;+/,'+f.'}rdr. 
16 ", 

With the aid of (1) one can obtain the time-dependent 
part of the energy-momentum tensor of the EM field 
which is the source of the gravitational wave field. 

We turn to the Einstein equations in the linear ap
proximation [8, 9J. Taking into account the gauge condi
tions 

(3) 

the equations take on the form + D1Jl •• ~ }1Jl •• ,o,o = 8~.G T • ., (4) 

where hJ.L Il are corrections to the metric of a flat uni
verse 7J J.L Il in the Minkowski coordinates, T J.L Il is the 
energy-momentwn tensor of the source l). Strictly speak
ing the source of the wave gravitational field is not only 
the energy-momentum tensor T J.L ll(e) of the EM field in 
the resonator, but also the energy-momentwn tensor 
T J.L 1l(j) of the charge carriers producing a current in the 
thin surface layer, and also the energy-momentum ten
sor TJ.LIl(m) of the elastic shell of the resonator. How-
ever, the contribution to the metric of the latter two 
terms is small. According to estimates in the case of a 
spherical resonator [5J the amplitudes of the wave fields 
produced by each of the tensors are interconnected by 
the relations (we do not write any indices on the com
ponents of the metric) 

h{m}/h{e)~i..Ii.,«:I, h(i}/h(e) ~i.L/i.,«:1. 

Here ;\e is the wavelength of the EM wave in the reson
ator, ;\s is the wavelength of the acoustic wave in the 
material of the resonator wall, ;\L is the "depth of pene
tration of the current" equal to (mc2/e2n)l/2 where n is 
the nwnber density for free electrons. We take hence
forth TJ.L1l in (4) to mean TJ.LIl(e)' 

We seek the space components of the metric in the 
form of retarded solutions of Eqs. (4): 

.h. = _ 4G S [T ... ] dV 
't'. c" R ' 

where Tik is taken at the retarded time instant [t] 
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(5) 

= t - Ric, R is the distance between the point of obser
vation and the element of integration. 

We seek the components l/JOO! in terms of the known 
l/!ik from the gauge conditions (3). The lJ!OO! obtained in 
this manner satisfy Eqs. (4) (and the homogeneous wave 
equations Ol/!OO! = 0 outside the source), but they do not 
necessarily coincide with the retarded solutions of the 
corresponding Eqs. (4). Such an agreement is auto
matically attained only under the condition of sufficient 
smoothness of the functions T J.L 1l' 

The gauge conditions do not fix the coordinate system 
completely, they remain unchanged under the small 
transformations xO! = xO! + ~ O! which satisfy the equa
tions 0 ~ O! = O. We use these transformations in order 
to make the components hOO! vanish outside the source, 
Le., to introduce a synchronous system of coordinates. 
Such a choice of the coordinate system will be convenient 
for the formulation of boundary conditions in the reson
ator-detector. Simultaneously with the vanishing of the 
components hOO! h also vanishes: h=hJ.LIJ7J1l1l = O. 

We denote the coordinates of the point of observation 
by r, cp, z, and the coordinates of the element of inte
gration by r', cp', z'. Then we have 

R= [r'+r' '-2rr' cos (<jl-q/) + {z-z'}' ]';'. 

The determination of the gravitational field every
where outside the resonator-radiator under arbitrary 
assumptions concerning' the ratios of its dimensions 
presents a complicated problem. We restrict ourselves 
to the determination of the gravitational field in the focal 
region, Le., in the neighborhood of the center of sym
metry-the point with the coordinates r = 0 and z = O. In 
order to do this we assume that Irl «Rl and Izl «Rl . 
Moreover, we asswne that the height of the resonator is 
small compared to its radius, L « R l • (The calcula
tions carried out below are valid for L « v'RUk and 
Izl «v'Rdk, and they remain valid in order of magni
tude as Land Iz I are increased right up to v'Rdk.) We 
can write approximately 

R""'r' -r COS (<jl-<jl') . 

We write out the time dependent terms in Tik : 

TX%= 3:n ei2w .{ -/!+(f.'+I.')cos2<jl 

+[-f.'-(f.'-f.')COS2<jl]Cos2~n (z+ ~ )}, 
i . { T" = 32n e"W' -/.'- (f.' +1.') cos 2<jl 

+[ -/.'-(f.'-/.'} cos 2<jl]cos 2~n (z + ~ )}, 

Tn = 3:n ei2W'{ {/.'-/.'+/.'} + (f.'+I.'+/.')cos 2~n ( z + ~ ) } , 

T., = 3~n ei2w• { {f.'+/.'}'+ (f.'-I.') cos 2~n (z + ~ )} 

T .. = ~6 e;'w'/,f, cos <jl sin 2mn ( z +.£..) , 
1 n L 2 

T"=T,, tg <jl, 

Substituting 
r' r , 

[t]=t --+-cos(<jl-<jl), 
c c 

(6) 

replacing R by r' in the denominator of the integrand in 
(5) and carrying out the integration over cp' from 0 to 21T 
and over z' from - L/2 to L/2, we obtain the components 
l/!ik: 

1jJX%=F[ct,J,{2kr) +ct, cos 2<jl/, (2kr) l. 
1Jl1l1l=F[ct,l, (2kr) -ct, cos 2<jl/,(2kr}], 

1jJ,,=-Fct,J,{2kr), 1jJx,=Fct, sin 2<jl/, (2kr), 1jJ,,=1jJ,,=0, 
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where 

F= GL e"wt 
4c' ' 

R, 

at = S j/e- i2kr ' dr', 
111 

B, 

eG, = S (f,'+/.2)e-"'" dr', 
B, 

B, 

aJ = S (f.'-/,'+/,')e- i2',' dr', 
B, 

From (3) we obtain 

\fo,=-,Fi(a,-a,)cos <pI, (2kr) , 1j:Oy=tg q:~'o" \fo,=O, 

'1'oo=-F(a,-a,)lo (2kr), 

From this we obtain 

1j:",rl"'=F( a,-a, -a,)l, (2kr) , 

The small transformations xO' '" xO' + ~ 0' which elim
inate hOO' and which do not violate the conditions (3) have 
the form 

1 
'S,,=-F 8k i(3a,-a,-a,)lo (2kr) , 

After carrying out these transformations and intro
ducing the notation 

GL 
Q=2w, K=2k. A=-'8c,la,+a,+a,l, 

where 0'1 + 0'2 + 0'3 '" lal + 0'2 + 0'31e i l/', we finally obtain 

h,,=-'/,A cos(Qt+~:) [Jo(Kr)+cos 2q:J,(Kr)], 

II,,=-'I,A cos (Qt+1j:) [Jo(Kr) -cos 2q:J,(Kr)], (7) 
II,,=A cos (Qt+1j:)ID(Kr) , 

h" ~~-'/2A coR(Qt+lI') sin 2(.J, (Kr). h"=h,,,=O. 

The nonvanishing relative corrections to the metric in 
cylindrical coordinates are expressed in the following 
manner: 

I, (Kr) dl, (Kr) 
h,,=-A cos(Qt+¢)--. h,,=-A cos (Qt+1jl)---

Kr d(Kr) 
h,,=A cos (Qt+1j:)Jo(Kr), 

As should have been expected, the gravitational field 
in the focal plane has the form of a standing cylindrical 
wave. The dependence of the field on z is practically ab
sent as long as the z-coordinate of the point of observa
tion satisfies the inequality Iz I « v'Rdk. 

It remains for us now to find the amplitude A of the 
wave and to formulate the conditions for the optimal 
choice of the dimensions of the resonator-radiator in 
order that A should take on the greatest possible values, 
First of all we note that A is proportional to L. Such a 
dependence is a consequence of the assumption 
L« ~ As L increases the amplitude A will grow 
until L becomes comparable to -IIft7k, and this corre
sponds to the difference in the displacement from the 
edges of the system of the order of the wavelength of the 
gravitational wave. A further increase in L does not lead 
to an increase in A, and therefore the upper limit on L 
is L ~~. Further, from the expression 

B, 

a,+a,+a,=2 J <t.'+/,') e-"'" dr' (8) 
k, 

it can be seen that the thickness of the resonator ~R 
'" R2 - Rl also should not be chosen to be too great. The 
choice ~R ~ 1 is optimal, since as ~R is increased from 
zero the value of the integral increases only until ~R 
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becomes of order 11k. As ~R is increased further the 
integral can not take on larger values. 

In order that at least one wavelength of the gravita
tional wave should be contained within the focal region 
we must have kr ~ 1, and since, in accordance with our 
assumption, Ir I « Rl , we have kRl »1. From this and 
from the condition k~R ~ 1 we obtain ~R/Rl « 1. Taking 
this inequality into account it follows from (2) that KRI 
» 1 and, consequently, that KR2 » 1. Then, utilizing 
the asymptotic expressions for the Bessel functions for 
large values of the argument we find from (2) that 
Kn '" nlTI(R2 - Rl), where n is an integer. Evaluating the 
integral (8) by utilizing the value of Kn obtained above 
and expressing the constants a and b in terms of the total 
energy C, we obtain finally 

A=-2 G'~(2+_':':;_) sin(kL'>R) . ~:=--2kR,--kL'>R, 
c' H, k- J,-:\H 

Since the total energy C '" EV, where E is the average 
energy density in the resonator while V "" 2~RR1L is its 
volume, then the dependence of A on Rl with all the other 
parameters kept constant disappears. This means that 
coaxially situated resonators with the same values of 
E, ~R, L, k, K produce identical amplitudes of the gravi
tational field. A diminution of the amplitude due to the 
greater separation from the resonator (~1 IR 1) is com
pletely compensated by an increase in its radius and its 
volume (~Rl)' For a properly chosen phase of the EM 
oscillations (taking retardation into account) the contri
butions of all the coaxially situated resonators to the 
amplitude of the gravitational wave are summed. 

It follows from the equation k2 '" K~ + (mlTIL)2, that the 
ratio (Kulk)2 can not exceed unity. Equality of Kn and k 
is attained for m = 0, and this corresponds to purely 
radial cylindrically-symmetric oscillations of the EM 
waves, which do not produce gravitational radiation. 
Indeed 

sin (k\R) =sin" [n'+m' (L'>RIL) ']'\ 

and this quantity (together with other degenerate cases) 
vanishes in the special case m = O. From the same 
equation it can also be seen that since it is advantageous 
to choose L considerably larger than ~R, then the num
ber m characterizing the periodicity of the EM field 
with respect to the coordinate z must be sufficiently 
great: (m In)(~R/L) ~ 1, in order that there should not 
appear in the expression for A additional small factors. 

For purposes of illustration we calculate A on the as
sumption that 

k.';R='I,,,_ (9) 

This case is realized only in the case of the minimally 
possible value n = 1, and this leads to Klk = 2/.3 and to 
the relationship m~R/L = Yzv'5. Then for A we obtain 

(10) 

and this can also be rewritten in the form A "" O. 52r giRl' 
where rg is the gravitational radius for the mass of the 
EM of the field in the resonator. 

In order of magnitude the value of the amplitude A 
can be obtained directly from (5). Since Tik coincides 
with an accuracy up to numerical coefficients with the 
energy density E, then for the characteristic amplitude 
of the metric h (We do not write out the indices) we ob
tain 
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h_$.._1_ eV,. 
c' R, 

(11) 

Here R1 is the "characteristic" distance from the point 
of observation to the radiator, V c is the" coherent vol
ume of the radiator." This volume is formed by the 
elements of the radiator for which taking retardation 
into account during the integration in (5) does not yet 
lead to the interference "cancellation" of the field pro
duced by them. We seek the characteristic linear dim en -
sions the product of which will represent V c in the case 
under consideration. 

In the integration of (5) with respect to z the result 
will contain L if L « v'R1!k, and will contain a quantity 
not greater than v'Rdk if L is of the order of, or much 
greater than v'Rdk. R1 will enter the result in integra
tion over cp (coherence with respect to the coordinate cp 
due to the equal separation of the pOint of observation 
from the elements of integration). In integration over r 
a quantity will enter which is not greater than 11k, in 
virtue of the retardation along the line of sight. Thus, 
Vc ~ LR1/k. Since we have chosen ~R ~ 11k and 
L « v'R1!k, then for the points of observation situated 
in the focal region the whole volume of one radiator 
operates coherently and we have 

G 1 G 8 
h - --eLR,!'J.R ---

c' R\ c· R t ' 

where rf is the total energy of the EM field in one reson
ator, and this coincides with (10). 

In calculating the wave gravitational field we assumed 
that it is created by undamped EM oscillations. In a real 
situation the gravitational radiation will be maintained at 
approximately the same level only over an interval of 
time determined by the Q of the resonator-radiator, 
~t ~ Qlw. If this time interval is insufficient to carry 
out an experiment on detection, it can be increased by 
supplying additional EM energy to the radiator. 

2. DETECTION OF GRAVITATIONAL WAVES 

As the detector of gravitational waves we also utilize 
a EM resonator. The detector is placed in the focal reg
ion of the radiator, at the point where the wave gravita
tional field has the form (7). All information concerning 
the gravitational field is contained in (7), and we do not 
need to construct such quantities as the density or the 
flux of gravitational energy. Nevertheless, it is of inter
est to note that for (7), just as for all standing waves, the 
time average of the flux density of the energy (calcula
ted, for example, utilizing the energy-momentum pseudo
tensor of the gravitational field) is identically equal to 
zero. 

We assume that the resonator-detector has the shape 
of a cylinder, of height 1 and of radius R and is oriented 
along the z axis. The gravitational field (7) changes the 
state of the EM field existing in the resonator, and this 
change is, in principle, accessible to detection. In a 
closed resonator only very definite frequencies and con
figurations of the EM field are possible. The gravita
tional wave plays the role of a driving force in the equa
tion for the oscillations. If it satisfies the conditions of 
resonance, then the amplitude of the EM oscillations is 
altered particularly strongly, and the magnitude of this 
alteration is determined by the Q of the resonator. 

Since we assume that the frequency of the gravitational 
wave coincides with, or is close to one of the character
istic frequencies of the EM field, then in this case the 
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walls of the resonator behave as "soft" ones. This 
means that the elements of the shell of the resonator 
under the action of the gravitational field move as free 
particles. Indeed, the lowest characteristic frequencies 
of the shell of the resonator (ws) and of the EM field in it 
(w) have the same relation to each other as the velocity 
of sound and the velocity of light, and consequently ws 
« w - n, and we can neglect the elastic force compared 
to the gravitational force. The coincidence of n with one 
of the very high frequencies of the shell does not alter 
the conclusions with respect to its motion, since the 
contribution of high frequencies is negligibly small. The 
boundary conditions for the EM field in the resonator are 
formulated along the world lines of the elements of its 
shell. For their description it is convenient to utilize 
the synchronous syste~ of coordinates, in which they are 
given by the equation Xl = const. It is precisely because 
of this that we have carried out a transformation of the 
wave metric to the synchronous system of coordinates. 

We now turn to the equations of electrodynamics in a 
curved universe. From the generally covariant Maxwell 
equations 

(12) 

it is possible to obtain a generalization of the usual wave 
equation to the case of a curved space: 

4,,; 
FpV;Cl;Cl+R)1'11ar.FafJ+R)lI1Fva+Rvo.PclIl=- -C-i[ll;vh 

where the square bracket denotes antisymmetrization. 

We consider the approximation for a weak gravita
tional field gill) = '7 Il I) + hilI)' assuming, that for hilI) the 
gauge conditions (3) are satisfied. We then obtain the 
equations 

We consider that the hilI) appearing in (13) are created 
by the gravitational wave (7). The quantities Fill) repre
sent the sum of the "unperturbed" EM field (O)F Ill) and of 
the correction (1) Fill) which originates as a result of the 
action of the gravitational wave. The nature of the initial 
field (O)FIlI) and the relationship of the phases of the EM 
oscillations and the gravitational wave can be quite 
varied [6J. Depending on their choice different experi
mental arrangements are realized. We consider two 
variants in one of which (O)F Ill) corresponds to a constant 
magnetic field, and in the second one in addition to the 
constant magnetic field a weak standing EM wave is 
present in the resonator. 

The electrodynamic problem can be solved most 
simply in the case of an ideal resonator that has infinitely 
conducting walls and a nonconducting dielectric. Such a 
resonator has an infinite Q. But every real resonator has 
a finite quality factor Q, which, basically, apparently, 
depends on the conductivity of the walls. We take into 
account the damping of the alternating EM field in the 
resonator by setting against the power losses in the wall 

P=....!!!....:SH2 dV 
8nQ 

at a certain frequency w the effective conductivity of the 
dielectric (J producing in it the same magnitude of losses 

p= ~ SH'dV. 

From this it follows that (J = wI41TQ. After such a re-
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placement we can consider the walls of the resonator to 
be ideal and, consequently, formulate the boundary con
ditions at them as FOi(tang) = E(tang) = 0, and express 
the currents in (13) in terms of the intensity of the elec
tric field in accordance with the equation h = -aFOi' 
Equations (13) can be conveniently solved for the quanti
ties FOi' while the other components Fik can be deter
mined from (12). 

Let there be set up in the resonator a constant mag
netic field directed along the z axis. The only component 
different from zero is (OlFl2 = H = const. From Eq. (13) 
with the indices Oi it follows that the "driving force" is 
present in the equations for (llFol and (llF o2' It is con
venient to go over to the natural cylindrical components. 
Then the only nontrivial equation will be the one for 
r- l (llFOcp == Ecp: 

1 
DE. + -;:;- E.=Hh",.,o=AK'H J, (Kr) sin (Qt +w), (14) 

while Er and E z are identically equal to zero. 

We seek the solution of (14) ih the form of an expan
sion in terms of the eigenfunctions of the unperturbed 
boundary value problem satisfying the boundary condi
tions Eq> = 0 for z = ± Z/2 and for r = R. Since the right 
hand side of (14) does not depend on cp, we have 

E,.= EBp,(t)l,(xqr)sin ~n (z+ ~), (15) 
p" 

where p is an integer, Kq is a root of the equation 

Jl(KqR) = O. The eigenfrequencies of the EM oscillations 
are determined from the equation wpq/c2 = k~q = K~ 
+ (p1T/Z)2. We also expand the right hand side of (14) in 
terms of eigenfunctions: 

H _ pn p:t ( I) p--C",--J,(x,r)cos- z +- cos(Qt'¢+Z) 
Kt , I 2 '. , 

H,=f{+C", ~' lo(%,r)sinf~ (z + --} )cos(Qt+~,+z), 
(18) 

As can be seen, under the action of the gravitational 
field there appears in the resonator an alternating EM 
field-a standing EM wave with a characteristic field 
intensity proportional to AQH. 

We obtain the change in the total energy in the reson 
ator. The energy density E is equal to 

£=T",,= [H.'+H,'+I1,'(1-hn ) l/Sn. 

In zero order approximation (OlE = H2/8rr, and the total 
energy realized in the form of a constant magnetic field 
is given by 

f!/=ll'VISn, V=nR'I. 

In the approximation linear in A we have 

'''8= (2H'I) H, I1'h,,) 18n. 

Integration of this quantity over the volume yields zero. 
(In integrating over hzz we must remember that we 
represent hzz,r in the form of an expansion in terms of 
Jl(Kqr), while Jl(KqR) = 0.) Thus, the change in the en
ergy t:,. <f is proportional only to A 2. Of the terms propor
tional to A2 the greatest are those which contain Q2. We 
know all these terms. For (2)E constructed of these terms 
we have 

"'e= (E.'+Hp'+'" ll,') 18n. 

After integration over the volume and after taking (17) 
into account we obtain 

.1f!l= FCp,'Jo' (xqR) 116n='I,f!l (AQ) '(a"b,) 'J,' (x,m. 

Since t:,. rff is proportional to l, then for a given R it is 
J,(Kr)= Ea"b,J,(xqr)sill ~n (z+ : ), 

)','1 

where ~ = 2[1 - (-l)P]/p1T and 

b = 2x, J, (KR) 

q R(K'-x,,') J"(x,R) 
for K"1'=xq, 

(16) better to take large values of l, up to 1 ~ ~Rdk. Then 
for prrR/l « KqR we have bq ::::: 1. It is advantageous to 
excite the lowest eigenfrequencies in a resonant manner. 
As an example we calculate t:,.,ff for p = 1, q = 1. We ob
tain al = 4/JT, b i = 1, KIR "" 4 and finally, 

b,=1 for K=%q. 

Substituting (15) and (16) into (14) we obtain the equa
tion for Bpq (t): 

We are interested in the steady state regime when oscil
lations occur at the frequency of the driving force. The 
corresponding solution is of the form 

R,,,,=C,,,,sill(Qt+~·,+)(), 

where 

Evidently the maximum value of Cpq is attained when n 
coincides with o~e of the eigenfrequencies Wpq' Then the 
resonance value 1S 

C",=AQHapb" 

with Cpq being the greater the lower is the eigenfre
quency being excited. 

(17) 

From (12) we find the remaining components of the 
field, and finally for the p,q-harmonic we have: 

E.=Cpql,(x,r)sinP~ (z+~) sin(Qt+w+x), 
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(19) 

The time for the accumulation of the Signals (the time 
for reaching a steady state regime) is equal in order of 
magnitude to T ~ 2Q/n. 

We now consider a variant of the detector in which 
in addition to a constant magnetic field there is also 
present a weak standing EM wave. The frequency and 
the configuration of the EM wave are chosen specifically 
to be of a nature such that they are excited in a resonant 
manner by the gravitational wave as a result of its inter
action with a constant magnetic field (as in the preceding 
variant). The initial EM wave will be damped in accord
ance with the Q of the resonator, but the gravitational 
wave interacting primarily with the intense constant 
magnetic field will produce an additional EM wave which 
adds with the initial wave when their phases coincide. As 
a result the damping of the initial EM wave will be dim
inished and this amounts effectively to a certain increase 
in the Q of the resonator or, in other words, to an in
crease in the "ringing time"-the time required for the 
energy to be reduced by a factor of e. 

Thus, let the unperturbed EM field have the form (18), 
where Cpq should be replaced by Dexp (-m/2Q). We 

consider that D « H, but nevertheless that D »AQH, 
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since in the opposite case we would be brought back to 
the variant already considered. The additional EM field 
produced by the gravitational wave also has the form 
(18) (without the term H in the expression for Hz), where 
epq should be replaced by AQHapbq[l- exp(-nt72Q)]. 
The resulting alternating field is the sum of the initial 
and the additional EM waves. 

The total energy contained in the resonator in the 
form of an unperturbed alternating EM field is given by 

.w = 1!n VD'I,'(x,R)e-° I / Q• 

We obtain ~@"-the correction to 'i linear in A. If in the 
calculation of (1) E in the unperturbed EM field we retain 
only H, then we obtain the term which vanishes after 
integration over the volume. In comparing the remaining 
terms appearing i9 (1) E we should keep in mind that the 
factor Q(l - e -nt/2Q) becomes greater than unity already 
at a value of t which exceeds several periods (although 
we can still have t «Q/n). Therefore the principal 
terms in (l)ft. are those tl,1at are proportional. to 
DAQHe-nti 2Q(1 - e-nt/2Q). After integration of (1) E 

over the volume we obtain 

- H 
~B=28 AQ D a.b.eol/'Q (1-e-ol/'Q). 

By the time the characteristic time instant tc = 2Q/ n is 
reached and for p = q = 1 the accumulated energy ~@" 
will amount to 

H -
~B,""5AQDB" (20) 

where @"c is the value of If at t = tc ' 'Jc "'" 10- 4 VD2/3. 
For l/n « t « Q / n we can write 

and this means an increase in Q of ~Q = Q(AQH/D)apbq, 
or, what is equivalent to this, an increase in the "ring
ing time" of the resonator by ~T = T(AQH/D)apbqo We 
recall the condition of applicability of the formulas ob
tained above: AQH /D « 1. 

In conclusion we note that the toroidal resonator
radiator is situated in the field of its own gravitational 
radiation, as a result of which there arises a possibility 
in principle of utilizing it also as a detector. Indeed, the 
radiated convergent cylindrical wave after passing 
through the axis of symmetry is converted into a diver
gent wave, which passes through the radiator. If in the 
radiator there was excited an EM oscillation of frequency 
W, then the frequency of the resulting gravitational wave 
is 2w. The interaction of the gravitational wave of fre
quency 2w with the EM field of the radiator leads to the 
production of additional EM fields at frequencies of 
2w - w = wand 2w + w = 3w. With a special choice of 
the dimensions of the radiator one can achieve the situa
tion that the frequency 3w would also be an eigenfrequency 
of the resonator. In this case there will occur a resonant 
excitation of oscillations of this frequency in analogy to 
the situation that was described above in the first variant 
of the detector. At the frequency w, in analogy to the 
case described in the second variant of the detector, ad
dition of the initial and the additional EM fields will occur 
for a suitable relationship between their phases (which 
can always be achieved by a suitable choice of the radius 

.R1). 
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3. POSSIBILITIES OF PERFORMING AN EXPERIMENT 

The resonant action of the gravitational wave on the 
detector leads to an increase in its total EM energy, 
and this can be described as the appearance of new 
"quanta" of the EM field. The number of these new 
quanta is N1 = ~@"/nn where Ii is the Planck constant. If 
in the resonator there is present an initial alternating 
EM field, then the number of quanta already present is 
N = @"/nn. We assume that the noise in the detector is 
determined by the number of quanta vN. The gravitational 
signal can be regarded as having been detected if Nl = 1 
against the background of the constant EM field (as in the 
first variant of the detector) or if Nl = vN when N quanta 
are already present (as in the second variant). 

Utilizing (19) we can write down the equation for the 
possibility of detection in the form 

7·10-' AQHV'I'(IlQ)-'I'=1 

and, utilizing (20), in the form 

3·10-' AQHV", (IlQ)-'I.=1. 

(21) 

(22) 

As we can see, the conditions for the possibility of de
tection practically coincide in the two variants. We note 
that approximately the same equation is obtained in the 
variant of the detector containing only the initial standing 
EM wave without the constant magnetic field. In this case 
the role of H is played by the characteristic value of the 
intensity of the alternating EM field. 

The condition for the possibility of detection imposes 
requirements on the parameters of the detector for a 
given A and n. Since A and n themselves are determined 
by the parameters of the radiator it follows that from this 
one can obtain certain general limitations on the proper
ties of the system as a whole. For preliminary estimates 
as to orders of magnitude we consider the limiting case 
of the close position of the detector at the boundary of 
the wave zone. At the same time the dimensions of the 
radiator and the detector are also of the order of magni
tude of the wavelength of the gravitational wave A 2) • 

Specifically we assume that Rl = 2 A, then l = JAR1 !2 
= A. Since n "'" 4c/R, then R "'" 2 A/3. 

Substituting these data into (21) we rewrite the condi
tion for the possibility of detection: 

(23) 

For the parameters of the radiator we have L "'" ~ 
= A and from condition (9) we obtain ~R = 3 A/2, and from 
this R2 = 7 A/2. On the basis of (10) the amplitude is de
termined from the equation 

A = G n(R,'-R,') L!'!--. 
c~ R1 '4J1 ' 

where E is the characteristic intensity of the EM field 
in the resonator-radiator. utilizing the parameters of 
the radiator introduced above we arrive at the relation 

A"" .!i...E'J..' , . 
c 

(24) 

Substituting (24) into (23) we obtain finally 

l,,'E'HQ""32.~(llc) '10""2.10" g3/2cm512sec -3. (25) 
G 

This relation imposes very severe requirements on the 
quantities appearing in it and, probably, can not be satis
fied on the basis of the present levelof technology. It 
could be, for example, satisfied using the presently un-
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attainable set of values E ~ H ~ 3 X 105 G, Q ~ 7 X 1013 
and A ~ 103 cm, which assumes a total volume for the 
whole system of Vt ~ 25 x 109 cm 3 and an accumulation 
time for the signal of T ~ 4 X 105 sec. At the same time 
the energy of one quantum is fin = 2 x 10-19 erg, which 
corresponds to a temperature of T ~ 10-3 K. The volume 
of the whole system could be reduced by increasing 
E, Hand Q, and conversely, a decrease in the product 
E2HQ requires an increase in ,\ and in the volume of the 
system. It is clear that the realization of such an experi
ment requires the overcoming of tremendous difficulties, 
but doubtlessly such expenditures will be compensated by 
a broadening in principle of our knowledge of nature and, 
in future, by a possible utilization of gravitational waves 
for practical purposes. 

Note added in proof(March 20,1975). The metric (7) is a linear approximation, 
written in the TT-gauge, to the exact Einstein-Rosen vacuum solution (cf., for ex
ample, [''']). This metric can be obtained from the usual form of the Einstein-
Rosen solution by means of standard transformations ([9), p. 950). 

')The Greek indices take on the values 0, I, 2, 3 and the Latin ones take 
on the values I, 2, 3. The signature of the metric is given by: +---. 

2)If we assume that Newtonian gravitational theory is valid in the wave 
zone, then we can obtain from the Poisson equation the alternating 
gravitational potential the instantaneous value of which is determined 
by the distribution of mass in the resonator-radiator. From the known 
potential we obtain the gravitational force at the points of space oc
cupied by the detector. The EM field in the detector can be described 
as an elastic medium of density p = f/c 2 (where € is the energy density 
of the EM field), and with the speed of sound comparable to the speed 
of light. Then the "Newtonian" gravitational force, just as the "Ein
steinian" force, leads to the appearance of an alternating EM field in 
the resonator, but the magnitude of this field is smaller by a factor of 
O./Rl)2. As the radiator and the detector are made to approach each 
other to a distance of the order of A the "Newtonian" effect becomes 
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comparable to the "Einsteinian" effect. An exact quantitative calcula
tion must indicate that optimal distance between the detector and the 
radiator at which the relativistic effect is, say, still greater than the 
"Newtonian" effect by a factor of 10. Probably, for this it is sufficient 
to choose a distance equal to several wavelengths. 

1V. B. Braginskil, A. B. Manukin, E. I. Popov, V. N. 
Rudenko and A. A. Khorev, Zh. Eksp. Teor. Fiz. 66, 
801 (1974) [Sov. Phys.-JETP 39, 387 (1974)]. 

2 J. A. Tyson,Phys. Rev. Lett. 31, 326 (1973). 
3 J. 1. Levine and R. L. Garwin, Phys. Rev. Lett. 31, 173 

(1973). 
4R . W. P. Drever, J. Hough, R. Bland and G, W. Less
noff, Nature 246, 340 (1973). 

5 L. P. Grischuk and M. V. Sazhin, Zh. Eksp. Teor. Fiz. 
65, 441 (1973) (Sov. Phys.-JETP 38, 215 (1974)J. 

6 V. B. Braginskit, L. P. Grishchuk, A. G. Doroshkevich, 
Ya. B. Zel'dovich, I. D. Novikov and M. V. Sazhin, 
Zh. Eksp. Teor. Fiz. 65, 1729 (1973) [Sov. Phys.-JETP 
38, 865 (1974)]. 

7 A. Ango, Matematika dlya elektro-i radioinzhenerov 
(Mathematics for Electrical and Radio Engineers), 
Fizmatgiz, 1965. 

8 L. D. Landau and E. M. Lifshitz, Teoriya polya (Field 
Theory) "Nauka," 1973. 

9 C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravi
tation, San Francisco, 1973. 

10 J. Weber and J. Wheeler, Rev. Mod. Phys. 29, 509 
(1957) (Russ. Transl.: Novetshie problemy gravitatsii 
(Most Recent Problems in Gravitation), IlL, 1961, 
p.289). 

Translated by G. Volkoff 
171 

L. P. Grishchuk and M. V. Sazhin 793 


