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An increase of the resistance of high-purity indium single crystals in the intermediate state is observed if an 
uneven concentration of the normal phase is produced. The dependence of the effect on the introduced 
concentration inhomogeneity, on the temperature, and on other factors is investigated. The experimental 
results are in agreement with the theoretical calculations based on the equations of macroscopic 
electrodynamics of the intermediate state. The observed phenomenon is due to the Hall effect and to the 
"hydrodynamic" properties of the flow of normal superconducting domains, and is close to the resonant 
wave-resistance growth predicted theoretically by Andreev. 

PACS numbers: 72.lO.E 

In 1967 Andreev considered a new mechanism of dc 
resistance of pure superconductors in the intermediate 
stateYJ This mechanism is closely connected with ex
citation, in the intermediate state, of helical electro
magnetic waves (helicons). The new resistance was 
therefore called "wave resistance." 

In the intermediate state, the volume of the metal 
breaks up into alternating regions of normal (n) and 
superconducting (s) phases. When direct current J is 
made to flow, a situation is readily obtained wherein the 
structure of the nand s domains is set in motion with 
velocity v ~ J . [2 J in the coordinate system connected 
with the moving domains, any statistical inhomogeneity 
of the magnetic field becomes a time-varying pertur
bation. Such perturbations excite helicon waves in the 
intermediate-state structure. The current-source en
ergy is consumed in the excitation of the helicons. It 
is this which leads to the additional resistance. A sim
ilar effect is well known in hydrodynamics: the flow of 
a liquid with a free surface around an obstacle leads 
to excitation of waves on the surface of the liquid and 
to the appearance of additional "wave" resistance. 

In the intermediate state, the electromagnetic-type 
waves (helicons) are excited most effectively by in
homogeneities of the magnetic fields, which can be pro
duced near roughnesses on the sample surface, near 
cavities in the volume, near inhomogeneities of the 
thickness, and can finally be produced artificially. In 
the case of inhomogeneities that are periodically dis
tributed in space along the direction of the direct dur
rent, a time-periodic perturbation acts in the system 
of the moving nand s domains. When the frequency of 
this perturbation coincides with natural frequency of the 
helicons, a resonant increase of the field amplitudes 
should be observed in the sample, and accordingly also 
a maximum of the wave resistance. Thus, at certain 
values of J there should be observed maxima of the 
sample resistance. The pOSitions of these maxima are 
determined by the spectrum of the natural oscillations 
of the helicons in the sample, and the width is deter
mined by the helicon damping. 

Attention should be called to two circumstances. First, 
all the fields are static in the laboratory frame. Second, 
for the wave resistance to appear, the motion of the 
structure of the nand s domains as a unit is not a neces
sary conditions. The existence of wave resistance 
follows from the solution of the equations of macroscopiC 
electrodynamics. [1 J MacroscopiC electrodynamics de-
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scribes electromagnetic waves that vary over distances 
greatly exceeding the period d of the intermediate
state structure, i.e., the configuration of the n and s 
domains has no significance. For example, within the 
framework of macroscopiC electrodynamiCS of a pure 
uncompensated metal it is possible to have, besides the 
case of moving nand s layers perpendicular to the cur
rent, also a configuration of immobile layers extending 
along the current direction. [3 J In this situation, wave 
resistance can also set in. It is necessary only in each 
case to ensure free displacement of the boundaries be
tween the phases, i.e., absence of pinning of the n - s 
boundaries by defects in the crystal. If there is no such 
dry friction, then the hydrodynamic properties of the 
flow of domains of the normal and superconducting 
phases will become manifest. 

The natural helicon oscillations in an unbounded 
plane-parallel plate are characterized by a wave 
vector k lying in the plane of the plate, and by an inte
ger number n (n = 1, a, 3, ...• ) of half-waves that are 
spanned by the plate thickness. Andreev[l J calculated 
the spectrum of the natural oscillations in a plate 
of thickness a. The natural oscillation frequency 
wn(k) is given by 

cH, 1 
Uln(k)~ :t.\'ea' !jln'(k) + Ne jk. (1 ) 

Here N is the absolute value of the difference between 
the hole and electron densities, e is the electron charge, 
Hc is the critical field, c is the speed of light, , is the 
density of the electric current, and CPn(k) is a certain 
monotonically increasing function of k, lying in the range 
mr/2::S CPn(k) < (2n + 1)11/4. For a statistical pertur
bation that is periodic along the plate with a wave 
vector k, the maxima of the wave resistance should 
be observed at current values corresponding to the 
roots of the equation wn(k) = O. 

In addition to the natural-oscillation spectral modes 
described above, there exists in the intermediate 
state one more mode determined by the solution cP == O. 
This can naturally be called the zero mode. The equa
tion W = 0 for the zero mode has a trivial solution 
J = 0 for all k. This case was not considered by 
Andreev[l J specially. We shall therefore write down in 
the next section the calculation results for the distri
bution of the electromagnetic field and of the plate 
resistance as J - O. It turns out that in this case, when 
the perturbation is turned on, an additional resistance 
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is likewise produced and reaches a maximum at J = O. 
This zero maximum is on a par with the resonant 
maxima of the wave resistance at J 10. The fundamental 
reason for their appearance, besides the hydrodynamic 
properties of the intermediate state, is the large Hall 
angle in pure metals. At the same time, it should be 
noted that on going from the maxima at J I 0 to the zero 
maximum, the resistance increment loses its wave 
character. This is analogous, to some degree, to the 
transition from experiments with helicons to observa
tion of the Hall effect in direct current. 

In this paper we present the results of observa-
tion of the zero maximum of the resistances of pure 
indium samples. A preliminary communication concern
ing these experiments has already been published.[4 J 
These experiments were performed on cylindrical 
samples, for which calculations were not made be
cause of the considerable mathematical difficulties. 
The comparison of the experimental data with the 
theory of the zero maximum of resistance, developed 
for a plate, will therefore be only qualitative in char
acter. 

THE ZERO MAXIMUM OF RESISTANCE 
(THEORY) 

We consider a plane-parallel plate of thickness a 
placed in a constant external field f ~ Hc perpendicu
lar to the surface of the plate. We introduce a co
ordinate frame with the x axis along the direct cur..-:. 
rent J flowing in the plate and with a z axis along .tf 
so that on surfaces of the plate are given by z = ±a/2. 
We consider for simplicity the case of a very pure iso
tropic metal, in which the off-diagonal component of the 
conductivity tensor of the normal phase are given by 
Uxy = - Uyx Rj Nec/Hc, and the diagonal components by 
Uxx = Uyy Rj uxy/n T« Uxy. Here n is the cyclotron 
frequency of the carriers in the critical field, and T 

is the carrier relaxation time. We shall henceforth 
assume throughout that the temperature T is much 
lower than the critical temperature and that J « J c' 
where J c is the critical current producing the field Hc 
on the surfaces z = ±a/2. 

Assume that a constant inhomogeneous magnetic 
field £1 is produced on the sur.face of the plate, such that 
at z = ±a/2 we have.tf1z =.tf1e1kx, .tf1y = 0, and.tf1x is 
determined by the solution inside the plate, in accord 

. with the continuity of the tangential components of the 
magnetic field. For the equations of the macroscopic 
electrodynamics to be valid, we must put k « l/d. 

In the case of a small perturbation.tf 1 «.tf we use 
the linearized Andreev formulasYJ Accurate to terms 
quadratic in the perturbation, we can write down the 
expressions for the magnetic induction B, for the mag
netic field intensity H, and for the electric field in
tensity E in the plate: 

B,=:.16+B,,, B.=(:.16IH,)H,.; H.=H,., 

H,=H,; E.=Eo.+E". 

Here EOx = jHc/Necn T is the electric field intensity 
component at.tf1 = 0, the subscript O! runs through 
the values x and y, while the unity subscripts denote 
small additions that are linear in the perturbation.tf 1. 
Under the conditions nT » 1 and ka » 1 the general 
formulas for the solution of the equations of U J for 
currents J «Jc/ka become Simpler, and the expres
sions for the small additions take the form 

782 SOy. Phys.·JETP, Vol. 41, No.4 

B"={1-~[1- (~)']}:.16 eilu 
2(1+it;) a " 

H 6t; 1 (2Z) . 
,,=- 1+it; Gnka ---;; :.16,e"", 

H =_ 3i~' _1_(~) [ (ZZ )'] ikx 

ty 1+is, Gn ka[;l1; a 1- ---;; :.16,e, 

E __ 1_(Q )':.16, E ik. 

,,- 1 +it; T Jii" oxe , (2) 

where the dimensionless variable ~ = nTkaJ/6Jc is used, 
and the concentration of the normal phase is C n =.tf /Hc. 
The inhomogeneous con~entration increment is Cni 
= B1z/Hc Rj (.tf1/.tf)Cne1kx , We note that expressions 
(2) can be valid up to values ~ > 1, in view of the as
sumed large value of the factor n T. 

At J = 0, the tangential components of all the fields 
vanish, and B 1z =.tf 1 e1kx does not depend on z. The 
picture of the force lines in the plate is shown in Fig. 
1a. The penetration of the inhomogeneous field to an 
arbitrarily large depth corresponds to the existence of 
the zero mode of the natural oscillations in Eq. (1), 
and is a property peculiar to the intermediate state. It 
is connected with a simgle circumstance, which was al
ready noted by London, 5J namely that the force lines in 
the intermediate state are straight. We note that in a. 
normal metal a surface perturbation of the form Jf1 e1kx 

decreases exponentially with increasing depth and has a 
characteristic penetration depth l/k. 

In very pure superconductors, the picture shown in 
Fig. 1a is not stable to small currents through the 
plate. At J Rj J c/n Tka, i.e., at ~ Rj 1, the distribution 
of B 1z in the interior of the plate is significantly 
altered. This is illustrated in Fig. lb. In the central 
plane of the plate, the distribution of B 1z is shifted 
by a quarter-period along the x axis relative to the 
initial perturbation on the surface, and has a smaller am
plitude. 

FIG. I FIG. 2 

FIG. I. Picture of the force lines in a plate with inhomogeneous 
concentration en: a-at J = 0; b-at J = 61c/~hka. For the sake of clarity, 
the value of ~/.tfis exaggerated, while ka is undervalued. 

FIG. 2. Diagram of apparatus: I-sample, 2-copper vessel, 3-tube 
for fastening to the cover of the apparatus, 4-Plexiglas rings. The secon
dary details are not shown. The turns of the bifilar coil are shown not 
to scale. 
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When measuring the voltage drop along the x axis 
over a length L » 11k, the oscillating quantity E1x does 
not make a noticeable contribution, and account must 
be taken of the electric-field increment E2x that is quad
ratic in the perturbation. According to Andreev,U] the 
coordinate-independent E2x is given by 

E,.= __ 1_Re as/' B • ( dH .. ) dz = (Q,) '(J'e,lJ'e) , E . 
8ttNea _a/2 ,. dz 2(1+£') 0, 

This expression means that when the perturbation is 
turned on the plate resistance R in the intermediate 
state increases by the amount 

R dft,' (Q,)' 
11 = 1+£' (-n::-) 2e n" (3) 

Equation (3) can also be derived formally from Eqs. 
(29) and (30) of Andreev's paperU] by taking the limit as 
J- O. 

The maximum value R = Rm is reached at J = O. In 
perfect single crystals the factor 0 T can be very large, 
so that Rm turns out to be larger than R even for small 
perturbations. The width of the zero maximum of R, de
termined by the condition ~ = Rm/2, is equal to J 1/2 

= 6Jc/OTka. We note that the position of the first 
resonance of the wave resistance, in the current scale, 
is J 1 "" Jc/ka »J1/2 • 

EXPERIMENTAL PROCEDURE 
The measurements were made on cylindrical sin

gle crystals grown from ultrapure indium. The 
sample length was approximately 100 mm and the 
diameter D = 4 mm. The main results were obtained 
with two samples. Measurement of the damping of the 
free helicon oscillations, by the method described in 
[6], yielded OT = 3.4 for sample 1 and OT = 3.3 for sam
ple 2. The samples were placed in a homogeneous 
magnetic field £' perpendicular to the cylinder axis, and 
immersed in liquid helium whose temperature was 
lowered to 1.20 K. 

The low-temperature part of the apparatus is 
shown schematically in Fig. 2. The sample was 
soldered with Wood's alloy to current leads made up of 
several thin lead wires, to avoid appreciable mechani
cal stresses in the sample during cooling. The current 
was fed to the lower end of the sample through a vessel 
made of thin copper foil and placed coaxially with the 
sample, so that no additional magnetic fields be pro
duced in the sample by the current leads. The leads 
delivered a current J up to 100 A without noticeable 
heat release near the sample. The central part of 
the sample was placed inside a bifilar coil. This coil 
produced a homogeneous field proportional to the cur
rent J m through the coil. The bifilar coil was made 
of superconducting niobium-zirconium alloy wire of 
0.34 mm diameter. In the experiments we used coils 
wound in various manners, so that the spatial period 
of the field £1 could be varied in the range A "" 1 to 3 
mm. The gap between the turns and the surface of the 
sample was usually 0.3 mm, corresponding to £1 "" 30Qe 
on the sample surface in the normal state at J m = 10 A. 
The superconducting wire should distort the homoge
neous external field even at J m = O. This effect ap
pears to have been quite small and to have no notice
able influence on the results. The length of the bifilar 
winding was L "" 60 mm. 

Near the end of the winding, potential leads were 
soldered to the sample with Wood's alloy. The voltage 
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U on the contacts was measured with an F-1l8 nanovolt
meter having a sensitivity 10-9 V Idiv. Unfortunately, 
the inhomogeneities of the copper wire lead to large 
thermoelectric powers in the measurement circuit, 
thus preventing us from making full use of this sensitiv
ity. The error in the measurement of U as a result of 
the changes of the thermoelectric power and the insta
bility of the null of the F-118 usually amounted to 
several nanovolts. The sample, the bifilar coil, and 
the Helmholtz system used to produce the homogeneous 
field were fed from stabilized sources, and all the cur
rents were measured with accuracy"" 1.0%, so that the 
error in the measurement of the resistance sample was 
determined mainly by the error in the measurement of 
U. The nanovoltmeter readings were registered either 
by using an indicator with a pOinter, or plotted with an 
automatic x-y recorder, the sweep along the abscissa 
axis being effected with a Signal proportional to J. 

The quality of the samples could be monitored 
directly during the course of the experiment, by ob
serving the dependence of the sample resistance R in the 
intermediate state as a function of the normal-phase 
concentration Cn• For a long cylinder in a transverse 
field, we have Cn = 2£/Hc - 1. According to the 
theory (see, e.g., [1]), for bulky samples with thickness 
much larger than the electron mean free path 1 we 
have R = CnRa, where Ra is the resistance of the 
sample in the normal state. For samples whose diame
ter is comparable with l, this simple relation no longer 
holds. The point is that in the normal state an addi
tional contribution is made to the resistance by the 
electron scattering from the sample surface. Guiding 
ourselves by Nordheim's simple rule, we can assume 
that Ro increases in proportion to 1 + liD. In the inter
mediate state, the electrons move inside the normal 
layers and do not collide with the sample surface. By 
virtue of the distinctive character of the (Andreev) 
reflection, multiple reflection of electrons inside the 
n-Iayer makes no contribution to the electric resis
tance, so that R in the intermediate state is determined 
by the conductivity of the bulk metal. The net result 
is that the dependence of R on the concentration ceases 
to be linear. 

Figure 3 shows the results of the measurement of this 
dependence for sample 2. The slope of the straight 
line at small Cn corresponds to the value of I in bulky 
metal. With increasing Cn , the fraction of the elec-
trons colliding with the sample surface increases. In 
the normal state, the resistance corresponds to a de
creased mean free path, 11leff = 11l + liD. Starting 
with this relation we can estimate from the data of 
Fig. 3 that 1 "" 1.4 mm, which corresponds, for medium 
values of the effective mass and of the electron velocity 

FIG. 3. Dependence of the resistance 
of sample 2 in the intermediate state on 
the concentration of the normal phase. 
T = 1.3°K, J .;;; lOA. The dashed line is 
an extrapolation of the initial section of 
the experimental curve. 

1. P. K-ylov 

2 

I I I ! ! 

O.j 0.5 0.7 0.8 0.9 

783 



)./, Hz 

0,3 

1lJlIVVV1n {,oSA 

0,2 

!(J 20 .10 fIJ t, sec 
5 10 J,A 

FIG. 4 FIG. 5 

FIG. 4. Plots of the resistance Rc of the micro contact (arbitrary 
units) against the time t. The curves are arbitrarily shifted in the vertical 
direction. Sample 2, T = I .2°K, J = 5 A, en = 0.27, A = 1.36 mm. 

FIG. 5. Frequency v of the oscillations of Rc as a function of the cur
rent through sample 2; Jm = 0, en = 0.27, T = 1.2°K. 

(see (6)), to nr::::; 2.4. The deviation from the data ob
tained in other experiments(6) using the same sample 
can be attributed to a deterioration of the sample qual
ity when the latter was mounted in the apparatus. 

Additional experiments were performed to check that 
there was no pinning of the n - s boundaries by crystal 
defects. To this end, a needle made of copper wire 
of 0.05 mm diameter was used to connect the turns at 
the center part of the bifilar coil to the sample surface. 
A special measurement circuit was used to register 
the change of the resistance of this microcontact during 
the passage of the nand s layers (for details of this 
procedure see (7)). A typical plot of the resistance 
oscillations of this microcontact when current is passed 
through the sample is shown in Fig. 4. These oscil
lations are due to the passage of the layers past the 
needle. The frequency II of the oscillations is proportional 
to the speed of the layers. Figure 5 shows a plot of the 
experimentally observed II against the current through 
the sample. At small current it is possible to draw 
through the experimental pOints a straight line that 
passes through the origin, thus indicating that there is 
no dry friction in the motion of the layers, i.e., the n - s 
boundaries move freely. Using the data (see, e.g., (7)) 
on the nature of the structure of the intermediate state, 
viz., d = 0.3 mm (C n "" 0.3) in indium cylinders (D = 4 
mm) we obtain at j = 1 A/cm2 a layer velocity v = 1.4 
X 10-4 cm/ sec. This is close to the theoretical v = 1.6 
X 10-4 cm/sec at N::::; 4 X 1022 cm-3 • 

At currents J ~ 0 .03J c , as already noted by Sharvin 
and Landau,l7) the frequency II increases with increas
ing J much more slowly, apparently by virtue of the 
influence of the magnetic field of the current on the 
structure of the nand slayers. 

EXPERIMENTAL RESULTS AND DISCUSSION 

At a fixed current through the sample, turning on the 
current in the bifilar coil leads to an increase ~U of the 
voltage on the sample in the intermediate state. This 
effect appears neither in the normal nor in the super
conducting state. At the same time, in the intermediate 
state the effect can be large enough to cause the voltage 
on the sample to be several times larger than the 
voltage in the normal state at the same value of the 
current J. Figure 6 shows the measured values of the 
additional resistance R = ~U/J on sample 2 as a function 
of the current through the sample. At currents J 
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..s 1 A, the error in the measurement of ~U becomes 
comparable with the voltage itself, so that the corres
ponding points on the plot of Fig. 5 have a large scatter. 
Nonetheless, at larger currents we can state with assur
ance that the resistance of the sample increases by 
more than 10 times when the inhomogeneous field is 
turned on. 

Formula (3), which describes the R(J) dependence, 
was derived for a plate. For a cylindrical sample one 
should expect the same regularity, but the expressions 
for the amplitude and width of the maximum should now 
contain numerical factors of the order of unity. The 
determination of these factors for the solid theo
retical curve on Fig. 6 was carried out by using the two 
experimental points marked by the double circles. 

A comparison of the experimental results with ex
pression (3) at 

ka=2nDI"A;o,;20, [h;o,;3 and /,=240 A 

shows that both the magnitude and the width of the max
imum of the experimental R(J) plot shown in Fig. 6 are 
of the correct order of magnitude. The experimental 
points for Cn = 0.2 lie much higher than the theoretical 
curve at J > 10 A. This is not surprising, if account 
is taken of the strong dependence of the form of the 
R(J) curve on the distribution of the field £1 along the 
sample axis. Under the conditions of these experi
ments, the distribution of the inhomogeneous field £1 
on the surface of the sample differs from the Simple 
sinusoidal distribution assumed in the derivation of (3). 
In addition, the distribution of the field H 1 on the surface 
should depend on the value of the current J. 

In prinCiple we can expect the resistance of the sam
ple in the intermediate state to increase by (n r)2 times 
if the nand s layers are very strongly pinned by defects. 
If the layers that lie perpendicular to the cylinder axis 
are fixed somehow in this position, then the Hall com
ponent of the electric field, EOy = nTEOx, turns out to 
be parallel to the n- s boundary. In order for the 
electric-field component tangent to the boundary of the 
superconducting phase to vanish, as called for by the 
continuity conditions, current must flow in the normal 
layers along the y axis, with denSity jy = -n rj if the 
current density jx = j is assumed to be fixed. By virtue 
of the Hall effect, these currents will be in turn ac
companied by the appearance of an electric field E~ 
= nrEOy = (nr)2EOx, along the sample axis, thus 
corresponding to an increase of the resistance. 

One should expect the layers to break away from 

11 

9 

5 

J 

o 2 5 8 10 12 ,q 15 
J,A 

FIG. 6. Measured values of R of sample 2, T = 1.3°K, Jm = 15 A, 
A = 1.36 mm; o-en = 0.2; "'-en = 0.5; o-en = 0.8. Solid line-theoreti
cal curve drawn through the two points marked by the double circles. 
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the pinning centers with increasing current through 
the sample, and the resistance to return to its initial 
value. In practice it is difficult to expect the layer 
pinning to be strong enough to produce between the 
phases immobile boundaries that are perpendicular to 
the sample axis. To the contrary, as shown by experi
ments aimed at observing the oscillations of the mi
crocontact resistance, when the perturbation is turned 
on the layers move freely along the sample axis already 
at currents J ~ 1 A. Moreover, the layer motion can be 
observed directly during the measurement of the 
additional resistance. Figure 4 shows plots of the mi
crocontact resistance following application of the per
turbation. We see that the file of the current J m in
fluences the structure of the intermediate state, and in 
particular, in the case of a strong perturbation, the 
structure becomes much less regular than at J m = O. 

Nonetheless, in the presence of the perturbation H 1 
one should expect excitation of currents along the y axis, 
and this is of importance for the understanding of the 
microscopic mechanism of the onset of the additional 
resistance1) R. Imagine that at J = 0 the layers are 
along the force lines of B, as shown in Fig. 1a. When 
the current through the sample is turned on; the layers 
start moving with an average velocity v = j/Ne. How
ever, the velocity of the boundaries between the nand s 
phases will differ from the average layer velocity, by 
virtue of the change of the concentration enl along the 
sample axis. The deviation of the velocity of the n-s 
boundary from the value j/Ne means the appearance of 
a tangential component of the electric field. In order 
that the tangential electric field be equal to zero, as 
before, on the boundary with the superconting phase, 
currents jy will appear in the normal phase. The Joule 
loss, e~oportional to j;, causes the additional resis
tance 11. 

The stationary state is established in the metal at 
Jt' < Ho and J «Jc with a large time constant. At cur
rents J ~ 2 A, when the perturbation Jt'1 is turned on, 
the stationary value of AU is reached after a time ex
ceeding 10 sec. When the current-voltage characteristic 
was recorded at constant J m , a delay of AU(J) relative 
to its stationary value was also observed, so that the in
crease or decrease of R can be obtained directly from 
current-voltage characteristics plotted with the cur
rent decreased or increased, respectively.2) These 
time dependences offer an additional argument against 
the hypothesis that the resistance is increased be-
cause the layers are pinned. 

The value of R depends strongly on the applied per
turbation. Figure 7 shows the experimental results con
cerning the dependence of R on Jt'1' At Jt'1 «Jt', in 
accord with (3), we have R ~ Jt'1 2 , and the width J 1/2 of 
the maximum is inde,Eendent ofJt'l. At Jt'l/Jt'Cn ~ 1, the 
maximum value R = Rm ceases to increase with in
crease of Jt'1. Simultaneously with this saturation of 
the zero maximum, an increase is observed in its 
width with further increase of the perturbation. 

The additional resistance R decreases rapidly with 
rising temperature, and at T ~ 2.6 0 K it becomes less 
than the error in the measurement of the ordinary re
sistance R. Experiments on the temperature dependence 
of R were performed on sample 1 at fixed values of 
the concentration (0.2 and 0.5) and of the perturbation 
Jt'l/Hc. According to formula (3), Rm depends under 
these conditions on the temperature by virtue of the 
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change of 0 ~ Hc and of the relaxation time T. 

The value of R also varies with temperature like 
~l/T. Thus, the combination RmR/H~ of the measured 
quantities should not depend on the temperature. Experi
ments have shown that in the range T = 1.2 to 2.6 0 K we 
have RmR/H~ = const with accuracy 10%, although Rm 
changes by more than one order of magnitude. As fol
lows from the theory, the width of the zero maximum of 
R should also depend on the temperature. However, 
the entire temperature dependence in the expression 
J 1/2 ~ J c/O T is determined only by the factor 1/ T, since 
J c ~ 0 ~ Hc' 

In the investigated temperature range, as follows 
from the measurements of R, the value of T changed 
by approximately a factor 1.5. At the same time, owing 
to the rapid decrease of the signal, the error in the 
measurement of the width of the zero maximum of R at 
relatively high temperature exceeded 50%. This has pre
vented a detailed comparison of the results on the 
width of the zero maximum with the theory, but within 
the limits of experimental error we can state that 
formula (3) describes well the observed temperature 
dependence of R. 

We turn now to the data on the dependence of R on the 
concentration of the normal phase. As shown by 
measurements performed more accurately than in the 
preceding study, [4] the maximum increment to the re
sistance at constant J m and constant T is given ap
proximately by the formula Rm ~ l/C n in the concen
tration range en = 0.2 - 0.8, in accord with formula 
(3), if it is assumed that R ~ Cn. Outside this range of 
en, a decrease of Rm takes place, probably because of 
the increase of the period d of the structure and be
cause of the violation of the macroscopic-electro
dynamiCS condition k « l/d. It should be noted that 
the indicated agreement with the theory is to a certain 
degree accidental, inasmuch as generally speaking the 
condition J m = const does not ensure that Jt'l/Hc is con
stant when the concentration Cn is varied. Moreover, 
as seen from Fig. 5, an appreciable broadening of the 
zero maximum of R is observed with increasing con
centration, thus utterly contradicting the theory, where 
J1/2 is independent of Cn. It appears that the rather 
artificial assumptions concerning the distribution of 
the perturbing field Jt'1 on the surface of the sample, 
made to simplify the derivation of (3), cease to be 
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FIG. 7. Dependence of R(Jm) at J = 3 A. Sample I, T = 1.3°K, Cn 
=.0.2. 

FIG. 8. R/Rm as a function of the current J for two periods of the 
perturbation. o-A = 1.36 mm, D-A = 3 mm. Sample 2, T = 1.3°K, 
Cn = O.S, Jm = IS A. 
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justified when it comes to describing the dependence of 
R on the normal-phase concentration. 

At the same time, the theory describes quite well 
the dependence of the width of the zero maximum on 
the period of the perturbation. Figure 8 shows data on 
the variation of the ratio of R to the maximum value 
Rm under such a perturbation, before the broadening 
of the zero maximum due to the large value of £'1 is 
observed. It is seen that the experimentally deter
mined J 1/2 ~ 1/ A agrees with the theory. 

Indium is an anisotropic metal with a complex 
Fermi surface, so that the expressions for the com
ponents of the conductivity tensor should differ from 
the simplified mean values assumed at the start of the 
article. In the intermediate state, however, as shown 
by various experiments, in which the averaged galvano
magnetic characteristics of indium played a role (see, 
e.g., [6,7]), these deviations are quite small, and the 
observed effects are practically isotropic. The same 
can be said concerning the additional resistance in the 
case of inhomogeneous concentration. Of course, it is 
impossible to compare the magnitude of the effect on 
two samples at different crystalline orientation of J, 
without monitoring the value of £'1 on the sample sur
face. However, during the course of one experiment we 
plotted for each of the samples the function R(J) at dif
ferent orientations of the external field £' in a plane 
perpendicular to the cylinder axis. R was independent 
of the direction of H within the ~5% experimental error. 

CONCLUSION 

In the described experiment, in the case J - 0, an 
increase of the resistance of the superconductor in the 
intermediate state was observed when an inhomogene
ous concentration of the normal phase was produced. 
The qualitative agreement with a theory based on the 
general equations of macroscopic electrodynamics of the 
intermediate state leaves no doubts concerning the 
nature of this effect, which is due to the Hall effect 
in conjunction with the hydrodynamic properties of the 
flow of the normal and superconducting domains. The ob
served phenomenon is very close in its nature to the 
resonant increase of the wave resistance, which was 
theoretically considered by Andreev, although it 
has no obvious wave or resonant character. During the 
course of our experiments we were unable to observe 
resonances of the wave resistance up to currents J 
~ 80 A, and probably because the natural frequencies 
of the helicon oscillations in the cylinder are high 
enough, and the positions of the resonant maxima are 
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shifted into the region J ~ J c' where the initial equa
tions are no longer valid. 

The increase of the resistance R becomes manifest 
only in very pure metals, and at a controllable value 
of the inhomogeneity of the concentration en it can 
serve as a measure of the purity and perfection of the 
crystal. From the point of view of an investigation of 
the galvanomagnetic properties, measurements of R can 
yield, in principle, the same information as measure
ment of the Hall angle. 

An interesting possibility is uncovered by measure
ment of the resistance in the presence of an alternating 
perturbation of frequency w, moving along the sample 
axis with velocity v = w/k. In this case, according to 
(1), the zero maximum of R should be observed at J 10. 
Measurement of the current density corresponding to 
the maximum of R, at a known value of v, makes it possi
ble to determine the sign and concentration of the 
carriers. 

The author is sincerely grateful to A. F. Andreev, 
I. L. Landau, and Yu. V. Sharvin for a discussion of the 
results and for useful discussions, to L. M. Shpel'ter 
for preparing the high-grade samples, and to R. K. 
Nilolaev and A. D. Bronnikov of the Institute of Solid 
State Physics for supplying the ultrapure indium. 

I)This remark is due to 1. L. Landau. 
2) An example of a current-voltage characteristic recorded too rapidly 

and corresponding to decreased values of Rat J :::; 3 A was given 
earlier. [4] 
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