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From calculations performed in the present paper, it follows that the propagation of waves in liquids 
having a nonlinear velocity dependence of the friction force is characterized by a number of singularities. 
An example of such a liquid is superfluid helium, in which the friction is zero at velocities below a certain 
critical value, and increases sharply at velocities above critical. As a result, the retardation force in 
moving helium will be different for oscillations of the liquid in the direction of the flow and counter to 
it. It is shown that this leads, in particular, to a decrease in the time-averaged velocity of the liquid flow. 
This type of effect has previously been observed experimentally Y 1 According to the results of the 
present paper, the relaxation times of a superfluid liquid can be judged on the basis of the frequency 
dependence of the effect. 

PACS numbers: 67.20.T, 67.4D.H 

It was shown by Esel'son, Ivantsov, Mikhallov, and 
Shcherbachenko[l] that the rate of transport of a super
fluid along a film changes sharply when a capaCitor is 
placed on the path of the moving film, with a attenuating 
voltage applied to the capacitor. The rate of transport 
Q = vS is determined by the time-average velocity v of 
the film and the area of its cross section S = 27T Rh. 
Here R is the radius of the ampoule along the surface 
of which the film moves under the action of a force due 
to the difference in the levels of the liquid between the 
ampoule and the chamber, and h is the thickness of the 
film. As was noted in[l], the rate of transport should 
decrease due to the change in the film thickness h 
caused by the propagation of the third sound[2] gener
ated by the alternating electric field. It has been as
sumed here that the velocity of motion of the film does 
not change and is equal to the criti.cal value, i.e., 
v = vc. A similar effect has been observed in[3], where 
a change in Q was brought about by a sharp drop in the 
value of R on the path of the moving film. 

It will be shown below that the propagation of waves 
in a superfluid that is moving with critical velocity Vc 
has a number of features. These features should lead, 
in particular, to a decrease in V. This latter fact is 
easily understood if we take into account that there 
exists an asymmetry in the moving film for oscillations 
of the liquid along the flow and opposing it. Thus, if the 
velocity of the oscillatory motion is directed along the 
flow in one half-period, it should exceed the critical 
velocity, which leads finally to a very inSignificant in
crease in the total velocity in comparison with vc. This 
is connected with the fact that the motion with velocity 
greater than critical is accompanied by the generation 
of a significant retarding force, which prevents an in
crease in the velocity of motion of the film. By virtue 
of this, v", Vc in the considered half-period. Then, in 
the other half-period, when the velocity of the oscilla
tory motion is directed counter to the flow, the resultant 
velocity v = Vc - I u I turns out to be less than critical 
and v can even be negative in this half-period. Then 
the average velocity over the period of oscillation will 
be less than critical, which leads to a decrease of Q 
relative to the rate of transport in the absence of oscil
latory motion, when v = vc. 

To solve the problem posed, we consider an un
bounded film of a superfluid. As the x,y plane, we 
choose the surface of the substrate on which the film is 
located. Let all the quantities be independent of the 
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coordinate y. We further assume that the longitudinal 
velocity of the superfluid component Vx is large in 
comparison with the transverse vz. For helium films 
of thickness h ~ 10-6 cm[4], the latter assumption is 
valid if the distance A on which the velocity of the liquid 
undergoes a significant change is much greater than h. 
So far as the normal component of the superfluid is con
cerned, it is assumed to be motionless in the film, as 
usual. Here we can neglect the change in the tempera
ture brought about by motion of the superfluid compon
ent relative to the normal component.[5] In accordance 
with what has been said above, everything that follows 
applies only to the superfluid component, the denSity p 
of which is assumed to be of the order of the helium 
density. This latter. observation eliminates from con
sideration the temperature region near the temperature 
of the superfluid tranSition. 

We now write out the equations to be satisfied by the 
variables describing the film: the equation of motion 
and the equation of mass conservation of the liquid.l 6 ] 

The second equation can be rewritten without change, 
So far as the equation of motion is concerned, it is 
necessary here to take into account a number of forces 
acting on the film. First, there is the force Fm, which 
leads to motion of the film as a whole. The differential 
in the liquid levels provided this force in (1]. Second is 
the force - Fr( v) which governs the retardation of the 
film. And, finally, there is the force Fu, which leads to 
the generation of oscillations in the liquid. Inll ], this 
force was due to the capacitor to which the alternating 
voltage was applied. 

With account of the observations made above, we can 
write down the initial set of equations in the form 

dv {Jh . (1) dt= -FvTx+f'n,-F,(v)+F., 

.ah {Jhv 
at"+--a;-=O. (2) 

Here FV is the Van der Waals force.l7] The force Fu, 
which is due to oscillations of the field E in the space 
between the plates of the capacitor, can be written in 
the form[8] 

F = 8-1 {JE' 
u 8np ax ' (3 ) 

where E is the dielectric constant of the superfluid. 

By modeling the experiment of[l], we can write down 
Eq. (3) in the form 
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F =A/ (t) a/,(x) 
u t ax' 

(4) 

Here f2 (x) differs from zero only in the region I x I 
:5 x" which is determined by the dimensions of the 
capacitor, and f 1 (t) is a function that is periodic in 
time for t> 0 and is equal to zero for t < O. The 
latter assumes that the source of the oscillations is 
turned on at the instant t = O. The constant A is simply 
expressed in terms of the amplitude of the electric 
field Eo: 

8-1 
A=Eo'--. 

8np 

In accordance with lI ], we shall assume for all subse
quent calculations that the electric field changes with 
time in sinusoidal fashion, and that the wavelength is 
much greater than the distances over which E is in
homogeneous. Then 

/,(t) =8(t) sin' wt, /,(x) =8(x+x,) -8(x-x,J, 

(5) 

(6 ) 

where e is a function that is equal to zero for negative 
values of the argument and equal to unity for positive 
values. If t < 0, then the force F u = 0, the flow is sta
tionary, the thickness of the films is equal to the equili
brium ho, the velocity of motion v = Vo > 0, and F m 
= Fr(vo). 

We now consider the case in which the departures of 
all quantities from their' equilibrium values are small 
and the velocity of motion of the liquid is low. The 
latter actually assumes that v = v ° + u is much less 
than the velocity of propagation of third sound.l2 ] Limit
ing ourselves to the linear terms, Eqs. (1) and (2) can 
be rewritten in the form 

iJu " iJ~ , F ( ) F ( + ) F --;;t=-c--ax --.- 'r Co - r Co UTI" (7 ) 

o~ au 
'dt+ ox =0, (8 ) 

where !; = h'lho is the relative departure of the thick
ness of the film from its equilibrium value and 
c = J FVhO is the velocity of third soundP] Here it is 
appropriate to note that the decrease in the transport 
velocity associated with the change in the film thickness 
cannot be taken into account in the linear theory, since 
it is proportional to !;v. 

If the function F r( Vo + u) can be expanded in a power 
series in u, and if we can limit ourselves to terms of 
first order in u, then the linear system of equations (7), 
(8) describes the usual oscillations, which are damped 
in space. Here the time-averaged value of the velocity 
is Ii = va, Le., the oscillations in the linear approxima
tion do not lead to a change in the transport velocity 
along the film. 

As is well known, in the case of motion of a super
fluid, the retardation force is virtually equal to zero for 
velocities less than some critical v c, and increases 
sharply for velocities I v I > v c. Such a dependence can 
be approximated by a function of the type 

(9) 

Here B > 0 is some constant. Interpretation of the mo
tion of the superfluid in terms of thermal fluctuations 
(according to[9]) yields 

Fr=D sign v exp (-v;ll ulJ, (10) 

where D and Vi are quantities that are independent of v. 

A number of experimental studies[IO,ll] resulted in 
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suffiCiently good agreement with the dependence F r( v) 
given by Eq. (10). It is true that the constants D and 
Vi differ somewhat from those calculated theoretically. 
However, both calculation and experiment give values 
for Vi that are much greater than the experimentally 
measured values of v. Substitution of numerical values 
of Vi and D from the paper of Liebenberg[IO] into (10) 
shows that even a physically infinitesimally small dif
ferential of the levels A H leads to motion with velocity 
v ~ 102 cm-sec- I. Subsequent changes of AH give a very 
weak increase in the velocity. 

It is clear that in the sense considered here, the 
dependence given by (9) is similar to the dependence 
(10). In what follows, we shall assume that Fr(v) is de
termined by relation (9). 

It is evident that the expansion in u in (9) is possible 
only if I u I < Vo - vc, Le., for a sufficiently large force 
Fm and relatively small amplitude A. In this case, as 
has already been noted, the velocity of motion of the 
liquid, averaged over time, remains unchanged and 
equal to va. The situation changes Significantly if the 
inequality given above is not satisfied. Then the retarda
tion force, which prevents a change in the velocity u of 
the oscillatory motion, will be different for oscillations 
in the direction of the flow and counter to it. Thus, as 
Fm - 0 (Le., at Vo = vc) the retardation force is equal 
to -Bu during the half-period when the velocity of the 
oscillatory motion is directed along the flow (u> 0). 
In the other half-period, when u < 0, the retardation 
force is correspondingly equal to zero. Such an asym
metry in the oscillations produced against a background 
of stationary flow va, should lead to the result that the 
time-averaged velocity Ii = Vo + u turns out to be less 
than Vo. 

We note that this effect is characteristic of any con
tinuous medium with a nonlinear retardation force. For 
example, it should be observed in flows of He II in nar
row channels. In this case, c is the velocity of fourth 
sound in (7), (8),[2] and !; is the relative deviation of the 
pressure from its equilibrium value. The same effect 
should appear in principle in the case of flow of an 
electron liquid if the resistance turns out to be a suf
ficiently nonlinear function of the current. 

Something similar was observed when alternating and 
direct currents were passed Simultaneously through a 
superconducting wire.[I2] As is well known, the depend
ence of the resistance of the superconducting wire on 
the current is similar to the dependence given by Eq. 
(9) where v is now the rate of flow of the electron 
liquid and Fr is the resistance. The situation that de
velops here is in no way different from that considered 
above. It is true that the cited paper[ 12] dealt with the 
simplest limiting case of a wavelength much greater 
than the dimensions of the system. However, it is 
clear from what has been said above that the physics of 
all the phenomena conSidered is the same, We note that 
the nonlinear retardation force, in the case of the cor
responding Fr(v) dependence, can lead not only to a 
decrease but also to an increase in Ii. 

To simplify all further calculations, we limit our
selves to the case F m - 0 (Le., Vo = vc) and I u 1:5 2vc. 
Then the system (7), (8) can be rewritten in the form 

au a~ a;= -c'a;-Bu8(u)-FF., (11) 
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~+~=O 
at ax 

with the initial conditions 

t/,-o=O, ul,_o=O. 

(12) 

(13 ) 

Differentiating (11 )with respect to time and (12) with 
respect to the coordinate and eliminating ?;, we obtain 

a'u • a'u au aF. 
--c -+B9(u)-=-
at'· ax' at at 

with the initial conditions 

I au I ,u =0, - =0 
t=o at t=o . 

We now seek a solution of (14) in the form 

(14) 

(15) 

(16 ) 

where Uo is the solution of (14) for B = 0 with the 
initial conditions (15). As is known, this solution repre
sents undamped plane waves which propagate from a 
source located at the pOint x = 0 (here it is assumed 
for simplicity of notation in the final result that 
Xl - 0). 

In addition, with the help of the Green's function in 
regions where Uo» UI, we obtain 

B • .+,(.-,') a (' t') 
u,(x,t)=-2C"f de' f 9(uo) lLoa;: dx'. (17) 

o z-c(t-t") 

Omitting unimportant terms after integration, we can 
write the final result in the form 

{ B B ( Ixl) lu,l } u(x,t)=cu,(x,t) 1--lxI8(u,)-- t-- --
2c 4 c u" 

(18) 

Here and everywhere, the bar denotes time averaging. 
It is seen from (18) that, in the regions of the x, t 
plane where the velocity is positive, u is smaller than 
uo, and at negative values of the velocity its modulus 
turns out to be larger than \ uo\. Then, as was to be ex
pected, v = Vo + ii < Vo. 

However, it must be kept in mind that the solution 
(18) gives values of the velocity only in a region that is 
sufficiently close to the source, and for relatively small 
times. In the scheme of the problem at hand, we are 
interested in the opposite limiting case: the behavior of 
the solution after a sufficiently large interval of time in 
which the system ''forgets'' the initial conditions, i.e., 
in the regions x, t > 0 sufficiently far from the straight 
lines ct ± x = -Xl. 

For solution of this problem it is convenient to write 
down the set (11), (12) in Riemann invariants with de
rivatives along the characteristics: 

where 

art B 1 
-=--4 (r,+r,)8(r,+r,)+-Fu, 
a"( c 2c 

(Jr, B 1 
-:;--- = -,(r,+r,)8(r,+r,) + -2 Fu, 
u'l 'fC C 

r,=u-ct. r,=u+ct. 

'l=ct+x. 1=ct-x, 

(19 ) 

(20) 

(21) 
(22) 

The functions rl and r2 should be different from zero 
on the characteristics 11 = -Xl and Y = -Xl' 

Since the effect of the initial data weakens with pas
sage of time, the desired solution should, after a suf
fiCiently long time, have the same symmetry as the 
initial set of equations. Thus, it follows from (6), (11), 
and (12) that the solution in the steady regime should be 
periodic in time with period 2T c = Til w. 
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In the region of x, t > 0 sufficiently far from the 
initial lines I) = -Xl and Y = -Xl, in accord with (14) 
and (6), the equality 

u(-x. t+r,)=u(x. t), (23) 

should be satisfied. It follows from Eqs. (19), (20) that 

(24) 

Here, according to (19), (20), and (23), r2(x < -xd can 
be obtained by specular reflection of rl(X> Xl) in the 
plane X = 0 with a subsequent time shift TC' Further, 
if we neglect the damping the region of the source, it 
follows from (19) and (20) that 

(25) 

( 2x, ) ( Xl) r,(x"t)=r, -x,. t--c- -F. t---;;- . 

where 

According to the equations obtained above, we can 
write in the region of the x, t plane of interest to us, 
outside the source, 

(26) 

(27) 

(28) 

We recall that in the scheme of the problem that has 
been advanced, it is actually necessary for us to find 

(29) 

in a region of x, t sufficiently far away from the lines 
ct ± c = -Xl. We note that the desired value of (29), in 
accord with the conservation law (12), does not depend 
on the X coordinate. Therefore, equating the values of 
(29) at the points X = -Xl and X - -"", we can express 
ii in terms of the driving force F~. 

From (25) we have at the point X = -Xl, with account 
of (27) and (28), 

. ii=r,(-x,) , 

It follows further from (19) and (24) that if rl (-x, t) 
< 0, its value does not change upon removal from the 
source of oscillations along the line I) = const, i.e., 
rdY,1) = ct - xd = rd -x, t). 

(30) 

So far as rl (-Xl, t) > 0 and r2 (x < -Xl) are con
cerned, according to (19) and (20), both these quantities 
damp out with increasing distance from the source. As 
a result, we have as x - -"", 

ii='/,r,(-oo). (30a) 

Inasmuch as only the positive values of rl are 
damped out with increase in Y(T/ = const), in accordance 
with what is given in (25), while the negative values are 
propagated without damping, then we have for r I ( - 00 ), 

with account of (28), 

r, (-00) = {r,( -x,. t-x,/c--r.) +F r( t) }8( -r,-F r), (31) 

Equating the IT at the points x = -Xl (30) and 
X - - 00 (30a), we finally obtain 

2r,(-x,)=r,(-00), (32) 

For BTc « 1, r2(x < -xd does not depend on the 
time at all in zero-order approximation. Moreover, if 
we take into account that the basic contribution in 
averaging in (31) is made only by those intervals of 
time during which Fl; (t) < 0, it then follows from (32) 
that 
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whence we have 1 __ 

u=-T1F•1• 

Taking the time average of the modulus of (27), we 
finally obtain 

-' 2 A I' x'i U=--- sm2w- . 
3n c c 

(33) 

(34) 

(35) 

But if the parameter BT c is not small, then the re
sult does not coincide with (34). However, as is not 
difficult to prove, it follows from (31) and (33) that the 
quantity u changes little in this case, remaining of the 
order of -I Fl; I. 

At first glance, it comes as somewhat of a surprise 
that u should remain finite at BT C « 1 and not depend 
on the small parameter at all in zero-order approxima
tion. The same result can be obtained by iteration of 
the system (19), (20) in the region x < -Xl' Here it be
comes quite clear that rz ( -Xl) turns out to be finite 
due to integration over a sufficiently wide interval of 
the variable 11. This means that the effect will always 
be finite for sufficiently long times in a system whose 
dimensions are greater than the damping distance 
La = c/B. We recall that the film was assumed to be 
unbounded in our problem. Then the result that is ob
tained is just as natural as the fact that for damping as 
small as we please over distances that are large com
pared with the damping distance, the result will always 
be finite-the wave is damped. 

We note further that a wave propagating in a system 
with nonlinear retardation has an unusual surface form. 
As was pointed out earlier, it follows from Eqs. (19) 
and (20) that, for sufficiently large I xl and t, rz"" 0 
in the left half-plane, while positive values in rl are 
practically completely damped, and the negative values 
are propagated along the lines i) = const without damp
ing. In accord with (21) and (28), this leads to the result 
that "valleys" ~ (x » Xl) ::s 0 are propagated to the 
right of the source of the oscillations and "hills" 
~ (x« -Xl) 2: 0 to the left. The velocity turns out to be 
negative both at X » Xl and at X « -Xl' 

The frequency dependence of u is given by Eq. (35) 
and is quite clear physically. Actually, the solution of 
Eqs. (19) and (20) in the region I xl ::S Xl, which is oc
cupied by the source, can be written in the following 
form if we do not take damping into account: 

A (X,) x 
U=- 2c sin ZUl t - ---;;- sin 2m -;;-, 

\;=~{1-COS2W (t -~)coS2W~}. 
2c c c 

(36) 

It is then clear that at frequencies 2WXI/ c = 1Tn (where 
n = 0, 1, 2, 3, ... ) the standing wave that is formed in 
the space I X I ::S Xl has velocity nodes at X = ±XI. Here 
the surface at the ends of the source vibrates in such a 
way that the force due to the oscillations of E is can
celed. As a result, the wave exists only in the space 
I xl ::S Xl. 

It should be noted here that the above valid accurate 
to the small parameter 2XI/L", i.e., as long as we can 
neglect the damping in the region occupied by the 
source. 

The frequency dependence obtained is similar to 
that which was observed in the experiment of111. The 
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only difference is that the rate of transport not only 
oscillated with rising frequency, but also increased. 
At frequencies of the order of 1000 kHz, the effect was 
completely absent. This discrepancy becomes under
standable if we take two facts into account. First, the 
finiteness of the film (the length of the film !f in[l] 
was ~ 10 cm) is important. Second, the parameter B, 
as follows from[13-16), should depend Significantly on 
the frequency. This is because the retardation mecha
nism is not fully operative at sufficiently high frequen
cies. As a result, B should decrease with increaSing 
frequency. Then, beginning with certain frequencies, 
the damping length La = c/B turns out to be larger 
than the film length and the effect will be virtually 
nonexistent. In this, the experimental frequency de
pendence of the transport rate can be used for influ
ences as to the B(w) dependence. 

In the scheme considered above, similar experi
ments with fourth sound are also of interest. Here 
equalization of the levels should take place due to the 
flow of helium along a channel, plugged with a fine 
powder. In this case, the dependence of the mass 
transport on the frequency of the fourth sound would 
also make possible inferences as to relaxation times. 

We now make a number of numerical estimates and 
compare them with the experimental data. If, in accord 
with[l), we assume that the dimensions of the region oc
cupied by the source are 2XI"" 1 cm, then the first 
maximum, according to (35), should be expected at fre
quencies ~ 50 Hz. In(11} the first maximum was ob
served at a frequency of ~20 Hz. Some shift of the 
maximum in the direction of lower frequencies can be 
due to the fact that at A ;: La, the modulus of the mean 
velocity according to (31) and (32) turns out to be some
what larger than follows from Eq. (34). 

Starting out from the fact that Vo"" 30 cm-sec-\ we 
estimate the amplitude of the field at which the effect 
will be Significant. According to (5) and (35), we have, 
at the maximum in the frequency, 

12 2 

E,'=~IUI. 
e-1 

(37) 

If we assume that I u I "'" 10 cm-sec-\ the field Eo for 
He II should be of the order 10 5 V-cm-\ which agrees 
with the experimental data. 

All the calculations given above are valid as F m 
- O. With increasing F m , as was pointed out at the 
beginning of the paper, I u I will decrease, so that for a 
sufficiently large force, the mean velocity of the oscil
latory motion vanishes, inasmuch as ordinary damped 
sound will be propagated in the liquid in this case. 
Actually, as was discovered in[ll, the rate of transport 
at a given frequency increases with increasing level 
difference, so that above some critical level difference 
the alternating field has, for practical purposes, no 
farther influence on the flow of the film. 

We note that in a number of papers[16-18) the critical 
velocity was determined in reduction of the experimental 
data from formulas given by the Doppler effect. It is 
clear from what has been said that this can be done 
either for sufficiently high frequencies or when the 
force Fm is relatively large. Estimates show that the 
first condition was evidently always satisfied in the 
papers cited above. 
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