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Dragging of excitations by phonons and its contribution to the thermal conductivity of pure 
superconductors are investigated. The thermal-conductivity mechanism is compared quantitatively with the 
familiar mechanisms. It is shown that at temperatures close to the critical the thermal conductivity is 
determined by the excitation flux, the dominant role in the flux being played by energy exchange between 
the excitations and phonons. Exchange of momentum between excitations and phonons also contributes to 
the thermal conductivity but the contribution is negligible at all temperatures. However, at temperatures 
from 1.5 to 3 times lower than the critical temperature along with phonons, dragging of excitations by 
them contributes significantly to the thermal conductivity. Qualitative agreement between the theory and 
experiment is observed in superconducting lead and mercury. An experimental means of observing the 
effect of excitation dragging by phonons on thermal conductivity is mentioned. 

PACS numbers: 74.20.Ef 

1. INTRODUCTION 

The thermal conductivity of pure superconductors, 
in which the scattering of phonons and excitations by 
defects is negligible, can be determined by three phe­
nomena: scattering of the excitations by phonons, scat­
tering of phonons by excitations, and dragging of excita­
tions by phonons. The dragging of phonons by excita­
tions, which is possible in principle, turns out to be 
very small and can be disregarded. 

The first two mechanisms were investigated by 
Bardeen, Rickayzen, and TewordtP ] and by Gellikman 
and Kresin[2], and the third is considered by us here. 
The first two mechanisms consist of two parts, one due 
to exchange of energy between excitations and phonons, 
and the other due to momentum exchange. The authors 
ofP ,2] confined themselves to determination of the tem­
perature dependences of the different parts, but did not 
compare them in magnitude. 

Concerning the relative role of these parts, there 
are still diverging opinions (for example, the opinion 
that[l] is utterly incorrect, as stated in[S) and also men­
tioned in[2)). We have therefore estimated quantitatively 
the roles of all four mechanisms, including the process 
considered by us, namely the dragging of excitations by 
the phonons. This estimate shows that the part of the 
thermal conductivity which was determined in[2] is 
negligibly small in comparison with the remaining con­
tributions to the thermal conductivity over the entire 
temperature interval. Near the critical temperature, 
the main contribution is made by the part obtained in P ). 

As the temperature is lowered, the principal role is 
assumed, first, by the thermal flux of the phonons and, 
second, by the flux of the excitations dragged by the 
phonons, which is considered by us. We shall show that 
these two mechanisms can turn out to be comparable in 
a certain temperature interval. The latter differs 
strongly from the situation in the normal metal, where 
the dragging of the electrons by phonons, according to 
J. Ziman[4), does not playa significant role in the 
thermal conductivity. The reason for this difference lies 
in the fact that in the pure superconductors considered 
by us the number of excitations (unlike in a normal 
metal) decreases with decreasing temperature approxi­
mately exponentially, so that the phonon mean free path 
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increases just as abruptly, and with it the ability of the 
"phonon wind," which exists in the presence of a tem­
perature gradient, to drag the excitations. 

2. KINETIC EQUATION FOR THE EXCITATIONS; 
THE THERMAL CONDUCTIVITY DUE TO MOMENTUM 
EXCHANGE AND TO DRAGGING OF EXCITATIONS 
BY PHONONS 

Measurements of the thermal conductivity of mer­
cury[5] and lead[6) in the superconducting state, as well 
as the results of other investigations[7,81, lead to the 
conclusion that the scattering of excitations by phonons 
plays an essential role in a definite temperature inter­
val. We shall show later on that to explain certain devi­
ations from the simplest theoretical predictions indi­
cated in the cited papers it suffices for the excitations 
to interact with the phonons. We therefore confine our­
selves in the colliSion integral to allowance for this in­
teraction only. Then the kinetic equation for the excita­
tions takes the form 

aI, s(p) I .' (1) 
aT e(p) -;;-(p, V1)=/,+I" 

where the collision integrals 11 and 12 are given by 

I, ~- { S UNo (q) e<'I, (x) 10 (x') (<p' -<p)Cq6 (e' -e-/iro) dQ 

+ S UNo (q) e"/o (x}fo (x') (<p'-<p)Cq6(e'-e+tiro)d~~ 

- S VNo(q)e'/, (x)to(x') (<p'+<p)Cq6(e'+e-/iw)dQ} (2) 

1,= {S liN, (q) [to (x') -jo(x) ]Cq6 (e' -e-nro)dQ 

+ SUN, (q) [/0 (x') ,-fo (x) ]Cq6 (e' -e+1iro) dQ 

+ S VN,(q) [1-/o(X')-fo(x)']cq6(e'+e-nro)dQ}. (3) 
Here 

dQ=,d'q/ (21t/i)', d'q='l'dq sin tldtld 'V , 

The excitation distribution function is 
. alo 
I(P) =/0 (x) +1, (p) =/0 (x) + Tx<P (x, ~), 

t e (1;'+A')," 
jo(X)= e"+t' x=-r= T 

where E and p are the energy and momentum of the 
excitations, T is the temperature in energy units, {3 is 
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the angel between the excitation momentum p and VT, 
~ is the energy gap, which we assume to be independent 
of the energy and momentum, and !;(p) is the energy of 
the electron with momentum p in the normal metal, 
reckoned from the Fermi level: 

6 (p) = (p'-po') 12m. 

The phonon momentum distribution function is 

N(q)=N.(q)+N,(q)= _._1_+-N,(q), Z = 3i, 
e'-1 T 

where N 1( q) is the nonequilibrium part of the phonon 
distribution function and s is the speed of sound. 

(4) 

11 is the collision integral of the "nonequilibrium" 
excitations with the "equilibrium" phonons, and U and 
V are the so-called coherence factors: 

. 1 6S'-~') 1 ( !;s'-~' ) D=-(I+-- V=- 1--- , 
~ ee" 2 £e' 

The primes denote here and below the values of the cor­
responding quantities after the collision. The terms of 
II proportional to U describe the scattering of the exci­
tations by the phonons, while the term proportional to 
V describes the production of a pair of excitations by a 
phonon and the inverse process. The quantity 
Cqo( ... )dO is the probability of the corresponding 
transitions per unit time. The integral I" describes the 
scattering of "equilibrium" excitations by "nonequili­
brium" phonons or, in short, the dragging of the excita­
tions by the phonons. 

We break up the left-hand and right-hand sides of (1) 
into parts that are even and odd relative to ~. To this 
end, we substitute p from formula (4) in the left-hand 
side. As a result we obtain 

!.J.o.- (s(p) ~+ !;'(p) ~) VTcos ~=R(6) 11 + -.L \ VTcos~; 
aT e(p) m e(p) p. , 2eF J 

Po and €F are the Fermi momentum and energy in the 
normal metal. In the right-hand side of (1) we pue) 

rr=[<j),(T) +<j),(s, T)+<j),(s, TWTj VT tos~, 

with CPZ,8 (;) = cP Z,8( -~). 

We use next the relation d cos ~ ~ (m/pq)d(; the 
limits of integration with respect to d~ I are then 

s+q'/2m-pq/m, s+q'/2m+pqlm. 

Within these limits, for all the Significant phonon mo­
menta the Ii function that appears under the integral 
signs twice (at ~ I > 0 and ;' <: 0) vanishes, so that 
these integrals can be extended from - 00 to + 00; this 
causes the integrand terms that are odd in ~ I to vanish. 
We recognize also that by virtue of the conservation 
laws we have 

- (q' q") Jd'l'cos\P±q,VT)""2ncos(p,VT) 1-~+-2+ ' 
.... Pll po ... EF" 

, ( q 6' -S) Sd'VroS(q, \7T) "='±2n cos(p, VT) --+-- m. 
_ po poq 

and furthermore take into account the fact that p/ m 
~ vo(l + ~/2€F). 

Combining the integrand parts that are even and odd 
in ~ I in the collision integral, we obtain in place of (1) 
the following two equations: 
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26, 28, 

R{S)=I.- -lA+B+R" 
28F 

Soy. Phys.-JETP, Vol. 41. No.4 

(5) 

where .G and I2 are the parts of the collision integral 
h that are even and odd in ~, 

A=C nmp.' {(..!...)'<j) (1') [SW~( 1-~)-
(~nh)" p.s ' ,lS'I ee' 

-N. {z)e'+'/. (x) I. (x+z)z'dz 

-x-b " Ll,2 

+ S _e __ (1- --)No(z)ex1.(x)I.(x-z)z' dz 
• 16 lee' 

.. I D..z' 
+ S iT( 1+-, ) N.(z)e'J.(x)!.{Z-X)Z'dZ] 

%i-b ; ee 

T)' W e' Il' 
-2(- [S-, (1--, ) (<j),{x+z)-<j),(x»· 

p.s • Is I 118 

-N. (z) e*/.{x) /.(x+z)z'dz 

x-b, . \2 

+ J 1:'1'( 1- eLe' ) (<j),{x-z)-<j),(x))N.(z)e'/.{x)!,(x-z) o'dz 

.., tJ,.2 

+ S +r( 1+-, ) (<j),{z-x)-<j),{x»N.{z) e'!.{x)/. (z-x)z'dz ]) 
'H S 1111 

(6a) 

2nmp.' ( T )' 6 {~ e' [1;" , 
B=C (2nh)' P;; T J 1fT ~,(x) 

~' ' 
- (1 - --;;-;; ) <j), (x) ] No(z) e'+'J.(x) jo (x+z) z' dz 

, ;t-b Sf ~'2, ~2 

+S -, [-, <j),(X)-(I--, )<j)'(x')]-
• Is I ee ee 

0' , r' 
·N.(z)e"/.(x)!.(x--:z)z'dz- S ---'=-.1 [--<j)'(x') 

x+b Is ee' 

+(1+ :c', ) <j)'(x)] No (z) e'!o (x) !o (z-x) z'dZ}; (6b) 

b = ~(T)/T, and R1and R2 are corrections that lead to 
small and therefore immaterial changes of the distri­
bution function. The expreSSions for them and the cor­
responding estimates are given in the Appendix. 

Neglecting Rl and Rz, we can obtain for A and B, 
from (5), equations that are valid with accuracy (q/ PO)2 
~ (T/®D)z: 

2R (s) s/28,--I, +=A, 

R(s) -l,-=B. 

(7) 

(8 ) 

In this section we consider the equation for the dis­
tribution-function increment that is even in ~, i.e., Eq. 
(7). It is seen from (7) that cpz ~ (T/®o)zcpl, i.e., at 
the temperatures considered by us we can neglect CP2 in 
comparison with cP l' Since the integrals containing cpz 
are odd with respect to replacement of x' by x, the 
value of cP 1 can be obtained by integrating (7) with re­
spect to 1; (cf.[2,91). We then obtain the following ex­
preSSion for cP 1: 

T ) / nmp' (T)' (9) <j)1=( 2 p,-F,(b) + S d6/,+ C (2nh;' T pos F,(b), 

where 

S~ z' dz S~ x(x+z) -b' 
F,(b)=2 e'-1 dx (x'-b'J'I'[ (x+z)'-b']'" (e'+1) (1+e-'-') 

o b 

00 Z4 dz l:-b x(z-x) +b2 
+ S-S dx--,----:--~~-'----,-~-:-;-:------

2" e'-1 b (x'-b') '/,[ (z-x)'-b']'" (e'+1) (e-'+e-') (lOa) 

~ at ~ 

F,(b) = S x(x'-b')'/' a: dx = b' 1: (-1)'+'K;(kb), (lOb) 
b R=l 

Kz (x) is the MacDonald function. 
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The nonequilibrium phonon distribution function 
N 1 (q) can be obtained from the kinetic equation for the 
phonons[2] and takes the following form: 

1 (2nli) , s (11) 
N,(q)=-4n -c- m'T' zr(z)No'(z)e'VTcosa, 

where 
cosa=(q, vT}/lqIIVT,I, 

I 1+e'+b) ( 1+e'-') 
r-'(z)=U z-In He' +D(z)i7 2b-z+2In~ , 

D(z) =0, z<2b, D(z) =1, z>2b. 

U and V are certain mean values of the coherence fac­
tors, and change little in the temperature region where 
a noticeable role is played by the dragging of the excita­
tions by the phonons. For lead and mercury these are 
respectively the temperatures 3.5-5 and 2.5-3.5°K. In 
these temperature intervals, U and 11 range from 2 to 
3-4. 

In the calculation of N 1 (q) it is easy to show that 
dragging of phonons by "nonequilibrium excitations" is 
negligible. Substituting (11) in (9), we obtain ultimately 

~? (2nh)3 Po's" ~ F,(b)+T'F,(b)/mp"s' 
<jl,- - C JIm T' F,(b) , (12) 

, S~Z'r(Z)dZ SOO x(x+z)-b' 
1'3=2 --- dx-· -'---c---cc-c-----,.----,--

e'-l (x'-b')'l (x+z),-b']··' (e'+1) (e-'+e-') 
t· /, 

~ z',. (z) dz ,-b X (z-x) -b' 

T f - e-l- SdxTx'_b')-Cl (z-'x)'~U:-f:; (e'+1) (e-"+e-') . (13) 
2b /, 

The first term in (12) corresponds to that obtained 
in(l], and the second term corresponds to dragging of 
the excitations by the phonons. Obviously, cp 1 is deter­
mined by that part of the distribution function which 
depends only on the momentum direction. It is now easy 
to find the thermal conductivity connected with the 
change of the direction of the momentum and with the 
dragging of the excitations by the phonons; 

(14) 

(14a) 

We shall see later on that the thermal conductivity 
Ke,ph1 connected with the dragging greatly exceeds 
Ke1' 

3. THERMAL CONDUCTIVITY CONNECTED WITH 
ENERGY EXCHANGE 

In this section we perform the calculation of P ] in a 
more consistent manner, and furthermore estimate that 
part of the thermal conductivity which has been 
omitted fromP ]. 

For the odd part of the distribution function of the 
excitations we have Eq. (5), which can be symbolically 
rewritten in the form 

X=R(~) -/,-=£B. 

We define the scalar product (I/J?;) in the usual 
manner2) [7]; 

<Ijl~)= S d3p¢~. 

(15 ) 

(16) 

Since the integrands are independent of the angles, 
we have 

~ + .. 

Sd'p ... =4" S fI' dp . .. ""4"pom S d';. 
o 
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=4rrpomT (f l: 1 dx(~>O) .. :+ j 1;1 dx(;<O) ... ). (17) 
/, /, 

We consider the scalar product (I/JLcp); using (16) 
and (17) and reversing in them the order of integration 
with respect to z and with respect to x, we obtain 

<¢L<jl)=C,{2 J z'No(z)dz jdX 1:::1 
o b 

xu +( JjJ(x+z) -¢(x» (<jl (x+ z) -'I' (x» e"'/, (x)!, (x+z) 

SOO fOO ee' 
+2 z'No(z)dz dX-I"'1 U_(¢(x+z)+¢(x» .'. " b 

X(<jl (x+z) +'P (x» e'''jo (x) /, (x+ z) + f z'No (z) dz. 
2b 

. S~x I ~te~ V + (~, (z-x) -¢ (x) ) (<jl (z-x) -'I (x» e'jo (x) 10 (z--x) 
b ~~ 

SOO 's-" ee' + z'No(z)dz dX-1-'1 V_(~,(z-x)+¢(x» 
,,, . ,,51; . 

X('I'(z-x)+<jl(x»e'!o(x)!o(z-x) }, 

~s'~' _ ss' ~' 
U±= (1±~-~), V±= (1+~+~), 

where 

C,=8n'm'C (2n\) 3 ~:. 

(18 ) 

It is seen from (18) that the operator L is self-ad­
jOint and positive-definite, Analogous transformations 
yield . -

<X, ~')=8npo' S xf,'e' dx+4nmp,T S ",/2 - dx. (19) 

We consider the functional F( I/J) '" 2(I/JX) - (I/JLp). Stip­
ulating that its variations vanish, we obtain (8). On the 
other hand, the solution of (8) causes the variation of 
F (I/J) to vaniSh, since it satisfies the obvious condition 

(20) 

Thus, the solution of Eq. (8) realizes an extremum 
(I/J, X) of the functional F(I/J)[4] (this extremum is a 
maximum, since 1. is positive-definite). As seen from 
(19), (I/JR( ~» differs only by a factor from the thermal 
conductivity corresponding to the function fl '" I/J. Con­
sequently, any approximation satisfying the normaliza­
tion condition (20) yields a lower bound for the thermal 
conductivity. We note that the collision integral for a 
metal in the normal state can be easily reduced to a 
form that coincides exactly with its form in (6b) or (18) 
at T '" Tc , if the collisions are subdivided into those 
that reverse and do not reverse the sign of ~. As will 
be shown below, at T ~ T c that part of the distribution 
function which is determined in this section makes the 
main contribution to the thermal conductivity, and con­
sequently the latter is, to a high degree of accuracy, 
continuous when the metal goes over into the supercon­
ducting state, as is indeed observed in the experiment. 
The continuity of the left-hand and right-hand Sides of 
the equation in this transition leads to continuity of the 
nonequilibrium distribution function, which we therefore 
choose such that it goes over into the "standard" trial 
function of the normal metal, thereby ensuring[4] an 
error no larger than 3~. In the case of a superconduc­
tor, unlike a metal in the normal state, the choice of 
cp. is not obvious beforehand3). To simplify the calcula­
tions we put 
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rp,=C,(T) (x-b)/(x'-b') " 

Substituting (21) in (18) and (19), we obtain 

( 1; \ . [ ( T )' ms' ] \R-I,~,Cf"~ =8:tpoC,(T) F,(b)+ - -.,-F,(b) 
1 I . pos 1 

(21) 

(22) 

• • ( 1)"+' 
F,(b)= JX(X-b)/o'e'dx=b In(1+e-")+2 L. ~rhb, (23) 

b /(=1 

J~ z'r(z)dz 'J-' Ef' 

+ ~ 1""1 e'/o(x)/o(z-x)dx, 
::b b S'l) 

(24) 

and 

(25) 

- ZZ dz 1-6 Ee' 

+ J-- J dx-- V+(z-2x+2b)'e'fo(x)/o(z-x) 
e'-l I~!;'I 

~" b 

.. z'dz 1-6 ee' 
+ J -;=t J dx Is;'1 Le'!o(x)!,(z-x), (26) 

:!h I> , 

To find the extremum of F(<P3), we take the deriva­
ti ve with respect to C 1 or, equivalently, we stipulate 
satisfaction of the normalization condition (20). This 
yields 

C, =8npo.'F, (b) IC,F. ( b), (27) 

We can now determine directly the thermal conduc­
tivities Ke2 and Ke, ph2 corresponding to the function 
<P 3: 

po's" 1 1 F.'(b) 
x,,=~ T' C F,(b) , 

Pos' 1 F,(b)F,(b) 
X"ph'= m C F,(b) (28) 

The total thermal conductivity due to the dragging of the 
excitations by the phonons is Ke,ph = Ke,phl + Ke,ph2. 

4. COMPARISON OF THE DIFFERENT 
THERMAL-CONDUCTIVITY MECHANISMS 

Let us now compare four different contributions 
made to the expression for the thermal conductivity of 
a superconductor (we note that these contributions are 
additive): the contribution Kel (14) corresponding to 
momentum exchange between the electrons and phonons, 
the contribution Ke2 (28) corresponding to energy ex­
change between the electrons and phonons, the contribu­
tion Ke,ph (14a), (28) determined by th? ,the,rm~~ flux of 
the excitations dragged by the "nonequlllbrlUm pho­
nons, and finally the contribution connected with the 
thermal flux of the phonons themselves: 

, 1 T' 1 
z"'=3 m's C F7 (b), 

00 e! 
F~(b)= fZ'---,r(z,b)dz, 

, 0 (e'-1) (29) 

where r(z, b) is given by (11). 

It is convenient to use the asymptotic values of the 
functions F1(b) to Fdb) at temperatures close to 
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critical (b « 1) and temperatures noticeably lower 
than critical (eb » 1). In the former case we have 

F, (0) =F,(O) =120~ (4), F,(O) =F,(O) =n'/o, 

F,(O) "":JO, F,(O) "'20, F 7 (O)""10, 

and therefore 

a) x., (T:.L _ 10-' b) x',Ph(T,) _ 10-' 
x,,(T,) , x,,(T,) , 

c) ~h(T,) -2.10-', 
x" (T,) 

In the latter case 

F,(b)-5OUln (He-'), F,(b)-b"'e-', 
F,( b) -2e-'F; (b), F,( b) - (b+2)e- b , F,( b) -r'F7 (b), 

F,(b)-2F,(b), F;(b)-10e', 

and therefore 

, 
) Xe,Ph e a ----

Xe2 2b~12 

(30) 

(31) 

(32) 

It is important to note that Ke, ph2, which does not 
depend on the form of the trial function, is of the order 
of unity at b ~ 2-5. 

These estimates lead to the following concluSions: 

1. Near the critical temperature, the principal role 
is played by the thermal conductivity Ke2 due to energy 
exchange between the excitations and the phonons. This 
thermal conductivity is continuous as the metal goes 
over into the superconducting state, and the phonon 
thermal conductivity is equally continuous. 

2. With decreaSing temperature, the thermal conduc­
tivity which is due near the critical temperature to ex­
change of energy between the excitations and the phonons 
decreases, and the contributions made to the thermal 
conducti vity by the excitations by the phonons increases; 
as to the part due to the momentum exchange, investi­
gated in[2J, it remains small over the entire tempera­
ture interval. 

3. Rosenberg[ 6] measured the thermal conductivity 
of lead from the critical temperature (7.2°K) to tem­
peratures of the order of 1.8u K. It was shown quite con­
vincingly that the sample was so pure and large that 
only the scattering of excitations by phonons played any 
role. The plot of K(T) obtained in[6] drops to 5.5u K, is 
practically horizontal from 5.5 to 4.5°K, has an appreci­
able maximum at approximately 3°K, and then again de­
creases rapidly. 

Olsen and Renton(7] investigated the same sample at 
temperatures below 1.5'K. They obtained, at suffiCiently 
low temperatures, a thermal conductivity that was al­
most proportional to T 3 , Le., brought about by phonon 
scattering from the boundaries. Mendelssohn and 
Olsen(lO] investigated the thermal conductivity of lead 
with beryllium impurities. From the experiments of(1o]; 
knowing the temperature dependence of the thermal 
conductivity of the phonons and of the excitations scat­
tered by the impurities (l], it is possible to estimate the 
phonon thermal conductivity. From these data we can 
estimate the thermal resistance of the phonons due to 
their scattering by the boundaries and due to their scat­
tering by excitations in the region of the thermal-con­
ductivity maximum. These estimates show that the pho­
non thermal conductivity does not exceed 0.7-0.8 
W/cm-deg, Le., it amounts to approximately one­
quarter of the measured maximum. 
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The theory developed above explains the entire curve. 
In the decreasing region, i.e., in the interval from the 
critical temperature to 5.5°K, the thermal conductivity 
Ke2 connected with energy exchange between the excita­
tions and phonons predominates. Below 4.~K, the 
terms Kph and Ke ph connected with the phonon flux 
and with the dragging of the excitations by the phonons 
predominate. The aforementioned conclusion of Olsen, 
Renton, and Mendelssohn proves that in the region of 
maximum thermal conductivity the contribution due to 
the dragging is comparable with the contribution due to 
the phonon flux, so that it can be assumed that the 
thermal conductivity due to dragging plays the principal 
role over the entire interval temperature up to the 
maximum, where Ke2 is insignificant. 

In the region where Ke2 predominates, the theoreti­
cal curve drops somewhat more slowly than the experi­
mental one. This disparity can be eliminated by using 
a more complicated trial function in the variational 
principle, but this complication leads to very cumber­
some expressions that are hardly justified at the accu­
racy attained both in the observations and in the theory4) • 

Hulm[5j investigated the thermal conductivity of 
superconducting mercury and obtained a K(T) plot that 
decreased from the critical temperature Tc = 4.12 to 
3.5°K, was flat to 2.5°K, and then decreased further. 
This variation can also be explained on the basis of the 
developed theory. The thermal conducti vHy Ke2 pre­
dominates in the first interval, and the contributions 
Ke, ph and Kph begin to assume roles comparable with 
that of Ke2 in the second interval. The absence of a 
thermal-conductivity maximum is due to the fact that 
the dimensions of the sample were too small, so that 
phonon scattering by the boundaries set in before the 
phonon-induced growth of the thermal conductivity be­
gan. 

The contribution made to the thermal conductivity by 
the dragging of the excitations by the phonons can be 
determined in the following manner: When the number 
of defects increases the mean free path of the excita­
tions decreases much more rapidly than the mean free 
path of the phonons. The thermal conductivity should 
then decrease much more rapidly than in the presence 
of only the contribution connected with the phonons. 

Near the critical temperature, there exists a certain 
temperature interval AT in which the kinetic equation 
(1) no longer holds, and consequently the conclusions 
drawn from it are likewise not valid. This temperature 
interval can be estimated in the following manner. The 
kinetic equation (1) leads to the following estimate for 
the excitation relaxation time relative to energy ex­
change with the phonons (at T "'" T c): 

lOr ( ms')' __ .Ma' ,--- - ·10'-
T T 7th' 

where M and a are the mass and linear dimension of 
the unit cell. The uncertainty in the excitation energy 
A E ~ ti/r then turns out to be comparable with the en­
ergy gap A ~ Tc( 1 - T/Tc)1/2 at a temperature T that 
differs from the critical one by an amount Tc - T = AT 
~ lO'2Tc; this estimate agrees with the result of 
Eliashberg[llj. At a temperature closer to critical, the 
concept of excitations and the kinetic equation become 
meaningless. 
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APPENDIX 

The expressions for R, and R2 are 

H ~C 2,. cos (p, V T) . '( T )., T 
, (2,.h)" m[o p;; -;;:. 

"e'I"1 j,2 
X {J z' dz+ ( 1 ~ '"e' ) cp,(x+z)No (z)!o (x)!o(x+z) e+ x• 

x-b e'I;,'1 j,' 

+ J z'dz--p( 1 ~~) fji,(x~z)No(z)fo(x)!o(x~z)e' 

N '1<' I j,' . 
+bJ z'do e T~ (1 ~~ )cP3(z~x)No(z)!o(x)!o(z~x)e'}; 

+x 

" 21l\T. cos(.p, VT) '( T )' 1; /1,=(. . , "mp,' - -fji,(T) 
(21lhl' Pos lOp 

x{ jz, dze"i. (x)/, (:r+Z)..!.,:'1 N"(Z)+T z' dze'fo(x)fo(x~z) i;'1 No(z) 
') '" ~ 

N 11;'1 
~ J z'dze'fo(x)fo(z~x)---;-No(Z)}. 

/)t,.t 

To estimate the errors due to neglecting R, and R2, 
we substitute in these expressions the obtained values 
of 'P 1 and 'P 3 and compare the results with the left-hand 
sides of the corresponding equations. We find as a re­
sult that the relative errors in the determination of 'P, 
and 'P3 are of the following order of magnitude: 

j,fji, (T)' ( T)' j,fji3 ,,; 10''!''('!''''')' e.oIT. --;p;- - p;; - e;;' fji' ep 8 D 

The error of 'P 3 contains a factor that increases expo­
nentially with decreasing temperature, but we are not 
interested in temperatures below 0.3Tc , in which case 
A'P"/ 'P 3 < 10'3. 

')In the article of Landau and Pomeranchuk [9), the nonequilibrium 
part of the distribution function is broken up into energy-dependent 
and energy-independent parts; the former turns out to be of no con­
sequence for the authors' purposes, since the crossing coefficients of 
interest to us, which satisfy the Onsager principle, are determined only 
by the second part. We, on the other hand, are interested in the ther­
mal conductivity, which is determined by the entire nonequilibrium 
distribution function, so that the subdivision proposed in the text is 
more convenient for our purposes. 

2) All the functions considered in this section are odd relative to the 
Fermi surface, inasmuch as Eq. (8) is valid only for such functions. 

3)Thus, a function of the type (~/T)(IW€)n satisfies the condition indi, 
cated above for arbitrary n, so that the choice of the best approxima­
tion leads to cumbersome numerical calculations. 

4)The increased thermal conductivity Ke2 obtained in ['] via the varia­
tional principle and used by Gellikman and Kresin [2] as a basis for 
discarding the entire term Ke2 may actually be due to the insufficient 
accuracy of the calculations and to the insufficiently good choice of 
the trial function. 
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