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A formula is derived for the rate at which the energy of a conduction electron increases in a high
frequency electric field. It is shown that the strong field affects the frequency of the electron-phonon 
collisions, and an additional dependence on field strength appears as a result in the formula for the rate of 
energy increase. 

1. One of the proposed mechanisms of damage to 
transparent dielectrics by high-power laser pulses is 
electronic cascade ionization[ll. The task of the theory 
is in this case, as a rule, to calculate the cascade de
velopment constant. Under certain additional assump
tions, this rate is inversely proportional to the time dur
ing which one electron acquires, on the average, an en
ergy equal to the ionization potential. This time can be 
obtained by integrating the equation for the average rate 
of energy acquisition by a conduction electron in a high
frequency electric field 

dB e'E' 
at = 2mQ' V.u, (1) 

where E and ~1 are the intensity and circular frequency 
of the electric field, e is the electron charge, m is the 
effective mass of the conduction electron, and lIeff is 
the effective frequency of the electron-phonon collisions. 

In the microscopic derivation of (1) it is customary 
to use the condition that the field be weak[2,311). In a 
weak field, the effective collision frequency is a func
tion of I! and O. The reason is that, as first noted by 
Holstein[41, at an initial electron energy tff« 110 the 
value of lIeff is determined by the final energy of the 
electron in the elementary act of absorption of a light 
quantum, Le., by the quantity 110. For example, in the 
case of scatt.ering by longitudinal acoustic phonons, the 
collision frequency II depends on the electron energy 
like tff1/2, and lIeff turns out to be proportional to 
(nil )1/2. As a result, the total dependence on the fre
quency in (1) turns out to be of the form 0-1.S,l21 Scat
tering by polar optical phonons leads in (1) to a com
plete frequency dependence proportional to 0-2.S,l31. To 
the contrary, when tff» flO, the value of lIeff is deter
mined by the energy of the electron, and lIeff ~ II. 

In a strong electric field, the energy of electron os
cillation under the influence of a field 

e'E'/2mQ' 

can exceed the kinetic energy of the electron. If the en
ergy of the oscillations exceeds also the energy of the 
light quantum2 ), then one can naturally expect the colli
sion frequency to be determined by the energy of the 
electron oscillations in the field of the wave. Then, in 
the case of scattering by acoustic phonons, the com
plete field dependence in (1) is like E3, and in the case 
of scattering by polar optical phonons-like E. Analo
gous considerations as applied to a plasma were first 
advanced by Silin[71. 

The purpose of the present paper is to obtain formu
las for the average rate of energy acquisition by a con-
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duction electron in a high-frequency electric field with
out any assumptions whatever that the field is small. 
To solve this problem (Sec. 2) we use the Boltzmann 
classical equation. The entire calculation in Sec. 2 is 
performed for the cases of circular and linear polari
zation, and for electron interaction with longitudinal 
acoustic and polar optical phonons. We note that in the 
final formulas (25)-(30) we obtain an explicit depend
ence on the parameter x = (2m&' )1/20/ eE, In this lies 
the principal difference between our results and those 
of Silin[71, who obtained such a dependence at x « 1 and 
at x » 1. In Sec. 3 we consider the justification of the 
results of Sec. 2 from the point of view of quantum 
mechanics. Criteria for the applicability of the classi
cal description are obtained. 

Within the framework of quantum mechanics, the 
question of the absorption of high-intensity light by 
free carriers in semiconductors was considered earlier 
by Pazdzerskii[81S), who calculated numerically the de
pendence of the absorption coefficient on the field in
tensity. The qualitative dependence of the absorption 
coefficient on the field intensity, obtained in that paper, 
agrees with the analytic formulas of the present paper4) 

2. The classical kinetic equation for the conduction 
electrons in a strong homogeneous electric field is 

IJ/(p, t) 2n ~ IC •.• I' 
~+eE(t)V,f(p,t)=- _{j(p+k,t), & . h Y 

'0· 
,[n.,.6(E.-E.-f.-hOl.,.) +(n.,.H)6(E.-E ... +hOl.,.) 1 (2) 

-j(p, t) [n •.• 6(E.-E.+.+hOl.,.)+ (n.,.+1)6(E.-E.+.-hOl.,.)]). 

Here f(p, t) is the distribution function of the electron 
kinematic momenta, Ws k is the frequency of a phonon 
of momentum k belongi~g to the s-th phonon branch, 
lis k are the equilibrium phonon occupation numbers, 
C; k/V1/2 is the matrix element of the electron-phonon 
int~raction, and V is the volume of the system under 
c onside ration. 

We consider the interaction of the electrons with the 
branch of the longitudinal acoustic phonons and with the 
polar optical branch. For these two cases we have 
respectively[lll 

IC.,.I' G'hoo. 
-Y-= 2Ypu' ' (3 ) 

IC".I' = 2ne'hOl.1i' [~-~1 ' 
Y Yk' e~ e. 

(4) 

where G is the deformation potential, p is the density 
of the crystal, u is the velocity of the longitudinal 
waves, and 100 and 10"" are the static and high-frequency 
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dielectric constants. The dependence of the conduction
electron energy on the momentum will be assumed to be 
quadratic: 

/S.=p'/2m. 

We take the electric field in the form 

E(t) ='/2 (Ee,o'+E'e-'O') . 

(5 ) 

(6) 

We change over in the Id.netic equation (2) from the dis
tribution function with respect to the kinematic mo
menta f(p, t) to the distribution function with respect to 
the canonical momenta 

F(P,t)=t(P--;-A(t),t) , (7) 

where 

A(t)= -~ (Ee,o'-E·e-'O'). 
2iQ 

(8) 

The Id.netic equation (2) takes the form 

aF(p,t) 2n ~ IC',kl'{F(P+k )[- Il(/s /S Ii + eA(t)k) 
--I)t- = II ~-V- ,t n.,k P- P+k- IW.,k ---;;;-

.,k 

( eA(t)k)] +(ii"k+1)6 /Sp-/Sp+k+liw.,k +---c;;-

-F(P,t) [ii'kll(/Sp-~p+.+liw'k + eA(t)k) , , em 

(9) 

( eA(t)k)] } +(ii •.• +1)11 /Sp-/Sp+.-IiW.,k+~ . 

We seek the distribution function F (P, t) in the form 

F(P,t)= ~e'no'gn(p,t). (10) 

Substituting (10) in (9) and using the formula 
eA(t)k 1 . +-

2n6 (/Sp-/Sp+k±liw.,. +~ )=fjQ ~ e,nO' S dxexp{ia±x}Ln(k,x), 
n -~ (11) 

where we have put 

a±=(~p-/Spa±IiW.,k)/IiQ, (12) 

1 +" eA(t)k 
Ln(k,x)=-SexP{--inQt+ix--}dW, (13) 

2n cmliQ 

we obtain the following system of equations for the har
monics of the distribution function: 

'Q (P t)+ agn(p,t) 
In gn, at 

=~~ ~ le"kl' ~ +S-dXL _ ,(k x) 
Ii IiQ~ V ~ on, 

I,k. • 

x{gn' (P+k, t) [ii"k exp (ia-x) + (ii".+ 1) exp (ia+x) I 

-gn' (P, t) [ii". exp (ia+x) + (ii".+ 1) exp (ia-x) ]}. 
(14) 

In the case of high frequencies, when n is much 
higher than the electron-phonon collision frequency, we 
can neglect in the left-hand side of (14) the term 
agn(P, t)/at (except for the case n = 0). Then aU the 
harmonics of the distribution function with n # 0 are 
directly expressed in terms of go(P, t). The concrete 
form of the function go( P, t) will be of no importance 
to us henceforth. We shall assume, however, that the 
distribution function varies little over the period of the 
field. 

Let us examine the energy dissipation. The usual 
formula for the dissipated power is 

dW 1 e ~ lit =2-;;- ~P[E·g.(P,t)+Eg_.(P,t)]. 
p 
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(15) 

Substituting in (15) the expressions for gl(P, t) and 
g-d P, t) from (14) we obtain after a number of elemen
tary transformations, which reduce to a change of vari
ables, 

dW =_1_~-=- ~ IC',kl'+S- dx[kE'L.(k,x)-kEL-.(k,x)J, 
dt(IiQ)' 2i m f:;;. V -~ (16) 

. [ii". exp{ia+,x) + (ii"k+1) exp (ia-x) ]g.(P, t). 

Using (8) and (13), we can easily prove the following 
equalities: 

1 e 8L.(k,,x) 
--Ii-[E'kLI(k,x)-EkL_.(k,x)]= a ' (17) 2 m Q' x 

L.(k, x) -I. (eEI"kxlmIiQ') ; 

E.,,=[ (E.k) '+ (E,k) 'J'i'lk, 

E.=(E+E·)/2, E,= (E-E')/2i, 

where Jo(x) is a Bessel function. 

(18) 

Substituting (17) and (18) in (16) and integrating by 
parts, we obtain 

d~=_~~ IC.,kl' +S-d I (eEI"kX) 
dt Ii ~ V x. mliQ' 

P.',k (19) 
x [ii •. ka- exp(ia-,x) + (ii.,.+1)a+ exp(ia+x) )g.(P, t). 

We neglect in (19) the phonon energy and integrate with 
respect to x. Then 

dW 2 ~ Ic •• I' 
dt:= 11 ~ ---Y-(2n.,k+1)g.(P, t) (/Sp+.-~p) 

•••• 11: (20) 

The angle brackets < ... ) in (20) under the square root 
sign denote that the range of variables which contributes 
to (20) is defined by the inequality 

(21) 

The angle brackets ( ... ) in the subsequent formulRs 
have a similar meaning. The inequality (21) has a sim
ple physical meaning. It imposes a limitation on the 
change of the electron energy under the influence of the 
field in the elementary scattering act. 

The general expression for the dissipated power can 
also be represented in the form 

(22) 

where d If pi dt is the rate at which one electron with 
momentum P acquires energy. Comparing (20) and 
(22), we can easily write out a formula for d tS'p/dt. The 
subsequent calculations will be made for the rate 
d If I dt at which an electron with specified energy ac
quires energy. The transition from the rate of energy 
acquisition by an electron with given momentum to the 
rate of energy acquisition by an electron with given 
energy is by means of the formula 

d~. ~ d)!jp IE -= -6(/S.-~) {j(~p-~), 
dt dt 

(23) 
p p 

Substituting in (23) the explicit expression for d If pi dt 
and integrating, we obtain 

d)!j = 1 ~ IC.,kl' (2ii +1) {[«(2eEI")' 
dt 21i (2m~) 'I. ~ V ,,' Q 

',k 
(24) 

-(k-2l'2~)')]"'- [( ce~.,,)' -(k+2l'2~)')rl 
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We consider two particular cases of linear and circular 
polarization: 

a) Case of Circular Polarization 

In the case of circular polarization we have El = Ez 
= E and Ell Ez. We change over in (24) from summa
tion over k to integration, and introduce spherical co
ordinates with a polar axis perpendicular to the polari
zation plane. We assume that the acoustic branch satis
fies the condition koT »fiwk, where ko is Boltzmann's 
constant and T is the absolute temperature. The inte
gral that appears in (24) can be calculated. We present 
the result of the calculations in the form 

~ = (~)' 2G'k,T ¢I, ( Ql'2mE ) 
dt Q n'h'pu' eE 

(25) 

+ (eE) e'ID,(8,-e~) cth hID, ¢I (Ql'2mtr ) 
Q nhe,e~ 2k,T 2 eE ' 

where 

q,,(x)= {'I,n(1+'I,x'-'I"X')' x0;;;1 (26) 
'l,n(x+1/5x), x;;;.1'· 

q,,(x) = {n(1- I /,X')' x0;;;1 (27) 
2nl3x, x;;;. 1 , 

b) Case of Linear polarization 

In the case of linear polarization we can put E2 = 0 
.and El = E. Then the integration in (23) can be carried 
out in spherical coordinates with a polar axis that coin
cides with the direction of the vector E. We represent 
the result in a form analogous to (24): 

~ = (~)3 2G'k,T '1',( Ql'2mE) 
dt Q n'h'pu' eE 

(28) 

+ (~) e'ID,(£.-8~) cth hID. '1', (Ql'2mE ) 
Q nhe,8~ 2k,T eE' 

where 
17 -- 1 arcsinx 4 -- 2 '1'1 (x) = -l' 1-x' + ----+ -x' f1-x' + -x arcsin x 
00 ill x ~ 3 

i 1 
-"15z' arch --; if x0;;;1, 

(29) 

'1', (x) =nxI3+nI20x if x;;;'1; 

4 --, 2 arcsinx 2. 1 
'I',(z)=-l'i-x +----+-z arch- if z0;;;1, 

3 3 x 3 x 
(30) 

'I',(x) =n/3x if x;;;.1. 

In the case x « 1 we have 

'I',(z)-'I.+'I,x'+ ... , 'I',(x) =2-'I,x' In (2Ix)-'I,x'+ •.•. 

3. In analogy with the derivation of (19) and (20) 
from the classical kinetic equation, we can obtain from 
the quantum kinetic equation[l2 j (case of linear polari
zation) 

. [n •.• a- exp(ia-x) + (n •.• H)a+ exp(ia+z) 11.(P) (31) 

2n \"1 Ie •• 1' ." T ~ -~-(2n •.• +1)I'(P) (trp+.-.!fp) 
P,I,k 

ft_+_ Ek 
x EJ"(~hQ.)II(trp-trp+.+nliQ). . (32) 

On going from (31) to (32) we have neglected the phonon 
energy and integrated with respect to x. 
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The quantum character of (31) and (32) follows 
directly from (32), namely, the change in the electron 
energy is due to the emission and absorption of light 
quanta. We investigate in (32) the transition to the 
classical limit, putting formally fi - O. In the limit as 
fi - 0, the argument of the Bessel function in (32) 
assumes larger absolute values. The behavior of 
J~(x) at I x I » 1 depends on the ratio 1111/1 x I and can 
be described with the aid of the first terms of the Debye 
asymptotic expansionsll3j5.: 

J,'(x) = 2n(V2~x2)'!' eXP {2(v2-x')"'-2Ivl arch I : /} (33) 

if Ivl>lxl (33a) 
and 

J,'(x)= (,2 2)" cos'[(x'-v2)"'-lvlarccos'I-~I-~] (34) 
:1 x -v ! X 4. 

if Ivl<lx\. (34a) 

We note that the Debye asymptotic formulas were 
already used on going to the classical limit in the 
formula for the cross section of the stimulated brems
strahlung effectP41 • 

As seen from (33), at III I > I x I the function J~ (x) 
decreases exponentially with increasing II. Therefore 
we can neglect in (32) the contribution from the region 
(33a). The inequality (33a), upon substitution of the 
values of /I and x from (32), coincides with inequality 
(21), and consequently determines the classically ad
missible change of the electron energy in the stimu
lated bremsstrahlung effect. It is easily seen that if we 
substitute in (32) the averaged asymptotic form (34) and 
neglect in (32) the discreteness of the index of the 
Bessel function, then (32) goes over into the classical 
formula (20). 

Let us formulate now criteria for the applicability of 
the classical approximation. It follows from the in
equality (21) that at P> eE/O we have k ~ 2P, and 
that at P « eEh"l we have k ~ 2eE/O. Then, starting 
from the requirement that the argument of the Bessel 
function in (32) be large in absolute magnitude, we ob
tain two sufficient criteria for the applicability of the 
classical approximation: 

2e'E'lhmQ'> 1 if P<eEIQ; 

2eEPllimQ'> 1 if P>eEIQ. 

(35) 

(36) 

The author thanks L. V. Keldysh for valuable advice 
and discussions. 

t)In [2,3]they calculated the coefficient of light absorption by free 
carriers. 

2)This situation obtained, for example, in experiment on the damage to 
transparent dielectrics by laser pulses of picosecond duration [5,6]. 

3)In addition to the cited reference, there are also papers by Buimistrov 
and OleTnik [9] and Dzhaksimov [10]. The result of Buimistrov and 
Oleinik is in error, for a reason indicated in [15]. The calculations of 
Dzhaksimov were not sufficiently correctly performed and the results 
do not lend themselves to a lucid physical interpretation . 

4)In the cited paper, the absorption coefficient was calculated under the 
assumption that during the time of laser-pulse duration one can neglect 
the heating of the free carriers. Under this assumption we obtain from 
formulas (25) and (28) the absorption coefficient, by putting in them 
/j, = 0 and multiplying by N81T/ncE211, where c is the speed of light, n 
is the refractive index, N is the concentration of the free carriers, 11 = I 
for linear polarization, and 11 = 2 for circular polarization. 

5)We recognize that for interger values of II we have 

1.'(3:) = I,:, (1.:1>. 
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