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Three-wave processes in an inhomogeneous plasma in the presence of cutoff points are investigated. In the 
general case, a pumping field of frequency Wo is connected by decay interaction with three waves with 
frequencies w, and WI,' = WO±W2' An integral transformation is proposed, which reduces the set of three 
coupled second-order differential equations describing these interactions to a single second-order equation. 
The transformation is used to determine the decay of the pumping field into two waves with close 
frequencies. The instability is absolute in this case. Relations are derived which describe the dependence of 
its threshold on the parameters that characterize the wave dissipation and the plasma inhomogeneity 
throughout their range of variation. Some concrete examples are considered. 

Three-wave processes in an inhomogeneous plasma 
are of considerable interest and have lately been in
tensively investigated theoretically[l-lll. The results 
point to the existence of both convective l1-3,5,7] and ab
solute instabilities[2-4,8-111 and to particular importance 
of cases when the resonant interaction of the waves 
takes place at points where the geometrical-optics ap
proximation is violated[8-11J. In this and in following 
papers, we consider systematically similar situations 
(with the exception of the case of hybrid resonance of 
the pump wave). We describe here a method for analyz
ing systems of coupled differential equations that ap
pear in such problems, and investigate the process of 
the decay of the pump wave into two waves of equal 
type with nearly equal frequencies. In a subsequent 
paper we consider the decay into different modes. 

1. DECAY INTERACTION OF WAVES IN THE 
GEOMETRICAL-OPTICS APPROXIMATION 

The characteristic features of three-wave processes 
in a weakly-inhomogeneous plasma are connected with 
the fact that the decay conditions for the wave vectors 
can be satisfied only on individual points of the x axis, 
in the vicinity of which the resonant interaction is 
localized[1-3J. A wave passing through the resonance 
region in the presence of a given pump field undergoes 
a finite amplification, and accordingly the decay insta
bility becomes convective. This process was considered 
in most detail by Rosenbluth[3j and by one of us[71, 
where it was shown that the stationary state is stable 
(absolute instability is possible[3,S-llj only in a special 
case that will be discussed later on), and calculated the 
transition matrix Si~ connecting the amplitudes of 

waves 1 and 2 entering and leaving the resonant layer: 

s,~'I=S2;')=e±". IS::) 1-IS,:')I-le±,·z-11"', (1) 

Z :: y~l2/1 uluzl, y~:: I Vklkok212E~, Vklkok2 is a suit
ably normalized matrix element of the wave interaction, 
calculated without allowance for the spatial inhomo
geneity, while the quantities ko and Eo pertain to the 
pump wave 

and Ui are the x-th components of the group velocity. 
The plus sign in (1) corresponds to the case of decay 
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(Wo :: I w d + I wzl), and the minus sign to the case of 
coalescence of the waves (wo:: II wd - I wzll). In the 
case of decay, Yo is the growth rate of the decay insta
bility in a homogeneous plasma without dissipation. At 
Z » 1 and in the case of decay, the incident wave be
comes amplified and a wave of a second type with an 
amplitude of the same order of magnitude is excited; 
in the case of coalescence, the incident wave is prac
tically entirely transformed into the second wave with
out amplification .. 

It will be shown later on that the process described 
by the matrix st~ is the "elementary act" of wave in
teraction, and is the basis of more complicated situa
tions, particularly those leading to absolute instabili
ties. 

It is seen from (1) that a special analysis is required 
only for the cases Ui :: 0 and r2 :: O. When one of the 
group velocities vanishes, say Ul, the parameter Z 1 
remains finite. (For example, near the cutoff point Xl 
of the wave 1 we have Ul ~ k1x ~ (Xl - X)l/Z and t Z 

Rj I ak1x/ax 1-1 ~ (Xl - X)l/Z.) It can be assumed that the 
amplification will be described here, just as before, by 
the matrix Si~. However, the geometrical optics ap
proximation used in the derivation of (1) is violated for 
the corresponding wave at ui :: O. The interaction near 
the cutoff of the wave 1 can be described by the system 
of equations 

j." -0:, (x-x,) !,=V,e'K"a" a,'=V,e-;K"!" (2) 

where az is the slowly varying amplitude of the wave 2, 
the function fl(x) describes the dependence on x of 
wave 1, in the form fdx)exp[i(kyy + kzz - wt)], Vl,2 
are constants proportional to Eo, and K :: k2x - kox; 
the slow x-dependence of the wave vectors k2 and ko, 
which have no singularities, is disregarded. 

At large k, the resonance k1x == (0<1 (Xl - X»l/2 :: K 
takes place in the region where the geometrical optics 
approximation is valid for the wave 1, and the system 
(2) can be easily reduced to the standard equations for 
the amplitudes al and a}7] with parameters l2:: ell/2K 
and Z :: iV 1 V z/ell. In accordance with the foregoing, Z 
turns out to be independent of K. On the other hand, Eq. 
(2) can be easily solved by using a Laplace transform, 
and the result for the transition matrix is actually Eq. 
(1) with Z ::iV1Vz/al. 

Copyright © 1976 American Institute of Physics 489 



2. INTEGRAL TRANSFORMATION FOR SYSTEMS OF 
COUPLED EQUATIONS 

In analogy with (2), the case of cutoff of two waves is 
described by the system of equations 

I." -a, (x-x.) 1.= V"e .... I,. I," -a,(x-x,) 1,= V"e-''''''I... (3) 

where ko = !cox; this system is used for a number of 
three-wave processes in the case of large k, which is 
of greatest interest. For example, it describes the de
cay of a transverse wave into oblique hybrid waves and 
the decay t - l + s in an isotropic plasma[2,-]. It might 
be assumed that in other cases the system (3), which 
imitates the dispersion properties of the noninteracting 
waves, describes correctly the character of the phe
nomena. It is assumed in (3) that W2 or ko are so large 
that there is no need for simultaneously considering the 
interaction of wave 2 with the red and violet satellites 
of the pump wave. 

The opposite case (" low-frequency decay") will be 
considered here at ko = O. It is described by the system 
of equations 

J."-a(x-xil f.=V"f.. f," -a,(x-x,)f,= V"I.+ V"I •• 

I," -a(x-x,)I,=V"I,. 
(4) 

where Wl = W2 - wo, W3 = Wz + Wo and W2 « Woo Owing 
to the proximity of the frequencies I wli and W3, we 
have put al = a3 = 01 and we can assume that VlZV2l 
= V 3ZVZ3. 

In the literature, the system (4) was considered for 
OIz - 0, Xz - GO, aZX2 = const, i.e., without allowance for 
the inhomogeneity for the low-frequency wave, and was 
solved by discarding terms with derivatives in one or 
two equations [2,_]. 

To obtain a solution that is suitable simultaneously 
for Eqs. (3) and (4), we consider the more general 
system from which they are obtained as particular 
cases: 

j/'-a(x-x,)f,= V"e''''''I,,, i=1. 3. 

I," -a,(x-x,) 1,= (V"I.+ V"I,) e-""'. 

We represent the functions fi in the form 

1,= V"J y(s)v[a'''(s6+x)l e"lds. 
as L 6+6' 

(5) 

(6) 

I,=e-"'" J y(s)v[a"'(s6+X ) le"lds. (6') 
L 

where y( ~) is an unknown functions, v( z) is an Airy 
function that decreases as z - 00, s = (I/a - 1/012)1/3, 

~i = Xi/S , K = ko/azsz, and L is a contour in the com
plex ~ plane and will be determined later on. 

We substitute (6) and (6') in (5), eliminate the terms 
containing x with the aid of the Airy equation, and inte
grate (where necessary) by parts. We can then easily 
show that the function y( 0 should satisfy the equation 

( AI A.) y"+ ~-s+--+-- y=O' 
S+6. S+6. • 

(7) 
~=ko'ls(a,-a) -s,. 1 •• =V"V,.Icx.cz,s'. 

Equations of this type describe wave propagation in 
a cold inhomogeneous plasma in the presence of the 
hybrid-resonance points ~l and ~Z[lZ]. We are inter
ested in a solution that decreases in the "opacity 
region," Le., as ~ _GO. It has an asymptotic form 

y""(~-s)-':·[e"p(-i' ~ (~-s)''')+Rexp(i' ~ (~-S)'f')]. 6-+- 00 • 
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y""C(S-~)-'I'exp(-! (s-P)"). s-+oo. (8) 

The points ~i are branch points of the function y: 

y,.,C,[1-A,(s+s,)in(6+s,)]. S-+6,. 

therefore the "reflection coefficient" R in (8) depends 
on the path along which the solution that decreases as 
~ - 00 is continued, i.e., on the positions of the cuts on 
the ~ plane. In the wave equation (7), wave absorption 
or generation takes place at the singular points, so that 
I R I ~ 1 even for real parameters(1Z1. 

Three solutions of the system (5), which do not in
crease in the opacity region for the waves fi, can be 
obtained by using y( 0 in the asymptotic form of (8) 
and different integration contours in (6). These contours 
should satisfy the usual conditions that ensure converg
ence of the integrals and validity of integration by parts. 
These conditions are in fact satisfied by contours that 
go off to ±oo along the real axis. Indeed, if a l/3 s < 0, 
then the integrands decrease as ~ - 00 because of y( 0 . 
and as ~ - - 00 because of v( z). If a l/3 s ;> 1, then we 
can assume that the Airy function is represented in the 
form v = Wl + W2, where wl,z decrease in the sectors 
'IT/3 < arg z < 'IT and 'IT/3;> arg z ;>-'IT and, accordingly, 
all the integrals in (6) break up into sums of two terms. 
In each of these terms the integration is carried out 
from 00 to a certain point (, (-() » 1, along the 
same path, and then the contour goes off to a sector 
where the Airy function Wl,Z decreases. At 0 < a l/3 s 
< 1 we can represent the function y( ~) analogously. 

It is now easy to determine the asymptotic behavior 
of the integrals (6) and (6') as Ixl-oo. In (6') at 
a~/3x - _00, Le., in the transparency region, the main 
contribution for the wave 2 is made by the stationary
phase point, in which the functions v and y can be re
placed by their asymptotic expressions. As a result we 
obtain 

-, a" 'J. _'j. [iko'(a,+a) ik,x, . :It ] I,=fn - X, exp .. ----1-(1±1) 
a 3 (ct,-a)' as' 4 

x[eXJl(±i !X,'i')TReXP(Ti: X,'I')]' 

where' X2 = ay'3(xz - x) and the upper and lower signs 
are taken at ay's s ;> 0 and ny's < 0, respectively. 

In the integrals (6), the principal terms are deter
mined asymptotically by the vicinity of the singular 
points: 

(9) 

. :ItV"C, [. 2 X'I .:It] X 'I ( ) I, = - 2!as!X,'f, exp ±1'3 "±/4 . ,=a' x,-x . (10) 

At a l/s s ;> 0, the upper and lower sign are taken as the 
corresponding singularity is bypassed from above and 
below; the situation is reversed when a l/3 s < O. 

By choosing three integration contours that bypass 
the singular points ~i differently, we can construct a 
system of fundamental solutions of Eqs. (5), containing 
a decreasing wave of definite type. The amplitudes of 
the outgoing waves determine in this case the transition 
matrix 8ik. It is physically clear, and it can be proved 
formally, that the presence of the instability can be 
assessed from anyone of its elements. To save space, 
we therefore confine ourselves to the quantity 822, which 
is determined by a solution, continuous on the real axis, 
of Eq. (7). Indeed, in the presence of damping, the quan
tities Xi in (5) are complex: 

" ax, 
Xi =a;;Vi"t (11) 
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where vi is the linear damping decrement. Considering 
the wave of type i near the cutoff but in the region 
where the geometrical-optics approximation is valid, 
we obtain from the identity ui l == ak1x/aw, k1x = (ai(xi 
_ X»l/2: 

OX, 2k,. -=--om IL,a; 
(12) 

With allowance for this equality, which determines the 
sign of the imaginary part of ;i. we can easily establish 
that the contour passing along the real axis always leads 
to the appearance of outgoing waves 1 and 3 in (10) (as
suming that the energy of these waves is positive). 

Under the assumption W2> w2k2xU2> 0, the incident 
wave in (9) corresponds to a term with a minus sign in 
the argument of the exponential. Thus, 

S,,=-R-' at et;'·s>O. S,,=R at d; s<O. (13) 

The quantity SZ2 can be regarded as a function of W2. 
Then the presence in it of poles in the upper hali-plane 
indicates in the usual manner, absolute instability. The 
inequality \ S22\ > eA, A = 5-10, means the presence of 
convective instability. Thus, the problem of parametric 
instability in the system of coupled waves described by 
the systems (3) and (4) reduces to an investigation of 
the "reflection coefficient" R in the solution of the 
second-order equation (7) which is continuous on the 
real axis. 

3. DECAY INTO WAVES WITH COMPARABLE 
FREQUENCIES 

We now consider in greater detail the case of "high
frequency decay" (3), which is obtained from (5) at V 23 

= V 32 = O. In (7) at A3 = 0, it is convenient to make the 
change of varia!:>les ~ + ~ 1 - ~, which yields for y( ~) 
the equation 

y"+(~-sH/s)y=O. ~=s,_;,+k,2/s(a2-et). 1.""'1.,. (14) 

In this paper we consider only the case A > O. For a 
homogeneous pump field (ko = 0), the parameter {3 
vanishes when the cutoff point of the two waves coincide. 
It is easy to verify that at ko '" 0 the equality (3 = 0 
means tangency of the dispersion curves k1x = 
= v'a(x1 - x) and k2x = ko = (a2(x2 - X»l/2 - ko. Thus, 
both singular cases at which Z - "" (see (1): Ul - 0, 
U2 - 0 and l2 - 00) turn out to be perfectly equivalent 
mathematically. 

Strictly speaking, the coefficients V 12 and V 21 in (3) 
are smooth functions of x. But since it is clear from 
physical considerations that the interaction of the waves 
is determined mainly by the "resonant" region near the 
point of tangency of the dispersion curves, we can sub
stitute in the system (3) their values at this point. Tak
ing into account the symmetry of Eqs. (3) and (4) rela
tive to the waves 1 and 2, we can assume, without loss 
of generality, that at < a2; then the singular point ~ = 0 
of Eq. (14) is bypassed from below. This bypass direc
tion, at x > 0, corresponds to absorption of the incident 
wave, if we regard (14) as a wave equation. According 
to (13), absolute instability sets in at total absorption, 
and convective instability at absorption close to total. 
At a given X the total absorption is possible only at 
definite, generally speaking complex, values of {3. 
These eigenvalues form an infinite discrete set (3n( X) 
= f3~ + i{3;;'. Consequently, the frequencies and the 
growth rates of the unstable oscillates are determined 
by the dispersion equation 

491 SOy. Phys.-JETP, Vol. 41, No.3 

(15 ) 

The right-hand side of this equation is a universal 
function of A ~ E~. Unfortunately, analytic expressions 
for {3n can be obtained only in limiting cases. It is 
clear from physical considerations that \ {3~ \ should in
crease monotonically with increasing x, going through 
zero at a certain An, whereas {3~ can have at X ~ An 
any value, depending on n. It follows from (14) that 
strong absorption is possible only at {3' > 0 and at suf
fiCiently high transparency of the barrier lying to the 
left of the point ~ = 0, i.e., at X/{31/2 ~ 1. We consider 
therefore (14) in the region of the parameters {3' > 0, 
({3')2» 1 + A, {3' » \ {3" \. In this case, Eq. (14) can be 
solved in the geometrical-optics apprOXimation. This 
approximation is violated at small \ ~ \; in this region 
we can neglect ~ in comparison with {3 + x/ ~, after 
which the solution is obtained in terms of Whittaker 
functions. The regions of applicability of both approxi
mations overlap. As a result we obtain for R the ex
pression 

R=e-'-"[ -Hexp( -i('/,~+¢» l-e-,p(-i('/3~''+¢», (16) 

Z=Al2~"', \jl"': 1. (17) 

The considered case Re {3 » 1 corresponds to the 
intersection of the dispersion curves k1x and k2x - ko 
in the region of applicability of the geometrical-optics 
approximation. Here, as can be readily verified, the 
parameter Z in (1) turns out to be the same at both 
resonant points and coincides with (17). Equating (16) 
to zero, we obtain (at i3~ » \ {3~ \): 

( 3rw ) 'I, 1 ( 2 )" [ ( (?) ':, ) ] p,.' = - • pn"=- - -;--- III exp n). ~ -1. 
2 2 3,m 3nn 

(18) 

These expressions are valid for (3rrn/2 )2/3 » 1 and 
X « (3rrn/2 )./3. Another limiting case that can be con
sidered corresponds to X - "". Here, too, \ /:in \ - 00 
and geometrical optics can still be applied to (14). The 
condition for the existence of a solution corresponding 
to total absorption takes in this case the form 

t(~) ')... 1/2 

S (p-;,+~) ds 
;,1) '0 

=Jt(n+~). 
(19) 

where the integration is carried out in the complex 
plane between the turning points ~(l,2). As X -"", Eq. 
(19) can be satisfied only as 4X/f32 - -1 (Le., in the 
case when the points ~(1) and ~(2) approach each other). 
Taking this into account, we easily obtain for A S/4 » n 

~,.'= (n+ '/2) 1 (4,.) ''', 

~n"=- (41.)'1,+ (n+'h) (41.)-"'. 
(20) 

Expressions (18) and (20) enable us to trace the be
havior of (3n( X) at n » 1. Figure 1 shows numerically 
calculated plots of {3~ and {3~ at n = 0 and 1. We note 
that, with accuracy not worse than several percent, 
{3~ (X) is described by the formula {3~ = -( 4A)1/2 + (4Af1/4 
for all A for which {3 ~ < O. 

4. PARAMETRIC FREQUENCY DIVISION 

Let us apply the results to a case of practical im
portance, that of decay into identical modes (parametric 
frequency division). For the qualitative analYSis pre
sented here, we can replace V 12 and V 21 in (3) by their 
values near the cutoff points of waves 1 and 2. Consid
ering the system (3) in the geometrical-optics approxi-
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FIG. 1. The quantities f3n 
and f3h for the fundamental 
and first modes as functions of 
the parameter A. 

mation and using (12), we can express the parameter A 
in terms of the growth rate Yo of the instability in a 
homogeneous plasma, 

A=,"{.' I~II ~\ r'. iioo, iioo, 

We assume that ko« I 0 11/3. At small ko, resonant in
teraction is possible only at 0 = II w 11 - I W2/ Wo I « 1. 
In this case we can regard the differences 02 - 0 and 
~1 - ~2 in (14) as proportional to 0.1) It is also con
venient to separate in explicit form the dependence of 
the parameters on the layer inhomogeneity scale 
a = (a in n/ axt1, putting 

ex, = lit, I iix, I =.!!-., 
a iioo /i). 

where ki has the meaning of the m:aximum value of k 
= (ky + ki )1/2 allowed by the dispersion equation, and 
wo ~ WOo Then, taking (11) into account, we obtain 

The instability threshold of the n-th mode is determined 
obviously by that value of A = An at which (15) has real 
solutions, i.e., in our case, by the system of equations 

( k: ) 'l't_'I, ( + _ t) =~: (A.t-'I,) , 

( Tc'a2 ) '" 
2 k.!!'I. t-"·'\i=-~." (A.t-'I') , 

where the unknowns are t and A o. 

At not very large n and at (koa)>> 1 (i.e., in the 
case when the geometrical-optics approximation is 
valid for the pump wave), the approximate solution of 
the first equation is t = 1, i.e., 

ri =k.!! -"Ili. 

The second equation determines then the threshold 
value of Yo/w~ (and consequently also of Eo, since y~ 
~ E~) in the form of a universal function of one 
parameter 1) = 2(k3a2/kofJ.l/2)1/3 v 

(21) 

At large n, according to (18) and (20), we have 

F.(1])=! (3~n)\_'ln{1+exp[2(3;n)'I.1]]), 1]<1, (22) 

F .(1]) =1+ (2n+1)"f1]", 1]~ 1. 

A plot of the function F 0 (17) at n = 0 is shown in 
Fig. 2. Thus, in the case of weak damping or relatively 
strong inhomogeneity, the threshold is independent of 
v and is determined by the relation (n = 0) 

'"{.' 1 ( li'a' ) -'I, 
-""- -_ _a-'/3 III,' 4 k.!!'I, . 
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FIG. 2. The function FJll) for the J 
fundamental mode. 
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With increasing inhomogeneity scale, the threshold 
ceases to depend on a and tends to a limiting value that 
coincides in order of magnitude with the threshold of 
the corresponding instability in a homogeneous plasma. 
The influence of the inhomogeneity becomes therefore 
significant at values of a for which 1) ~ 1, i.e., at 
ita ~ j/3/2(ko/k )1/2. 

By way of illustration, we consider a concrete exam
ple of the decay of an ordinary wave with frequency 
Wo « WH (WH is the electron cyclotron frequency) into 
"oblique" hybrid waves with nearly equal frequencies. 
For simplicity we assume that the pump wave propa
gates along the x axis. In this case the coefficients p 
and A which enter in (14) can be easily obtained by 
comparing the system (3) with the corresponding equa
tions for a homogeneous plasma, obtained in the hydro
dynamic approximations: 

~= (k.a)'/.t"f-'-l- ~~ ) , 

where a is the scale of the plasma inhomogeneity 
(a=ldlnn/dxr1 at (4wp(x)/w~)cos2e =1). 

(23) 

To assess the accuracy of the presented formulas, 
we calculated the matrix elements Vik for plasma 
parameters corresponding to the tangency of the quasi
classical curves, which occurs at 0 ~ ko/4k. Using 
formulas (15), (18), and (20), we can obtain relations 
analogous to (21) and (22) for threshold values of the 
pump field 

;Y'/61,'='V'F. (1]); 

;y'/oo.'=k,'vs' cos' 8/00.', 11=2Iika'I'k.-"' , (24) 
4liklk,<i, k.a~3:tn/2. 

The spectrum of the instability frequencies is deter
mined by the relation 

k. ( 2n+l) 2n+l 6 1 --<1 =Tk - 4(2Iikck)"'a ' '. 1(' ' 

6=_0 1-- -- ,11<1. k [ 1 ( 3nn ) 'I. ] . 
4k 2 2k,a 

It is seen from the foregoing formulas that in a 
weakly inhomogeneous plasma woa/c » 1, the most 
stable are the waves with ky « kz and k ~ kz large 
enough to satisfy the relation 1) ~ 1. For the minimum 
threshold we then obtain (at a = const) 
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at 

_ 81'-;-( ooo'a'c ) 'I. q,-- -.-
3. vr:i 

( w ) 2 8l'1i ( 2w~\' ca' ) 'I, 
2k:T =In[q,(lnq,)'I,l. q'''''-3- ---vr . 

(25) 

Thus, the minimum threshold is determined by col
lisions only in a very weakly inhomogeneous plasma 
for w~a2c/v~» (wo/2ve)3. At smaller values of the 
parameter w~a2cvT' the decisive role is played by the 
Landau damping, although the thresholds are deter
mined as before by formula (24) at 1] ~ 1, correspond
ing to the limit of almost homogeneous plasma. When 
k decreases from the values determined by formulas 
(25), the plasma inhomogeneity causes the thresholds 
to increase. 

Similar estimates can be obtained also for the decay 
of an extraordinary wave propagating along the x axis. 
In this case we have at 4wH cos2 e I w~» 1 

k'v 'w 'sin' 8 
f..""t'/'(koa)'/, E 0 (2cos' 8-1)', 

4W[{1io cos-\' 0 

000 ( 00 0') 'h eE" k =- 1- VE=-
~ C 400H Z cos" 8' mroo' 

and i3 is determined, as before by formula (23). It is 
easy to find that for the threshold values of the pump 
field one can use formula (24) in which we put 

-, 'k -, 2 ' 28 
~ woo ,l'E 8111 (2cos'8-i)'. 
lJ)oz 40l 11" cos' 0 

The minimal threshold vE/c2 = 16v~whl w~ is reached 
in this case at cos2 e ~ wol wH 12 and under the condi
tion 
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( oo,'a'c ) 'I, w, (W,) 'I, ._- >- - . 
L'T 3 Ve (On 

The authors are grateful to V. M. Kochetkov for the 
numerical calculations. 

I)For simplicity, we consider the case kOy = kOz = O. At kOyz *' 0, these 
differences are of the same order, but naturally, depend also on kOy 
and kOz. 
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