
Intensity modulation of stimulated scattering under 
conditions of high pump intensity 

V. I. Emel'yanov and Yu. L. Klimontovich 

Moscow State University 
(Submitted September 26, 1974) 
Zh. Eksp. Teor. Fiz. 68, 929-939 (March 1975) 

The space and time evolution of various types of stimulated scattering of light is investigated as a function 
of the pump intensity for various values of the logarithmic decrement of the interacting waves. The analysis 
is carried out on the basis of generalized equations that are derived (with allowance for phase evolution) 
for the occupation numbers and fluxes of the interacting·wave quanta. It is shown that at pump intensities 
exceeding certain threshold values the scattered radiation intensity grows nonmonotonically, the stationary 
state being established in an oscillatory manner. The oscillation period depends on the pump intensity. The 
results are used to interpret the presence of a threshold for the modulation of intense laser radiation 
reflected by a plasma, which has been observed experimentally(3), and also the appearance of additional 
lines in the stimulated Raman-scattering spectrum [41 under sufficiently intense pump conditions. 

1. INTRODUCTION 

We investigated in this paper the evolution of the in
tensity of various types of stimulated scattering of light 
(stimulated parametric scattering-SPS, stimulated 
Raman scattering-SRS, and stimulated Mandel'shtam 
scattering-SMBS) as a function of the pump intensity. 
It is shown that the intensity does not increase mono
tonically when the pump exceeds a certain threshold 
value, namely, the stationary state is reached in an 
oscillatory fashion. 

The problem of the spatial oscillations of the intensity 
of interacting waves is not new. Thus, for example, 
in(l,2J are given oscillating solutions of the problem of 
the interaction of three waves with damping neglected. 
In the present paper, this problem is solved approxi
mately, with arbitrary wave damping. We investigate 
individually cases of spatial and temporal evolution. The 
last case can be of interest in connection with the ex
perimental observation of the oscillations of the inten
sity of scatt~red radiation at high-power pumping. 

Basov, Krokhin, et al.[3] have observed experimentally 
the effect of temporal modulation of the intensity of 
radiation reflected from a plasma exposed to a power
fullaser beam. The effect has a threshold, i.e., it is 
observed at pump intensities exceeding a certain thresh
old value. In[3], the temporal modulation effect is at
tributed to scattering of light by non stationary turbu
lence. It results from decay instability, in whic h eac h 
pump quantum decays in the plasma into two longitudinal 
plasma oscillation quanta. Thus, the modulation of the 
scattered radiation sets in in two stages. 

In this paper we propose a different explanation of 
this effect. We show that the modulation of the intensity 
of the scattered light in time occurs in the case of suf
fiCiently strong pumping under stimulated scattering 
(SPS, SRS, 5MBS) by transverse or longitudinal waves 
in the medium. The results of the experiment[3] can be 
explained if the reflected radiation is regarded as stim
ulated scattering. The two indicated possible mecha
nisms of temporal modulation of the reflected radiation 
lead to qualitati vely different dependences of the period 
of the modulation on the intensity. 

It is also possible that the threshold splitting of the 
scattered-radiation line, observed in certain studies 
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(see[4]) in liquids and in solids (the fine structure of 
SRS), is connected with the modulation effect. 

In this paper we consider two particular problems: 
1) stationary stimulated scattering, 2) the evolution of 
spatially homogeneous stimulated scattering in time. 
The first is solved on the basis of generalized (with al
lowance for the spatial variation of the phases) equa
tions for the fluxes of the quanta of the interacting 
waves. The second problem is solved on the basis of 
the corresponding equations for the densities of the 
quanta of the interacting waves. 

In a recent paper by Sparks[5] they investigated the 
appearance of instability (jumplike increase of the in
tensity in high-power pumping) of stimulated scattering 
on the basis of the rate equations for the densities of 
the quanta[6]. In these equations, no account was taken 
of the evolution of the phases, because they are equa
tions of first order. The generalized equations obtained 
by us take into account the phase evolution and are con
sequently second-order equations. It follows from these 
equations that changes in the regime occur in the case 
of high-power pumping without a discontinuity. 

2. EQUATIONS FOR THE DENSITIES OF THE 
QUANTA OF THE INTERACTING WAVES IN THE 
CASE OF HOMOGENEOUS DISTRIBUTION 

We start here with the system of reduced equations 
that describe the time evolution of the complex ampli
tudes of the Stokes (Es) and the laser (EL) modes, and 
the amplitudes Uq of the lattice displacement in the 
case of SRS, 5MBS, or the idling-wave amplitude in the 
case of SPS; it can be expressed in the form(1,2] 

!..E.+'(.E.=a.ELU;, !.. u,+'(.u.=a/£LE;, 
dt dt 

.d 
diEL+y.EL=a.E,U •. 

For SPS we have here 

(2.1) 

(2.2) 

where d is the contraction of the nonlinear-susceptibil
ity tensor. In the case of SRS and 5MBS we have 

(2.3) 

where a is the contraction of the RS or the 5MBS tensor, 
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n is the concentration of the scattering cells; M and 
Wq are respectively the mass and frequency of the pho
non oscillator. 

The system (2.1) is a system of six scalar first
order equations for the amplitudes and the phases of 
the three waves. We shall show that it can be reduced 
to a system of three second-order equations for the 
quantum-number densities ns, nq , and nL. These 
quantities are connected with Us, Uq, and EL in the 
following manner: in the case of SPS we have 

n,=E/E!2nnoo;, j=8, q, L; (2.4) 

the case of SRS and 5MBS we have 
(E·E) •. L 

n'.L~ 2lt1iW',L ' 
(2.5) 

To obtain equations for ns, nq , and nL, we multiply 
Eqs. (2.1) respectively by E~, Uq, and Et, and add 
them to the corresponding complex-conjugate equations. 
As a result we obtain three equations: 

(dldt+2y,)E,'E,=2Re o,E.·ELU,·, 

(dldt+2y,) U;U,=2 Re o,U;ELE;, 

(djdt+2YL)K'EL=2Re O~EL·E.U,. 
(2.6) 

The right-hand sides of these equations are determined 
by single complex function E~ELUq. The equation for 
it also follows from (2.1) and takes the form 

(d/dt+y)E,'ELU,'=o,'EL'ELU,'U, 

+o,E,·E,EL·EL+o,E.·E,U;U,. 

Here Y = Ys + Yq + YL· 

(2.7) 

We eliminate from (2.6) and (2.7) the function 
E§ELU~ and change over to the numbers of quanta (2.4) 
and (2.5). As a result we obtain a closed system of 
three second-order equations for the three functions 
ns, nq, and nL: 

(dldt+y) (dldt+2y.)n.=C[nLn,+n.n,-n.n,l, 

(dldt+y) (dldt+2y,)n,=C[nLn,+n.n,-n.n,], (2.8) 
(dldt+y) (dldt+2y,)nL=-C[nLn,+n.nL-n.n,1. 

The constant C is determined by the following expres
sions: in the case of SPS 

(2.9) 

and in the case of SRS and 5MBS 

C=8n'a'noo,ooJMnoo,. (2.10) 

The difference between Eqs. (2.8) and the first-order 
rate equations[5,6 j is due to allowance for the explicit 
dependence of the triple product E;ELUq on the phase 
difference <PL - <Ps - <Pq. 

3. SYSTEM OF EQUATIONS FOR THE FLUX 
DENSITIES OF THE QUANTA OF THE INTERACTING 
WAVES IN THE STATIONARY CASE 

To describe the spatial variation of the amplitudes 
and phases of the interacting waves in the stationary 
case it is necessary to use in place of (2.1) the equa
tions 

dE.ldx+~.E.=A,ELU:. 

dU,ldt+~,U,=A.E~.', 

dELldt+~LEL=ALE.·U,; 

~j=yIUi' Aj=o/u;, ;=8, q. L. 

Here Vj are the group velocities. 
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(3.1) 

(3.2) 

In analogy with the procedure used to derive (2.8) 
from (2.1), we obtain from (3.2) the equations for the 
quantum flux densities: 

These equations take the form 

Here 

(d~ +~) (:x +2~.) II.=D[IILII,+IILII.-II.II.l. 

. (~ +~) (~ +2~q) II,=D[II,II,+IILII.-II.II,l. 

(d~ +~ ) (d~ +2~L) IIL=-D[IILII.+IILII.-II.II.,l. 

(3.3) 

(3.4) 

where C is determined by formulas (2.9) and (2.10). 
These equations also differ significantly from the 
"rate" equations that prescribe the spatial variation of 
the interacting-wave quantum flux densities. Equations 
(3.4) are second-order equations because they take into 
account the spatial variation of not only the amplitudes 
but also of the phase difference <P L - <P s - rpq. 

4. SOLUTION OF THE SYSTEM (3.4) FOR THE CASE 
OF STIMULATED RAMAN SCATTERING 

In the case SRS, the inequalities Pq » Ps and Pq 
» PL are satisfied. The character of the solution, as 
we shall shOW, depends significantly on the pump inten
sity. We consider two limiting cases. 

1. The functions lIs L vary little over a distance 
11 Pq, i.e., ' 

~ dII'.L ~II 
~,dx '." ~,>~ .. ~L' (4.1 ) 

Under these conditions Eqs. (3.4) take in the zeroth ap
proximation in Ps I Pq and P LI Pq the form 

d D 
- II.= -[IILII,+IILII.-II.II,], 
dx ~, 

d D. ] - IIL=- -[IILII,+IILII.-II.II, • 
dx ~, 

D 
2~,II,= -[IILII,+ IILII.-II.II,]. 

~, 

(4.2) 

From first two formulas of (4.2) we obtain-the flux con
servation law: 

(4.3) 

where II~ L represent the values of the fluxes at x = O. , 
We note that Eqs. (4.2) for the fluxes have the same 

form as the corresponding equations obtained by 
Sparks[5] for the numbers ns, nq, and nL of the quanta. 

From the first equation of (4.2) we eliminate IIq with 
the aid of the third equation of (4.2) and II L with the 
aid of (4.3). As a result we obtain a closed equation for 
IIs: 

( ~.. II ) dII. ---+II, -=~,(II-II.)II •. 
D 2 dx (4.4) 

The solution of this equation is 

II.(x) / I II,(x)-II IIH 
II. (0) II. (0) -II =exp(M); 

2II 
(4.5) 

2~"ID-II' 

In the case of weak pumping, when 

II""IIL'+ II.'~2~,'ID, (4.6) 

we have from (4.5) 
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n.(x)= n.'n (4 7) 
n.'+nL'exp(-Dnx/~.) . . 

This solution cOincides with formula (4.76) of Bloem
bergen's book[21. 

In the opposite case of strong pumping, when the 
parameter 

ITDI2~.'-1, (4.8) 

the solution (4.8) takes the form 

n.(x)=n+(IT.'-IT) exp (-P.x). (4.9) 

This solution coincides in form with that obtained by 
Sparks[51. It is, however, inconsistent, since the condi
tion (4.1), which is the condition for the applicability of 
the initial equations (4.2), is violated in it. Consequently, 
in the case of strong pumping it is necessary to turn 
from (4.2) to the more general equations (3.4). 

2. We present the solution of Eqs. (3.4) for the case 
of strong pumping under the boundary conditions 

n.(O) =n.', il.(O) =0, ilL (0) =nL', 

dill I =0 L , j=s,q,. 
dx x=o 

(4.10) 

The boundary conditions for the derivatives follow from 
equations analogous to Eqs. (2.6), with allowance for the 
fact that I1q(O) = O. 

In the zeroth approximation in i3s1 i3q and PLI J3q, 
we obtain again from (3.4) the conservation law (4.3). 
Eliminating IlL and I1q from (3.4), we obtain one equa
tion for II s ; 

( d) dn. [ . dx + p, -a:;-=D (n-n.)n. 

( .) s" { ,.} dil. (x') ] + n-2n. exp -~.(x-x) --,-dx' . 
• dx 

(4.11) 

Let us consider the solution of this equation for arbi
trary pumping, but for sufficiently small x, when I1q 
«IlL and I1s« IlL. In this approximation, Eq. (4.11) 
becomes 

( d. )dn. (s" , dn.(x') ') ( 2) dx -r~. a;-=Dn n.+ exp{-~q(x-x )}---;w--dx . 4.1 , 
We write down the solution of this equation under the 
boundary conditions (4.10) 

n.'{ (pq ITD) il.(x)=T exp(x(lI-~.» 1+-;--7 

+exp(-x(lI+Pq»'~l- ~~ - ~) +2eXP(-~.x)~}; 
11- (p.'+2ITD) 'I,. 

(4.13) 

In the case of weak pumping, when the condition (4.6) is 
satisfied, this solution takes the form 

n.(x) =n.' exp (nDxlp,). (4.14) 

It coincides with (4.7) at small x, when 

n.'<nL·exp (-ITDxlp.). 

In (4.14), the gain is proportional to the pump. In the 
case of strong pumping, when 2I1D» J3q, it follows 
from (4.13) that 

(4.15) 

Thus, in the case of strong pumping, the gain is propor
tional to v' II r; 
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We consider now the character of the evolution of the 
solutions of (4.11) at large x. At x '" YO we get from 
(4.11) 

n.(oo)=IT, n.(oo) =0, nL(oo) =0. (4.16) 

To obtain the last two equations it is necessary, of 
course, to use the initial equations (3.4) at i3s = i3L = O. 
Using (4.16), we represent the solution of (4.11) at 
large x in the form 

n.(x) =n+.sn.(x) , lin. (x) <no (4.17) 

The equation for OIl s differs in the linear approxi
mation from Eq. (4.12) only in the sign of the right-hand 
side. Consequently, the solution for OfIs{x) is deter
mined by (4.13) in which we let D - -D and I1~ 
- OIl~, and to which we also add an analogous term 
proportional to the derivative (dOIlsl dx)o. The super
script zero denotes here an arbitrary value of x at 
which the condition (4.17) is satisfied. 

From formula (4.13) as D - -D it follows that in 
the case of strong pumping, when 

(4.18) 

the approach to the solution (4.16) has an oscillatory 
character with a spatial period 

L=2nl (2ITD-~q') 'I,. (4.19) 

Thus, in the case of strong pumping exceeding the 
threshold value I10sc = Pq/2D, the monotonic character 
of the energy transfer to the scattered radiation gi ves 
way to an oscillatory character. 

As a result we arrive at the following picture of the 
establishment of the solution at large pumps II ;> II osc . 

A monotonic approach to a level on the oder of II 
takes place, as follows from (4 .15), over a distance 
Iiv' 2I1D « II jJq at II » I1osc. 

A nonmonotonic (oscillating, with a period) approach 
takes place, as follows from (4.13), over a distance 
II {3q. 

5. TEMPORAL EVOLUTION OF ns, nq, AND nL IN 
THE CASE OF A SPATIALLY HOMOGENEOUS FIELD 
DISTRIBUTION 

Two formulations of the problem of the spatial evolu
tion of the scattered radiation are possible. These are, 
first, the study of the temporal evolution of the initial 
state in the absence of external pumping. This problem 
can be solved on the basis of (2.1) or equivalent equa
tions (2.8) for the functions ns, nq, and nL. A solution 
of this problem is analogous to that given in Secs. 3 and 
4, owing to the complete analogy of Eqs. (2.8) and (3.4). 
More closely corresponding to the experimental condi
tions (particularly in(31) is the process of the evolution 
of ns, nq, and nL in the presence of pumping. To take 
the pumping into account it is necessary to add the ex
ternal force F{t) to the right-hand side of (2.1). This 
leads to corresponding changes in the system (2.8). The 
solution obtained for this rather complicated system of 
equations has shown that the main features of the pro
cess can be described in a simpler manner, by using the 
solution of the first two equations of (2.8) and by as
suming the function nL to be given. It should be noted 
that this approximation differs from the given-pump 
approximation when we neglect the time variation of 
both the amplitude and the phase of the complex function 
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EL(t). In the approximation considered by us, we as
sume only the intensity I ELI2 ~ nL to be constant. The 
change of the phase qI L (particularly of the phase dif
ference qI L - qlq - qI s) is taken into account on going 
from Eqs. (2.1) to Eqs. (2.8). By virtue of this, the ap
proximation considered by us should be called the· 
"approximation with given pump intensity." 

Thus, we consider the solution of the system (2.8) at 
a specified value of nL. Had we neglected in the deriva
tion of the equations for ns and nq also the change of 
the phase qI L, then the first two formulas of (2.8) would 
not contain the terms with CnSnq. We shall show that a 
regime of temporal modulation of the scattered radia
tion would be impossible without allowance for these 
terms. 

The first two equations of (2.8) have a stationary 
solution ' ) : 

n.=nL Y.+Y. _ 2yy., n.=nL y.+y. _ 2yy.. (5.1) 
.y. c 1. C 

From this we get the threshold value of nL, at which 
the existence of a stationary regime is possible: 

nthr =2yy .y.1 (y. +y.)C. (5.2) 

At short times, when ns « nL and nq « nL, the system 
of the first two equations of (2.8) becomes linear. The 
form of the solution is determined by the characteristic 
equation 

[p'+(y+2y.)p+2yy.) [p'+ (y+2y.)p+2'Y'Y,) 

-2CnL[p'+(Y+Y.+Y,)P+l (Y.+Y.) )=0. 

Let us investigate this equation for two cases. 

(5.3) 

1. Ys = Yq =YL= Yo (SPS, 5MBS). The solution that 
determines the growth is of the form 

(5.4) 

Growth takes place at nL > 3y~/C. Thus, the growth 
threshold coincides with the threshold of the stationary 
state (5.2). 

2. Yq» Ys, YL (SPS, 5MBS). If p < yq, then we get 
from (5.3) 

p=CnL/y,-2y •. (5.5) 

We see therefore that the buildup threshold again coin
cides with the threshold for the existence of the station
ary state (5.2). 

It follOWS from (5.5) that at nL» 2YsYq/C (but nL 
« Yq/C) we have 

p=Cnd1., (5.6) 

and consequently the growth increment is proportional 
to nL. At p »Yq we obtain from (5.3) 

(5.7) 

Thus, during the initial section of the time evolution 
the linear increase of the growth rate with increasing 
nL gives way to an increase like nC. This result is 
analogous to that obtained in Sec. 4 in the study of the 
spatial growth of the function IIs(X) with small x (see 
(4.13) and (4.15)). 

We now consider the time evolution of ns(t) near the 
stationary state us, Uq. To this end we represent the 
functions ns and nq in the form 

n.(t) =n,+6n,(t); n.(t) =n.+6n.(t). (5.8) 
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The time evolution of the functions Ons and Onq is de
termined in the linear approximation by the character
istic equation that follows from the first two equations 
of (2.8) and (5.8); 

[p'+ (y+2y.)p+2n.) [p2+(y+2y.)p+2yy.) 
+C(n.-nL) [P'+(1+2y.)p+2yy.) (5.9) 

+C(n.-nL) [p'+(y+2y.)p+2yy.) =0. 

This equation goes over respectively into (5.3) at nq = 0 
and ns = O. 

We consider again two cases. 

1. Yq = Ys =YL = Yo (SPS, 5MBS). From (5.9) we 
have 

p=-'I,,(0±['/'1o'+C(2nL-n,-n,) J'" 
=_, I.'(o± [.01 ,-Yo'-2Cn.) 'I,. 

We see therefore that at pumps 

49 Yo' 
nL >sc "" nose "2n thr 

(5.10) 

(5.11) 

oscillations appear. In (5.11) nosc is the threshold 
value at which oscillations appear, and nthr is the 
threshold of the stationary state (5.2). Thus, the period 
of the oscillations is determined by the expression 

T=2n/oo=2n/[2C(nL-nOSC ) r". (5.12) 

This expression can be represented in the form 

4n ( lose )". (5.13) 
T=~ I-lose ' 

where I = VLnwLllL is the flux of the pump quanta and 
Iosc = 49/8Vr)iwLY~/C is the threshold value of the flux 
at which the oscillations take place. 

2. Yq »Ys, YL (SMBS, SRS). In analogy with (5.10), 
we assume that I p I ~ Yq at the threshold of the ap
pearance of oscillations. At I' q » Ys and I' q » YL we 
get from (5.1) 

Taking this into account, we get from (5.9) the equation 

p'+3'(.p+2'(.'+C (n.-nL) =p'+3,(,p+CnL 1.1't.~0. (5.14) 

Therefore 

(5.15) 
= -~-'" ± (~'" '-CnL!!) 'I. 

2'" 4" y.l· 
The oscillation threshold is 

9 1.-Y. 9 nosc=Tc=gnthr • 

The period of the oscillations is 
2n 2n 4n (. lose ) 'I. 

T=--;;;= (CnLy,lY.-'/'l,')'" 31,. I-lose' (5.16) 

Here Iosc = %vr)iwLYqYs/C is the threshold value of 
the flux at which the oscillations take place. 

6. DISCUSSION OF RESULTS 

From the foregoing analysis of the temporal evolu
tion of the intensity of the scattered radiation we obtain 
the follOwing picture. 

At pumps nthr < n L < nosc there is observed a 
monotonic increase of the intensity of the scattered 
radiation with time. The growth rate first increases in 
proportion to nL and then in proportion to n~2. The 
stationary state sets in with monotonic increase of 
ns( t). 
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At pumps nL> nosc there is, during the initial 
stage, a monotonic increase with growth rates deter
mined by formulas (5.4) and (5.7). Near the stationary 
state, the evolution is nonmonotonic (an oscillatory re
gime sets in). The period of the oscillations is deter
mined by formulas (5.12) and (5.16). At large excesses 
nL» nosc, the modulation period T"" 2lT/v'2CnL is of 
the same order as the buildup time during the initial 
section. 

The period of the oscillations decreases monoton
ically with increasing nL. The theory proposed in[3] 
leads to a nonmonotonic dependence. It is important that 
in the considered theory the oscillation threshold nosc 
is always higher than the threshold nthr for the appear
ance of stimulated scattering. Thus, nosc = 2nthr at 
Ys = Yq = YL and nosc = (%)nthr at Yq» YL and 
Yq » Ys' 

Results were presented above for two regions: the 
initial section and the approach to the steady state. A 
complete description of the evolution calls for a solu
tion of a system of nonlinear equations for the functions 
ns(t) and nq(t). In the particular case when Ys = YL 
= Yq == Yo and ns (t = 0) = nq(t = 0), we have at any in
stant of time nq(t) = ns(t). Consequently, the complete 
description of the time evolution is given by a single 
equation 

d'n. dn. 'C) +C Z 0 de'+5'Y.dt""+(6y. -2 nL n. n. = . 

We see that the evolution is described by the nonlinear
oscillator equation, in which the sign of the "elasticity 
coefficient" depends on nL. The nonlinear term in this 
equation is due to allowance for the change of the phase 
cP L, and describes the departure of the quanta ns to the 
pump. It determines the feasibility of the stationary 
state at a given pump intensity, and also the feasibility 
of the appearance of the modulation effect. 

It was already noted above that in[3] there was ob
served the appearance of oscillations of the intensity of 
the radiation reflected from the plasma in the case of 
high-power pumping. For a complete quantitative de
scription of this phenomenon it is necessary to use a 
system of initial equations more complicated than in the 
present work. It is of interest, however, to make a 
numerical estimate of the modulation threshold by 
means of formula (5.11) and carry out a compaI'ison 
with the experimental data ofC3]. Assume that stimulated 
Raman scattering by plasmons takes place. The damp
ing of all three waves is determined by the frequency 
£Ie of the electron-electron collisions, i.e., Ys = Yq 
= Y L == I' 0 = lie. The collision frequency is lie ~ We iJ. 
~ we/r~ne. Here We is the electron plasma frequency, 

iJ. is the plasma parameter, re is the Debye radius for 
the electronsA and ne is the electron concentration. At 
ne = 1021 cm- and Te = 103 eV = 107 K we obtain We 
~ 2 x 1015 sec-1 re ~ 6 x 10-7 cm, and iJ. ~ 4 X 10-3. It 

, 12 1 
follows therefore that lie ~ 6 x 10 sec-. Thus, Yo 
- 6 X 1012 sec-I. 

The quantity C for a plasma can be determined from 
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formula (2.9) in which WL ~ Ws ~ Wq = 2 X 1015 sec-\ 
d = €nl/41T, and €nl ~ e/mw~re ~ 5 x 10-7 • At these 
values we obtain C ~ 5 X 106 cm}'sec2. 

According to formula (5.11), nosc ~ 6Y~/c ~ 4.1019 
cm -3. From this we obtain for the threshold pump flux 
at which the oscillations set in 

lose =/iooLvLnose-2.5·1O" W/cm 2 

We have obtained the lower bound, since the wave 
number k was replaced in the formula for €nl by lire. 
If k ~ re/3, then losc ~ 2 X 104 W/cm2 • 

Our numerical results agree with the experimental 
data of[3]. We note that if the pump pulse duration ex
ceeds the time of flight through the scattering region 
II c and the duration of the monotonic section of the 
establishment of the stationary state II v' 2CnL, then 
the spectrum of the scattered radiation at I > losc will 
contain (in the given-pump-intensity approximation em
ployed in the present paper) three components Ws and 
Ws ± w, where w is determined by formulas (5.10) and 
(5.12) or (5.15) and (5.16). This seems to explain the 
threshold appearance of the three lines in the fine 
structure of the SRS line in the case of high-power 
pumping. 

Taking into account the modulation of the additional 
mode nq, the number of lines in the spectrum can in
crease to five. 

A more general analysis, with allowance for the 
temporal evolution of the pump mode intensity (see the 
start of Sec. 5) shows that the pump mode is also sub
ject to a time modulation with a threshold. Therefore, 
for a sufficiently strong pump, the number of lines of 
the spectrum of the scattered radiation can increase to 
seven. An increase in the number of lines of the emis
sion spectrum with increasing pump is observed experi
mentally. 

llIn a more accurate analysis (see the start of Sec. 5), the quantity nL 
in (5.1) is replaced by ('Yi/'y2)nL, and therefore ns < nL and nq < nL· 

IS. A. Akhmanov and R. V. Khokhlov, Problemy 
nelineinoi optiki (Problems of Nonlinear Optics), 
VINITI (1964). 

2N. Bloembergen, Nonlinear Optics, Benjamin, 1965. 
3 N. G. Basov, O. N. Krokhin, V. V. Pustovalov, A. A. 

Rupasov, V. P. Silin, G. V. Sklizkov, V. T. Tikhonchuk, 
and A. S. Shikonov, FIAN Preprint No. 17 (1974); Zh. 
Eksp. Teor. Fiz. 67, 118 (1974) [Sov. Phys.-JETP 40, 
61 (1975)]. 

'E. A. Morozova, A. E. Sokolovskaya, and M. M. 
Sushchinskii, Zh. Eksp. Teor. Fiz. 65, 2161 (1973) 
[Sov. Phys.-JETP 38, 1079 (1974)]. 

SM. Sparks, Phys. Rev. Lett., 32, 450 (1974). 
6V. N. Tsytovich, Nelineinye effekty v plazme (Non
linear Effects in Plasma), Nauka (1967). 

Translated by J. G. Adashko 
102 

V. I. Emel'yanoy and Yu. L. Klimontovich 464 


