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A detailed calculation is performed for the charge exchange between protons and hydrogen atoms in the 
energy range 1O-2~E~0.7 eV. Oscillations with an amplitude -0.1 about the mean value of the cross 
section are observed in the total cross section. The oscillatory structure of the cross section is ascribed to 
orbiting near the tops of the centrifugal barriers of the effective potentials of the problem. A phase shift 
analysis of the charge-exchange cross section is carried out. 

INTRODUCTION 

A detailed calculation of the charge-exchange reac
tion of hydrogen atoms in the ground state with deuterons 

H(ts)+a ...... D(ts)+p (1) 

at collision energies E < 0.5 eV has revealed oscilla
tions in the total charge-exchange cross section[l] 

It is established in the present paper that analogous 
oscillations appear in the total cross section of the 
symmetrical charge exchange 

H(ts)+p-+p+H(ts) (2) 

at collision energies 10-2 ::s; E ::s; 0.7 eV. Their period 
turns out to be approximately constant in momentum 
scale, and the amplitude amounts in rough approxima
tion to 10% of the averaged cross section. With in
creasing energy of the relative motion, the oscillations 
are attenuated (see Fig. 1a). 

The general course of the charge-exchange cross 
section (2) in the collision ener~ interval 10"'" ::s; E ::s; 5 
eV was calculated by us earlier. 2] In the present paper, 
the formulation of the problem, the procedure, and the 
accuracy of the calculation of the scattering phase shifts 
remained the same as before. 

The effective potentials that determine the scatter
ing process (2) (see Fig. 2) have a form that is typical 
in many respects of atomic collisions: repulsion at short 
distances, minimum at finite R, and a long-range at
traction "tail." The cross section for the scattering 
by such a potential has a complicated oscillatory 
structure, which is a consequence of the interference 
of oscillations of the following types: [3] orbiting, glory, 
and rainbow. The foregoing oscillations have the usual 
cause, namely, the presence of bound states in the scat
tering potential. 

The cross section of the charge exchange (2) is.deter
mined by two potentials (see Fig. 2). As we shall see 
later on, their mutual influence leads to a vanishing of 
the glory phenomenon in the cross section of the 
charge exchange reaction, which greatly simplifies the 
analySiS of the calculation results. 

The oscillations observed in the total charge-ex
change cross section (2), due to the quantum analog of 
the orbiting phenomenon, are well known from the 
classical theory of scattering. [4] In the interpretation of 
the results of the calculations, the noted classical anal
ogy turns out to be quite meaningful and helps explain the 
main features of the behavior of the cross section, 
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FIG. I. a) Total cross section of the symmetrical charge exchange 
H(ls) + p ~ p + H(ls) as a function of the scattering momentum. The 
momenta are given in the units of the problem, the cross sections are 
given in units 10-16 cm2, and E = 1.48 X 1O-2k2 eV. b) Orbital angular 
momentum as a function of the orbiting momentum kl defined by the 
relation (10). The values k = kz correspond to the maxima (circles) and 
minima (crosses) of the cross section uex(k). In the most interesting 
region, 1.5 .;;; k .;;; 4, the points corresponding to the pairs of values 
(10. k/) cluster about the straight line I = 7k + 8, which approximates 
well the curve b in the indicated region. 
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FIG. 2. Effective potentials V/g,u(R) = 2MWg,u(R) + 1(1 + I )/R2, 

describing the charge-exchange process (2). The ordinates are the values 
of k2 in the units of the problem. The dashed line marks the boundary 
of the orbiting region. The weak minimum of the potential V&(*) is 
located at R = 12.55 [7]. 

namely the positions of the maxima and minima, the 
number and period of the OSCillations, and also the col
lision-energy region in which they can be observed. 

FUNDAMENTAL EQUATIONS 

In the two-level approximation of the method of per
turbed stationary states, the problem of calculating the 
charge-exchange cross section for the process (2) re
duces to a solution of two one-dimensional radial 
SchrOdinger equations (in units e = b = m = 1, 1/m= lime 
+ 1/2Mp) 

d2 l r I 
dR2 X,.u(R)+[k'-V,.u(R)]X,.u(R)=O, (3) 
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where 
, 1(IH) 

V •. u(R) =2M[W .... (R)-W •. u (00) 1+[K ... uu (R)-K ... uu (oo) 1+~, 

k'=2ME, M=Mp /2m, (4) 

me and Mp are respectively the masses of the electron 
and the proton, and E is the energy of the relative mo
tion in c.m.s. 

The terms wg(R) and wu(R) (the eigenvalues of the 
two-center problem) and the adiabatic corrections to the 
terms Kgg{R) and Kuu(R) (matrix elements of the 
kinetic-energy operator of the nuclei in terms of the 
wave functions of the two-center problem), together 
with the centrifugal potenliall{l + 1){.R2, form two sets 
of effective potentials V g (R) and Vu (R), which are 
represented in Figs. 2a and 2b. The scattering phase 
shifts 6g1{k) and 6u 1{k), calculated from Eqs. (3), 
enable us to find the cross section for the charge ex
change of the reaction (2): 

a .. (k) = ;. L. (21+1)sin'~I(k), 
1_' 

where 

~'(k) =Il.'(k)-Ilu '(k). 

CALCULATION RESULTS 

(5) 

(6) 

Figures 3a-3c show the phase shifts 6g(Z) == 6k{k), 
6u (1) == 6~ (k) and ~ (Z) -= ~ l{k) as functions of the angular 
orbital momentum 1 at certain fixed values of E. We 
note the characteristic features of these functions, which 
determine the behavior of the cross section. First, the 
presence of maxima on the plots of the phase shifts 6g{z) 
and 6u (Z) indicate that the total elastic-scattering cross 
section for the process (2) 

a= 2~ \'1 (21+1) (sin' Il g'+sin'Il,,') 
k- ~ 1_. 

will contain glory oscillations, which are ensured by 
phases satisfying the quasiclassical condition 
a6g(Z)/a1 = 0.[4-6J It is seen from Fig. 3c that the func
tions ~(1) decrease monotonically, and consequently the 
glory phenomenon is missing from the charge exchange 
cross section (5). 

The orbiting region is characterized by a strong 
dependence of the scattering phase shift on 1. r;l,4 J It fol
lows from Fig. 3 that this behavior of ~(1) is determined 
completely by the phase shifts 6g(Z), and therefore the 
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orbiting oscillations will be present both in the total 
cross section (7) and in the charge-exchange cross sec
tion (5), and their position depends only on the potential 
Vg{R). 

The family of the functions ~l{k) is shown in Fig. 4. 
With decreasing k, these functions tend to the values 

~'(O) =n(n,'-n,,'), (B) 

where n~ and ~ are equal respectivel1. to the numbers 
of the bound states in the potentials V g{R) and V~(R). As 
is well known, [7 J n~ = 20 and ~ = 2, and accordingly 
~ 0(0) = lB1T. It is quite remarkable that the approximate 
equality ~O(O) "'" lB1T turns out to be true in a ve? wide 
range of values of k (Fig. 3c). As 1 increases, nu 
vanishes and n1 becomes equal to ~1(0)/1T = nk_ i.e., it is 
equal to the number of levels in the potentialv~(R). 
The number of bound states n1 decreases with increas
ing 1 and the last discrete level vanishes at 1 = 36. 

The abrupt jumps of the phase shifts ~l{k) at certain 
values of k offer evidence of the yresence of quasista
tionary states in the potentials V g{R) (it is obvious that 
their energy cannot exceed the height of the centrifugal 
barrier). The number of quasistationary states nr does 
not exceed three and the last of them vanishes at 1 = 42 
together with the vanishing of the minimum in the po
tential v~(R). 

In the cross section aex{k) these quasistationary 
states become manifest as narrow resonances (they are 
not shown in Fig. la because of their large number). 
The positions of these resonances can be easily deter
mined from Fig. 4, and the relative height can be cal
culated from the formula for the partial cross sections 

a,/=n(21+1)lk'. (9) 

The width of the resonances decreases exponentially 
as the vertex of the centrifugal barrier of the potentials 
v~{R) is approached, and in the vicinity of the vertex of 
Hie barrier it becomes comparable with the distance be
tween the levels. As follows from Fig. 4, in this region 
the phase shifts ~l{k) still vary rapidly enough to ensure 
a resonant behavior of the cross section, but slowly 
enough to make the width of the resonance appreciable. 

The principal statement of this paper is that the 
oscillations in the cross section aex{k), represented in 
Fig. la, are accounted for by the singularities of the 
scattering process near the vertex of the centrifugal 
barriers of the potentials v~(R), and consequently by 

FIG. 3. Scattering phase shifts as functions of the orbital 
angular momentum at a fixed collision energy. a) The phase 
shifts 6g(/) == 6~(k). From the displacements of the maxima of 
the maxima of the curves we can determine the period of the 
glory oscillation in the elastic cross section (7), which (~k - 1) 
turns out to be approximately three times larger than the period 
of the orbiting oscillations (~k "" 0.3). b) The phase shifts 
6u(l) == 6~(k). In the region of the orbiting momenta (I .;;; k .;;; 5) 
and at a value of the orbital angular momenta corresponding to 
them (see Fig. I b), the phase shifts 6~(k) are small and are 
practically constant, so that they do not influence the structure 
of the orbiting oscillations. c) The functions ~t = 6g(l) - 6u(l) 
decrease monotonically with increasing I, and this explains the 
absence of glory oscillations in the charge-exchange cross sec
tions (2). 
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FIG .. 4. The function A1(k). As k ..... 0 we have AI(O) = 11nt, where 
nl is equal to the number of bound states in the effective potential Vex(R). 
The number of abrupt jumps at small k is equal to the number n*1 of the 
quasistationary states (n*I"; 3). When the highest stationary level falls 
in the orbiting region (k ~ k[), the phase shifts A/(k) take on values 
A/max(k[} ~ 11(nl + n/* + Y2) (these points are marked by circles). The 
crosses designate the values Almin(k[) ~ 11(nl + n/*) at collision energies 
satisfying the orbiting condition (10), but not coinciding with the energy 
of the quasistationary state. The values of the phase shifts A/(k[} for 
I ..; k ..; 4 and 10..; I ..; 36 cluster about the straight line A/(k/) = 59.7 
- Ilk, or, taking into account the relation between 10 and kl (Fig. I b), 
A/(k[) ~ 2311 - 111/2. From the slope of the straight line A/(k[} we can 
estimate the period of the orbiting oscillations, namely Ak ~ 11/11 
~ 0.2B. 

the singularities of the behavior of the scattering phase 
shifts in the corresponding region of collision energies 
(Fig. 4). 

OSCILLATIONS IN THE TOTAL CHARGE EXCHANGE 
CROSS SECTION IN THE ORBITING PHENOMENON 

The orbiting phenomenon in classical scattering 
by potentials V~(R) occurs at collision momenta satis
fying the conditlon 

k,'=2MV,'(R,), (10) 

where the values of Rl correspond to the vertex of the 
centrifugal barrier and are determined by the equation 

~ V,' (R,) =0. (11) 
oR 

The set of points obtained in this manner in the (l, k) 
plane lies on a smooth curve (Fig. 1b). It is easy to 
verify that the values of kl practically coincide with the 

458 Soy. Phys.·JETP, Vol. 41, No.3 

c9!~ ,,- ,,-
,,-..- I 

20 -' ..-
/' 

10 J,JJ 

FIG. 5. Partial analysis of the total charge exchange cross section 
aex(k) at values k = 3.10 (maximum of the cross section), k = 2.96, and 
k = 3.30 (the two neighboring minima). The values 10 determined from 
the orbiting condition (10) at these values of the energy are respectively 
30,29, and 31 (see also Fig. Ib). The character of the histograms on 
both sides of these values of 10 is essentially different. The partial cross 
sections alex in a small vicinity of the values of I:S 10 correspond to 
rainbow scattering. 

pOSitions of the maxima and minima in the charge-ex
change cross section. 

To each pair of values (lo, kl) on the plots of Al(k) 
corresponds a point Al(kl), and the aggregate of the 
points clusters about a straight line (Fig. 4). At 
values of kl corresponding to the orbiting condition 
(10), the quantities Al(kl) take on in succeSSion, with 
successive increase of l, the values A~ax(kl) 
:::e 1T(nl + ni+ 1/2) and Ahun(kl) :::e 1T(nl + nt). This means 
that at values kl, corresponding to Afuax, the quasista
tionary level is indeed in the vicinity of the vertex of the 
centrifugal barrier. Approximately Similar resonance 
conditions repeat themselves with an interval Al = 2 (see 
Fig. 4). With increaSing l, the discrete levels of the 
initial potential well vg(R) become quasistationary levels 
of the potential V~(R), and with further increase of 1 
they are crowded out into the continuous spectrum, by
passing the vicinity of the vertex of the centrifugal bar
rier. From this it follows, in particular, that the num
ber of the orbiting oscillations approximately coincides 
with the number of discrete levels in the potential VOg(R). 

With decreasing collision energy (k :::; 1), the perio
dicity of the oscillations is violated and they gradually 
degenerate into narrow resonances. At k Z 5, when only 
above-the-barrier scattering is possible, the orbiting 
oscillations go over into rainbow scattering oscilla
tions, [3] the amplitude of which decreases rapidly. 

A partial analySiS of the oscillations (see Fig. 5) 
shows that actually the vibrational structure of the cross 
section is ensured also at k < 5 by a superposition of 
the orbiting oscillations and the rainbow oscillations, so 
that a group of several waves takes part in the forma
tion of the maximum (minimum) of the cross section. 

As seen from Fig. 5, the value lo = l(kl) serves as a 
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boundary on both sides of which the structure of the par
tial cross sections O"exl(k) is quite different. At 1 < lo, 
the set of quantities O"exl forms a stepwise and rather 
irregular function of the orbital angular momentum l, 
and at 1 > lo there is formed a stable picture, which be
comes more and more definite with increasing k. [2] The 
partial cross section O"exl in a small vicinity of 1 ~ lo 
correspond to rainbow scattering. 

CONCLUSION 

The reaction (2) is a rather rare example of a real 
quantum scattering problem, which can be formulated 
and solved with the required accuracy. The collision
energy range 10-2 :S E :S 0.7 eV, in which this reaction 
has been investigated in the present paper, is quite in
teresting for numerous applications, but the approximate 
calculation methods must be employed here with great 
caution. The results of the calculations presented in 
this paper will illustrate this statement, which inciden
tally is quite well known.L3,6] Of particular interest to us 
is the fact that even a Simple analysis of the form of the 
potentials that enter in the Schrodinger equation makes 
it possible to explain rather subtle features of the struc
ture of the quantum-mechanical scattering cross section. 

A characteristic feature of the symmetrical charge
exchange reaction (2) is the possibility of expressing its 
cross section in the form (5). This means that O"ex(k) 
can be represented as a result of scattering by a cer
tain "exchange" potential V.ex(R), which generates a set 
of scattering phase shifts ~l(k). Certain properties of 
vex(R) follow already from Fig. 3c. Thus, the monotonic 
character of the functions ~l(k) means that the potential 
vex(R) is finite at R - 0, and the weak dependence of 
~l(k) on k at 1 - 0 offers evidence that vex(R) depends 
on the collision energy in a certain special manner. The 
latter circumstance imposes a rather definite limita
tion on the form of the exchange potential, for which it 
is customary in the impact-parameter apprOXimation to 
assume the expression Vex = Vg(R) - v u (R).[6,8,9] 

The effect investigated, with symmetrical charge 
exchange (2) as a particular example, is sufficiently 
general and appears in more complicated charge-ex
change reactions, for example in reaction (1). In these 
cases, however, its interpretation is not so lucid, for to 
describe the process (1) it is necessary to have already 
three sets of phase parameters instead of the single 
~l(k) in the case of reaction (2). 
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The orbiting oscillations should arise always in low
energy scattering (for energies lower than the depth of 
the well and of the order of the height of the centrifugal 
barrier) by sufficiently powerful potentials, containing 
several bound states. With increasing collisions, the 
oscillations vanish, but when a new charge-exchange 
reaction channel is open, for example 

H(nl) +p-+p+H(nl), (2a) 
they should appear again at collision energies some
what higher than threshold. In this sense, the orbiting 
oscillations can be regarded as a threshold effect. 

The vibrational structure of the cross section and its 
connection with the classical scattering problem was ap
parently first investigated by Vogt and Wannier[lO] for 
the potential v(R) = _a/R4 • Similar problems were con
Sidered also by Munn, Mason, and Smith, [3], who dis
cussed in sufficient detail the accuracy and limits of 
applicability of the quasiclassical approximation in prob
lems of this type. 

In conclusion, it is our pleasure to express our grati
tude to S. S. Gershteln, Yu. N. Demkov, G. F. Drukarev, 
and Ya. A. Smorodinski'i for interest in the work and for 
fruitful discussions. 
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