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Population relaxation of a two-level system in a nonstationary resonant field is investigated. Various types 
of time dependences of the amplitude r and the frequency v of the field are pointed out, for which exact 
solutions exist (in the case of identical as well as nonidentical longitudinal and transverse relaxation times). 
In particular, the relation is found between the solutions for an arbitrary field ret), vet), and the time-inverted 
field r( - t), v( - t). An approximate theory of relaxation is given (when exact solutions cannot be found) in 
the limiting cases of a weak and a strong nonstationary field, and also for a slowly varying and a rapidly 
varying field. Relations determining the polarization of the system as a function of the population dynamics 
are presented. 

INTRODUCTION 

The dynamics of a relaxing quantum system in a 
strong non stationary resonant field is an important 
aspect of the theory of the interaction of a field with 
matter;[1-3] in this connection sufficiently large fields, 
such that perturbation theory is not applicable, 1) are of 
the greatest interest. Exact solutions for the behavior 
of the system at exact frequency resonance and for ar
bitrary variation of the field amplitude were obtained 
by Lyubimov and Khokhlov[4] and by Farn[S, 1] in the ab
sence of relaxation, and by Rautian[2] in the presence of 
relaxation with identical longitudinal (T) and transverse 
(T) relaxation times (at zero equilibrium difference of 
the populations no). For the case no f: 0 and for identical 
relaxation times (T = T) the latter problem was inves
tigated by Yankauskas,[6] who found the general solution 
in quadratures at exact frequency resonance (the integ
rals obtained in this connection are evaluated in[6] for 
periodic modulation of the amplitude, and are evaluated 
in the author's article [3] for various other types of 
modulation). Zon and Katsnel'son [7] obtained solutions 
for the case of an exponentially growing amplitude for 
a fixed frequency difference (in terms of the probability 
amplitudes2'). 

Inl3l, by truncation of the equations for the density 
matrix, the equation of motion of the populations in a 
two-level system was derived in the general case of a 
field with a time-dependent frequency lJ(t) and a time
dependent real amplitude E(t): 

r - { r [ 1 - ( 1 - )]}--:;Dr -:; -;:Dr -;:-D,(x-1) + x + D,(x-1) =0. (1) 

Here x = nino is the difference of the populations 
n = all - 0'22 of the ground and the excited levels, re
duced to the equilibrium value no at the given tempera
ture; r (t) = d . E/fi is the reduced amplitude of the inter
action, having the dimension of a frequency (d is the 
dipole moment of a molecule); lJ(t) = w(t)- Wo is the 
frequency difference between the instantaneous frequency 
of the field w(t) and the resonance frequency of the sys
tem wo, and 

where T denotes the relaxation time of the polarization 
and T is the lifetime of the excited state.3) If the system 
is in equilibrium (n = no, 0",2 = 0"21 = 0) at the instant 
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t = to when the field is switched on, the initial conditions 
are as follows: 

x(t o)=l, i(to) =0, £(to)=-r'(to). (2) 

An exact theory for a field with a variable amplitude (in 
the case lJ == 0) was developed in [3] for T = T and also 
for T f: T. 

The goal of the present work is the construction of 
a theory for the dynamiCS of a system with Simultaneous 
variation in time of both the amplitude and frequency of 
the field (for nonidentical, in general, relaxation times). 

Although exact solutions can only be found for spe
cific types of relationships between lJ and r (Secs. 1,2), 
they do, however, allow us to include a broad class of 
possible dependences of lJ and r on the time, dependences 
which are of immediate physical interest. One of the fun
damental merits of these solutions is that they are valid 
for arbitrary maximal amplitude of the applied field. This 
permits one to trace the evolution of the system's dynam
ics following variation of the amplitude from "zero," 
which is especially important for lJ f: 0 and T -# T (Sec. 2), 
when the nature of the relaxations changes qualitatively 
during the passage of the amplitude through a certain 
value T cr, as though separating a "weak" field region, 
where perturbation theory still operates, and a "strong" 
field region where characteristic quantum oscillations 
should be observed. Finally, the availability of a large 
number of exact solutions enables one to construct with 
good accuracy an approximate theory in quite general 
cases of a field of arbitrary form (Sec. 3), a theory 
free from the inadequacies of perturbation theory whose 
series diverge at r> rcr. 

The results can be used for measurement of the 
characteristics of matter in experiments that detect the 
behavior of the populations or polarization inthe field of 
a pulse with a given wave form close to one of those in
vestigated. In this connection, for observations in the 
regime of a given field it is necessary that the thickness 
of the layer of matter should not exceed the value 

where c is the speed of light in matter, TE is the dura
tion of the pulse, and rmax is the maximum amplitude 
of the field. If TE - T, and rmax exceeds 0T by several 
times (under these conditions, strongly pronounced os
cillations should appear), then the thickness is 
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lcr ~ 10-102 cm for T ~ 10- 9_10- 8 sec. However, if 
l> lcr' it is now necessary to investigate the problem 
of nonlinear, nonstationar~ ~opagation (a special case 
of which are the 1T-pulses 10 ), where it is necessary to 
solve Eq. (1) simultaneously with Maxwell's equations. 

A natural region of application of the present cal
culations is the theory of transition processes in lasers, 
where apparently one can effectively use the approxi
mate solutions of Sec. 3 for a strong field. With their 
aid one can also investigate the interaction of quantum 
systems with a strong spontaneous field, which has 11 
recently attracted much interest (see, for example,[11-13]). 
The question of the interaction of a powerful pulse of 
the field with a resonant medium acquires special value 
in connection with the observation of self-focusing in 
such media[12, 14] (a mechanism for the formation of a 
nonlinear component of the dielectric constant due to 
resonant absorption, and the conditions for self-focusing 
in the steady-state regime, were discussed in[15, 16]) and 
in connection with the possibility of a strong effect in
volving the "self-twisting" of light beams .07,12] 

1. THE CASE OF IDENTICAL RELAXATION TIMES 
(EXACT SOLUTIONS) 

For T = T = 1/6, introducing the unknown y = (x - l)e1)t 
and the variable ~ = r r dt, and omitting the inhomo
geneous part of Eq. (1), we reduce it to the form 

l(y,"+y)!fI'I/+y{=O, /=V/7. (1.1) 

It is not difficult to verify that all of the real solutions 
of Eq. (1.1) can be represented in the form 

where z is the general solution of the equation 

. 1 
Z{+i/(6)Z,' +4z=0. (1.2) 

Let us indicate certain cases when exact solutions 
exist. 

1) vir = const = k. Here the solution of Eq. (1) is 
trivial to obtain; for the initial conditions (2) it coin
cides with the solution obtained in [3] for the case v == 0, 
T = T, where instead of r and x it is necessary to take 
the values 

7eff·=r(1+k')'., zeff=z(1+k')-k'. 

2) v /r = k/~ (k = const). Here the solution of Eq. (1.2) 
is expressed in terms of Bessel functions of the first 
kind with complex order ±(l/2)(1- ik). Let us present a 
few physically interesting examples of the time depen
dences r(t) and v(t) corresponding to this case. 

a) For a fixed amplitude of the field (r = const), the 
frequency difference falls or grows in time like v = kit 
(Fig. la). 

b) The field pulses increase or decrease exponentially 
(Fig. 2a): 

r=r,exp (IIBt), v=v,/[1+C exp (-II"t) 1 (k=v,/II,,); 

here ro, vo, C, and 1)E are arbitrary constants (the par
ticular case v = Vo = const, i.e., C = 0, was investigated 
in[7] in terms of probability amplitudes). 

c) The field pulses are bell-shaped with arbitrary 
width and amplitude (Fig. 3): 
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d) The amplitude of the field passes through zero 
(Fig. 4a): 

r=7, th IIE t, v=v, th IIEtlin I C th 6E t I (k=v,16E ). 

e) The amplitude and frequency vary periodically 
(Fig. 4b): 

7=7, sin Qt, v=v, sin Qtl (cos Qt+C) (k=v,/Q). 

In conclusion we note that Eq. (1.1) is invariant 
under the substitutions 

t-+-t, 7(t)-+r(-t), v(t)-+v(-t). 

Hence it follows that if the solution of the homogeneous 
equation (1.1) is found with regard to any pair of func
tions v(t) and r(t), then for the time-inverted field the 
solution is also determined by simply inverting the sign 
of the time, that is, Yl(t) = y(-t). In particular, if relaxa
tion is absent or if the field pulse is very short (TE« T), 
then what has been said pertains directly to the popula
tion x(t) itself. 

2. THE CASE OF UNEQUAL RELAXATION TIMES 
(EXACT SOLUTIONS) 

For T -I T Eq. (1) reduces to a second-order equation 
if the frequency modulation and the amplitude modulation 
are related to each other by one of the following relations: 

v/r=const·exp[±( 6r-6,) tl. (2.1) 

By selection of the origin of the time measurements, one 
can set the constant equal to unity. Then, in the case of 
the negative sign in the exponential, the first integral of 
Eq. (1) is given by 

(D,-v/v)D,(z-1) + (,-'+v')z=v'[ HC exp (-6,t) 1. 

For the initial conditions (2) we have C = 0; introducing 
the new variables 

IP=Svdt, v(IP)=(z-1) exp (6,t) , 

we obtain 

(2.2) 
IIp=lIr -Il,, 1l.L =2Ilr -./l,. 

Let us indicate certain forms of v(t) and r(t) which are 
of physical interest, for which one can find the exact 
solution of Eq. (2.2). 

A. E. Kaplan 410 



1) The frequency difference is constant, v = const = vo, 
and the amplitude grows exponentially: r =voexp(15pt) 
(Fig. 1a). With this as an example, let us consider the 
oscillatory properties of the solution. 

Solving Eq. (2.2) for this case and again changing to 
x, we have 

x=1-m'e l --rS" 1m (me) +CJ'm (me) +C'L,m (me) l. (2.3) 

where m = v% p, J.1. = 15T/15p, and SJ.1. im is a Lommel's 
functionYS] The solution (2.3) has an oscillatory compo
nent whose frequency and damping constant are different 
at different stages of the process, where the oscillation 
has, essentially, a different physical nature. For small 
amplitudes dt), when the argument I mEl of the Bessel 
function is small in comparison with the quantity 
max (1, Iml) (i.e., provided that r2« rh == v2 + op/4) , 
in relation (2.3) one can write 

CJ'm (me) +C'L,m(me) ""C (mel2rm /f(1 +im) + C.c. 
=A cos (m In me+ljl) =A cos (vot+ljJ)' 

where A and i/J are determined from the initial conditions. 
Thus, for r2 « r~r a component 

exp (-6,t) cos Vot, 

may be present in the relaxation of the populations, 
due to the usual linear beats between the frequency w(t) 
of the weak field and the intrinsic polarization at the 
resonant frequency Wo of the still "undistorted" system 
(the damping constant 15T is produced as the resultant 
between the damping constant oT of the polarization and 
the growth increment of the field (here 15p), that is, 
OT = 15T- 15p). 

The usual asymptotic expansion is valid for the func
tion Jim for large values of the argument mE (for 
r2» r~r); hence 

Cl,", (me) +C'L,", (me) ""e-'I, cos (me+IjJ), 

i.e., here oscillations 

-1'.'1,-- cos me = exp (-6,t/2)cos (S r dt) 6,=6T+6, 

are present in the population (a sort of averaging of the 
reciprocal relaxation times occurs, and the new damping 
constant does not depend on the rate of growth of the 
fie~d). Thus, ,for r2» r~r the oscillations apPFoac? those 
WhlCh occur ill the case v == 0 for r2» 15p/4, ] WhlCh 
now corresponds specifically to the oscillator regime in 
a strong field. 

We note that the "strong field condition r2» r~r, 
which is necessary for the excitation of such oscilla
tions, does not in general coincide with the saturation 
condition. In the quasistationary case we have from 
Eq. (1) 

that is, for T ~ T and v2 < 151:- (the frequency of the field 
is within the limits of the resonance line) the critical 
"oscillatory" amplitude rcr may be below the saturating 
value rsab whereas for T » T one will have rh» r~at· 

2) The frequency difference and the amplitude vary 
according to the law 

v=voe'/(1+e,)e, r=voe'/(1+e')"; 
vo=const, a=const 

(2.5) 

(for the case a = 1, see Fig. 2a; for a = 3/2, see Fig. 5a; 
for a = 2, see Fig. 3a). Here the exact solutions of the 
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FIG,S 

homogeneous equation, corresponding to Eq. (2.2), are 
expressed in terms of Bessel functions (of the first and 
second kind) of order m = (1 - a)/(3 - 2a) (except for 
the case a = 3/2, when (2.2) reduces to the Euler equa
tion). With the aid of the functions (2.5), by changing the 
value of a one can describe a number of different physical 
situations. Even in the case when the amplitude and fre
quency vary in time like 

r=roe'/(A'+e')''', v=roe'/(A'+e')"', A=const, (2.6) 

the solution can also be described in terms of the Bessel 
function of order m = (1/2)(1 - (2rO/Op)2)1I2. For A = 0 
this is a field with a constant amplitude (Fig. 1b-cf. 
Item 0; for 0 ( A 2 < 1-this fie ld has the form shown in 
Fig. 5b; and for A2 > 1 the curves (2.6) are analogous to 
Fig. 5a, where now the position of the maximum of the 
curve v(t) can be varied by changing the value of A. 

Let us return to formula (2.1). In the case of the 
positive sign in the exponential, by introducing the new 
variables 

'1'= S vdt= S redt, u(<p)=r-1 exp(6Tt)D,(x-1), 

we reduce (1) to the equation 

u."+ (1+1'.-') u=-6,,,-' exp [6,t(<p) J. (2.7) 

It is easy to see that the solution v of Eq. (2.2) (without 
the right hand part), corresponding to any field (i.e., to 
some v(t) and r(t)), is simultaneously a solution u(t) of 
Eq. (2.7) (without the right hand part), corresponding to 
the time-inverted field (that is, VI (t) = v(-t) and rl (t) 
= r(-t)). 

3. APPROXIMATE SOLUTIONS IN VARIOUS 
LIMITING CASES 

For arbitrary variations of the field in time and for 
arbitrary ratios of the relaxation times, Eq. (1) can be 
approximately solved with good accuracy in the limiting 
cases of a weak fie ld, 

and a strong field, 

2 r «max (rcr', r sat) 

r';:l>rC[ ,=,,'+6,'/4, 

and also for arbitrary amplitude-in the cases of slowly 
varying or, conversely, rapidly varying fields. 

1) In a weak field (r2 « r~at) the population deviates 
slightly from the equilibrium value (1 - x « 1); there
fore, Eq. (1) can be written in the form 

Having set 

'1'= S"dt, u(cp)=r-' exp(6Tt)D,(x-1), 

we bring Eq. (3.1) to the form 

u."+u "" d: [~exp(6Tt(<p» ], 

A. E. Kaplan 
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from where, taking the definition of u(cp) into account, 
we obtain 

i-x"" exp(-6,t) j j'exp (6,t') exp[6r (t"-t') lr(t')r(t")cos ( j'. .. dt )dt' dt". 

." (3.2) 

In particular, in the limiting case of a rarefied gas 
(T = 2T) we have 

exp(26r t) [( J )' i-x "" 2 r exp (6rt) sin ql dt 

+ (J rexp(6rt)cosqldt )'+c], q>= J vdt. 
(3.3) 

However, if r~at < r2 < r~r (this may occur for T» T, 
see Sec. 2, Item 1), then in the first approximation it is 
necessary to use the quasistationary solution Xo '" Xst 
given by Eq. (2.4) in the right hand side of Eq. (3.1) in
stead of Xo '" 1. In connection with this, the right hand 
side of Eq. (3.1') will look like 

d: [-;-exP(6,t) / ( 1 + ~t)]' 
2) In a strong field 112/r2« 1; therefore, the solution 

of Eq. (1) should differ slightly from the solution of the 
degenerate equation, corresponding to the case II == 0[3) 

(3.4) 

(The smallness of the difference in the complex eigen
frequencies of the oscillations is sufficient for finding 
an appro:dmation solution, and this smallness can be 
verified by investigating the exact solutions for the 
cases cited in Secs. 1 and 2.) In connection with this, 
let us here write Eq. (1) in the form of an integro-dif
ferential equation 

1-[1- ] v- [V- ] -~-DT ~D,(x--1) + x = -~DT-' ~D,(x-1) "'" Q, (3.5) 

where Df ~s_the operator which is the inverse of f>T, 
that is, f5-rDT = 1, from which 

D,-' (z)=exp(-6T t) S rexp(6T t)dt, 

and we shall seek an approximate solution, considering 
(3.5) as a second-order differential equation with a 
given right hand part Q(t), for which the unknown x(t) 
appearing in it can, for 112/r 2« 1, be chosen (in the 
first approximation) in the form of a solution of the 
initial equation (3.4) which is valid for II == O. 

The solutions of Eq. (3.4) are found in[3) for a number 
of speCific kinds of functions r (t) in the case when T , T, 
and for arbitrary r (t) when T = T. In the general case 
the approximate solution of the homogeneous equation, 
corresponding to (3.4), is given by 

ii "" exp [ -6.tI2±i J (r'-6.'/4)"· dt ] ; 

with its aid one can obtain an approximate solution of 
Eq. (3.4) itself: 

6 ,t 6 (t' t) r' t 

x, "" - 4:' + S exp [ ~ ] D. ( ~ ) cos (f. x dt) dt'; 

(3.6) 
x=(r'-6.'/4)''', b.=d/dt+6./2, 6.=6,+6,. 

This solution is exact for T = T for an arbitrary function 
r (t), or for T , T it is exact for r = const. Examination 
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shows that (3.6) is close to the exact solution for those 
r(t) for which the exact solutions were found in[3); this 
specifically pertains to values r2» 5p/4, when r ~ K. 

NOW, with the aid of (3.6), it is not difficult to cal
culate the quantity Q(t) in Eq. (3.5). From here, by again 
using the approximate solution x of the homogeneous 
equation corresponding to (3.4), we obtain from (3.5) the 
correction L\x, resulting from the calculated value of 
Q(t) (for a strong field r2 » r~r)' to the solution Xo given 
by Eq. (3.6): 

i\x=x-x, = j exp[6.(t' -t)/21r(t')Q(t')sin d rdt) dt'. (3.7) 
,. 

With the aid of these results one can describe the resonant 
interaction of the quantum system with a field possessing 
an arbitrary spectrum, whose width may be either smaller 
or larger than the resonant linewidth; it is only necessary 
that the field be sufficiently strong (r2» rh). 

3) Now let us separately discuss the case of a strong 
field r = ro + A(t) with an almost constant amplitude 
(ro = const), such that the deviations of the frequency and 
amplitude in time are arbitrary but small in comparison 
with ro (A2, 112« r~; however, the relation between II and 
liT is arbitrary). One can show that in this connection 
the behavior of the correction L\x = x - Xo to the steady
state value of the population is described by the following 
equation with constant coefficients: 

~x+6.1.i+(r"+r\)~x= 6, [q.(t)+q.(t)]; (3.8) 
sa 1 +r:"/r,' 

where 

~'+26T~ S q.(t)=---, q.(t)=vexp(-6,t) vexp(6T t')dt'. 
r, 

Thus, if the amplitude is modulated by the periodic oscil
lation A = ~ sin .at, then a resonance shOuld be observed 
at 1'2 ~ 40 , where the halfwidth of the resonance curve is 
An ~ liE/2Y) In order to obtain resonance with the aid 
of a modulation II - 11m sin nt of the field's frequency, the 
frequency of the modulation must be twice as small 
(1'2 ~ ro/2) since, as is clear from Eq. (3.8), the effect 
is quadratic in the frequency. However, if the frequency 
difference has a constant compcnent 110, a resonance also 
occurs at 1'2 ~ ro, and its amplitude is proportional to 
lIollm • 

4) In a number of cases the apprOXimation results 
from the value of the characteristic time TE of varia
tion of the field. In a quasistationary field (TE» T) the 
population is determined by relation (2.4), which follows 
from Eq. (1) for 

If the field pulse is much shorter than the lifetime, but 
exceeds the reciprocal of the line width (T» TE » T), 
which is frequently realized in laser technology, [10] 

then, having set 

in Eq. (1), we obtain 

(3.9) 

from which (for t - to ~ TE) 

x "" exp [ -6, f V':6,' dt] . 

Finally, if the pulse is very short (TE « T, T), then one 
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can take DT ~ Dr~ d/dt in Eq. (1), which leads to Eq. 
(1.1) where it is necessary to substitute the value x of 
the population directly in place of y. 

4. DYNAMICS OF THE POLARIZATION 

The resonant part of the polarization of a two-level 
system is given by 

where the following truncated equations are valid for 
y:[3] 

DT(Y)=-rxe~, D,(x-1)=I!2r(Ye-'"+c.c.) 

(4.1) 

If the regime of the populations x( t) is found with the 
aid of Eq. (1) for a given field ret) and vet), the polariza
tion is also uniquely determined from Eq. (4.1): 

{ 1 ' r [ 1, (1 ~ )]} Y=e" ---;:-D,(x-1)-i-; X+---;:-DT ---;:-D,(x-1) . (4.2) 

Use of integration, allowing for Eq. (1), gives 

{ 1 ' '[" A ]} Y=e" -;:-,D,(x-1)+iDT- 1 ,;:-D,(x-1) . (4.3) 

At exact frequency resonance (II == 0) and for the 
initial conditions (2), from Eq. (4.3) we have the follow
ing result for the reduced amplitude of the polarization 
p = Pampl/nod: 

p-I YI =r-'D,(x-1) , (4.4) 

and the phase of the polarization is I/! = cP + 1T/2. If the 
field is sufficiently slowly varying (rE » T), then 
fiT ~ T, whence under conditions (2) it follows from 
Eq. (4.3) that 

Y"'e"( 1 +ivT)D,(x-1)/r, (4.5) 

i.e., the phase of the polarization follows the frequency 
and phase of the field in a quasistationary manner. 

In the general case the real amplitude of the polari
zation p == Iyl and the difference x of the populations 
are related by a simple relationship, not containing the 
field parameters and following immediately from Eq. 
(4.1): 

pDT(p) +xD,(x-1) =0. (4.6) 

If relaxation is absent or if the field pulse is very short 
(rE « r, T), then (4.6) leads to the following simple in
variant of the motion: 

p'+x'=const. 

Under the initial conditions (2), the constant is equal to 
unity, from which Pmax = 1 (for x = 0) or (Pampl)max 
= Inodl. For the quasistationary regime (rE» T, r) we 
have 

p'=T'C'x(1-x) , 

i.e., p:nax = T/4r (for x = 1/2) or (p:Uax)max = 1/2 (for 
T = 2r). If rE » T (the phase of the polarization follows 
the phase of the field), then 
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p'=-TxD, (x-1). 

In conclusion the author expresses gratitude to R. 
V. Khokhlov, S. M. Rytov, V. M. Fam and S. G. Rautian 
for a discussion of the results of this work. 

I)See, for example, [2,8,9] for calculations with the aid of perturbation 
theory or its modifications. 

2)We note that, in connection with the phenomenologically introduced 
relaxation times, the transition from a description with the aid of a 
wave function defmed by probability amplitudes [2,7] to the density 
matrix (and, consequently, to populations) is possible only for T = T 

and no= O. 
3)The limiting relations between T and T are as follows: in a rarefied 

gas T = 2T; for strongly broadened lines T «: T, which is often observed 
in the optical band; and in the radio band usually T - T. 
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