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The retarded Green functions is calculated for an electron interacting with optical phonons in a magnetic 
field at a finite temperature and in the presence of electrons in the conduction band. New branches 'of the 
one-electron spectrum are discovered, lying below the bottom of the conduction band by an amount equal 
to the optical-phonon energy. The appearance of new poles in the Green function is explained. by the fact 
that when interacting with optical phonons the electron is in an oscillating field varying with a specified 
frequency. 

It has been shown by Levinson, Matulis, and Shcher­
bakov[l] that, at zero temperature, when the conduction 
band of a semiconductor is empty, the weak interaction 
of electrons with optical phonons in a magnetic field 
leads tq the appearance of new branches of the electron 
spectrum, at energies close to the threshold for emis­
sion of an optical phonon. We shall show that in the 
case of finite temperatures and in the presence of elec­
trons in the conduction band new branches of the elec­
tron spectrum appear near an energy lying at a distance 
equal to the optical-phonon energy below the bottom of 
the conduction band. 

In this work we shall assume that the optical-phonon 
energy Wo is small compared with the width of the for­
bidden band, so that we can disregard two-band effects; 
Wo does not depend on the momentum; the electrons in­
teract only with the optical phonons, and for Simplicity 
we shall consider the case of the deformation interac­
tion (its matrix element does not depend on the momen­
tum); the dimensionless electron-phonon coupling con­
stant 01 « 1. 

To calculate the spectrum at a finite temperature we 
shall use the diagram technique of Keldysh [2 J, applying 
it to describe the system in a magnetic field in the 
same manner as the zero-temperature diagram tech­
nique was applied in(1,S]. We shall find the retarded 
electron Green function by means of the Dyson equation 

G" (f pI) ~G./' (fpl) +G/ (ep/) '5:." (f pI) Gn (epl), (1) 

where G~( €pl) and GR( €pt) are the free and exact re­
tarded Green functions corresponding to the Landau 
level 1 (it was shown in[S] that in a uniform and iso­
tropic system G( €pl) remains diagonal in l), 2";R( €pl) 
is the mass operator of the retarded Green function, 

1 
Go" (epl) ~ ,,' (~~,+O, (2) 

f-f: (p) ~10 

€t(p) = wct + p2/2m is the electron spectrum in the 
Landau level l, Wc = eH/ mc, and p is the longitudinal 
(with respect to the magnetic field H) momentum of the 
electron. The Green functions in the Keldysh technique 
have a matrix form[2], Gll( €pl) being the causal elec­
tron Green function; 

The same relations are valid for the phonon Green 
function D. The free causal Green functions have the 
form 

GolI(epl)~ __ t __ ,_ +2nin(e)0[e-e,(p)]. (3) 
e-e,(p) +'0. 
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Do" (Ol)=g{ 1 ,_ 2niN[0(0l-OlO)+0(0l+OlO)]}. (4) 
W-Cll,+,O Ol+Olo-iO 

where 

are the Fermi and Planck distribution functions and 
g = 0I1T ..; 2wol ms is the square of the matrix element of 
the deformation interaction of the electrons with the 
phonons. The Simplest vertex has the form of the 
matrix 

where q is the phonon-momentum component perpen­
dicular to the magnetic field, cp is its azimuthal angle, 

and Lf f -t is a Laguerre polynomial. 

We shall consider the simplest term appearing in the 
mass operator (Fig. 1): 

Srle,dP, [DII( )G II ( ) 
M/'~ig (2n)' ' e,-e , e,p,s 

-D," (E,-e)G,"(E,p,.<)] 

S dq 
x (2n)' .\,,(q)A,,(-q) 

aOlcl/~+SOO {1+x-n[e.(p,)] 
=-f- dp, 

2n 2m _~ e-e" (p,) -w.+io 
N+n[E,(p,)] } + . 

e-E, (P,) +",,-iO 

This expression diverges at € = €s( 0) + Wo (the first 
term) and at € = €s(O) - Wo (the second term). The 
singularity at € = €s (0) + Wo was investigated by 
Levinson, Matulis, and Shcherbakov(1] and the second 
singularity was absent in the conditions of their work 
(N = n = 0). In fact, the second term of expression (5) 

(5) 

is not small compared with Wo in the region of energies 

a'[N+n(sOlc) I'w/ 
W"S-(Jlo- ~ e<WCS-ffio1 

(d, 

and this means that it is precisely in this region of 
energies that new branches of the spectrum can appear. 
In the following we shall pay attention principally to the _ 

£,- e 
x /--, 

III (ep/) = / \ 
$ I \0 

Epl E,p,S Ep/ 

FIG. 1. Simplest diagram for the mass operator. 
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FIG. 2. Mass operator and equation for the vertex part. 

study of the spectrum in the viCinity of E = -Woo At 
energies close to ± wo, only M~ can be large, despite 
the small factor a. We shall assume that n [Eo (P1)] 
varies little when p~/2m ::. a 2 w~ / Woo Then the expres­
sion for M~( Epl) for E o~ Wo has the form 

M/'(epl)=(HN-no)M+=-(HN-no)a ClI, V ClIo _, (6) 
2 wo-e 

and for E::' - Wo has the form 
--

R _ w e ,/ 6)0 
.110 (epl)=(N+no)M =(N+no)a-V--, 

2 -ClIo-e 
(7) 

where no = n( 0). Thus, perturbation theory turns out to 
be inapplicable for E ~ ± Wo and we must take into ac­
count the higher-order diagrams that make an important 
contribution to the mass operator. For this we shall use 
a method developed for the study of the spectrum near 
the decay threshold[4,5,71. The mass operator and 
vertex part in this approximation are determined by the 
following equations (Fig. 2): 

R "'- ~ de, dp, dq 0 

L (epl)= L £... f (2",)' G"(e,p,s)D"(e,-ep,-pq)A,,(q) 
s=g j,J,~1 

x [fj,'(e,p,s, epl, q) +f;z' (e,p,s, epl, q) I 

, • ~ ~ ~ .sde,dp,dq' 
f,; (e,p,m, epl, q) =1'; (m, I, q) + "-.I "-.I "-.I I (2",) , (8) 

n,s=O i')'k'=1 i",j"k"=l 

xGj"" (elp,s)D k ... • (e,-e P,-P q)exP{i_c_(qq'H)} 
eII' (9) 

xT,r(m, n, q') Gj"" (e,+e,-e, P,+P,-P, n)y,\" (n, s, q) f,~;(e'Pls, epl, q'). 

To solve the system (8)-(9) we shall make the fol­
lowing approximations. First, we replace the exact pho­
non Green function by the free one. Since, as can be 
seen from (5), the form of D( w, q) when W "" ±Wo is 
important for the study of the spectrum for E ~ ±wo, 
this replacement is justified if the polarization operator 
of the phonon Green function has no singularities at 
W"" ±wo. In the presence of poles in the electron Green 
function at E ~ ±wo, singularities in the polarization 
operator at W "" ±Wo do not appear in those cases when 
the states at E"" ±Wo and E "" 0 are either completely 
occupied or empty, i.e., when n(wo) = no = 1 and 
n( -wo) = no = 0, for any N, and also when no = 1 (or 
no = 0), for N = O. Secondly, we replace Gj"i' ( E 1P 1S) by 
its free value. Since the result of the integration over 
E 1 in (8) and (9) is expressed, as in (5), in terms of the 
values of the electron Green function at the energies 
E ± Wo, which, for the E of interest to us, are far from 
the singularities being studied, such a replacement is 
permissible and is exact to within quantities of the 
order of a. Since the singularities at E = ±Wo arise 
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only in the intergration of G( EIP10), in the sums over 
s we shall retain only the term with s = O. After this 
we perform the integration over E 1 and the angles in 
(8) and (9) and go over to the dimensionless variable 
t = q2/2mwC' The vertex part appears in the mass op­
erator in the form of the sum ri + ri , and therefore 

'1 '2 
we shall immediately write the ~quati6ns for r a: 

L±(ePI)=~V~o r dp, tfdtf,o±fo±(e'f'ClIoP'O, epl,t), 
2", 2m_: e-PI'!2m'f'ClIo .~, 0 (10) 

fo±(e'f'ClIop,O, epl,t)=y.(O,I,t) 

~ (11) 
x.f dt' Q'n (t) Q'n (t')l,,+, (2W) fT" (e'f'ClIop,O, epl, t'). 

Here r., ~+ and r-, ~- denote the vertex part and re­
tarded mass operator near the energies E = Wo and 
E = -Wo respectively; 

1.(0, I, t) =QOI(t) {t, 0, 0, -t}, G"={G", G", G", G"}, 

1+N-nn -no N 0 

1+.\ ° -(N+no) no 
f~T+= 

1_01l0 N+ll o 0 -N 

() -(1-I-N) -(1-no) -(HN-no) 

f~y is obtained from 9y by replacing N by -( 1 + N) 

and then changing the sign of each term of the matrix. 

Since GIl( E =F 2wo) appears in (11), the mass opera­
tors for E "" Wo and E "" -Wo are determined in terms 
of each other. But under the condition no = N = 0 the 
singularity at E = -Wo disappears and the system (11) 
reduces to one equation. The equations that are ob­
tained for the mass operator and vertex part coincide 
with those ofP ], where it is shown that, in this case, 
new branches of the spectrum appear at E ~ Woo For 
N = 0, no = 1, the singularities at E "" -Wo are absent. 
Therefore, we can replace GQ:( E + 2wo) by G£6'( E + 2wo). 
But Since, for E'" -Wo, 

Go" (e+2Cl1o) =Go" (e+2Cl1o) =0, 

provided that 

I p' I a'(N+no)'ClI,' 
-+nwc-wo ~-----, 
2m ClIo 

it foHows from (10) and (11) that in this case, too, the 
vertex part is determined by one equation, which is 
solved in the same way as the equation for the vertex 
part in[ll. Taking into account that GIl and ra are 
smooth functions of the momentum P1 at the energies 
E + 2wo and E + Wo respectively, we take them outside 
the integral at P1 = 0 and put E = -Woo We obtain 

where 

~ 

r,~(epl)=Mo± f dtQIO(t)f±(epl,t)=Mo"f±(epl), 

P(epl,/)=A±(ep) S~dt' f, ~Qon(t)Qon(t') 
.i...J. o±,+n 

o 

(12) 

(13) 

cr' = t.~2m±ClIo , A± (ep)= Mo± (:) , f±(epl, t) =r.±(e'f'ClI,OO. epl, t) 
ClI, 'f'ClIo-P 12m 

The solution for the quantity r( Epl) appearing in the 
mass operator is obtained by integrating the Schmidt 
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formula for the solution of a Fredholm integral equa­
tion with a Hermitian kernel[6] 

values of the operator L, 
v., (k) = [11,,1\.,-11., ]-'. 

1'( I) ~}.. , ~ A. ep = ~--(QIO'CP.)-= --, . }..-}. . }..-}. (14) Since 

where <Pk(t) and Ak are the eigenfunctions and eigen­
values of Eq. (13), which depend on p and l. Since the 
kernel of Eq. (13) is alternating in sign, there are both 
positive and negative numbers amongst the eigenvalues 
Ak· 

The equation for the poles of the retarded Green 
function of the Landau level l for E:' -Wo and 

has the form 
!'(). I) = __ ( ___ Ol_O _) 3 rz'Ol,' _ ( Olo+p'/2m+10l, ) ~ 

, Olo-p'/2m }.'Ol,' Olo-p'/2m }. , (15 ) 

where I'(A, t) is determined by the expression (14). 
From Eq. (15) we find the solutions Ak (it can be seen 
from (14) that they exist), to each of which corresponds 
a pole of the Green function in the forbidden band, with 
the following momentum dependence of the energy: 

(16 ) 

111,,1\.,-11.,1 ;<>lIrz, 

we have IlIa {31 ~ a and the vertex part r~ ~ a. There­
fore, at the energies E and momenta p corresponding 
to a pole of G1, the mass operator in Ga ( E + 2wo, Pl 
+ P2 - p, n) from Eq. (11).is a quantity of order a, and 
we shall neglect it. Then the system (11) again reduces 
to one equation for r~, and is solved as in the case 
no = 1, N = O. The only difference is that we must re­
place a by a (no + N) in the expressions (12 )-(16) de­
scribing ~-, r- and the spectrum in the forbidden band. 
It can be shown analogously that if the Green function 
has a pole at E;::> Wo and momentum p, the mass opera­
tor at energies E - 2wo is a complex quantity of order 
a, and the spectrum E = Ekl(P) for E;::> Wo is described 
by the equation of[l], in which it is necessary to substi­
tute a( 1 + N - no) in place of a. We note that it follows 
from the arguments presented that the expressions ob­
tained for r±( Epl) and ~±( Epl) are not solutions of 
Eqs. (10)-(11) at momentum values satisfying the con­
dition 

The values of Ak and Ak were found in[l] under the e}d+(p)=e.,-(p)+20lo (17) 

conditions a « 1 and a» 1 (which means, in our case, or in a region of order 
p « J 2 mwc and p » v' 2 mwc for Wo« wc). Correspond-
ingly, we have /',p-rz(OlJOlQ) 1'2mw;. 

( 1'.s:-1 ) -("+1+1) , 
;,,=(-1)' -- and }.,=(-l)'~. 

. 2 k! 

In this case too, it has not been possible to find the 
exact value of Ak, but it is clear that A2k-1 < Ak 
< A2k+1 and the new branches of the one-electron spec­
trum are a sequence of narrow sublevels that converge 
from below toward the energy E = -Wo as the labels k 
and l increase and as p _.xl. For 

where n is a natural number, Eq. (13) for r-( Epl, t) is 
not valid; in this case, r-(Epl) is complex, and non­
attenuating states with such a momentum do not exist in 
the forbidden band. 

We shall elucidate how the spectrum looks for 1 + N 
- no ~ 0 and N + no" 0, when Singularities are present 
at both E;::> Wo and E;::> -woo Suppose that there is a 
pole of G1( Epl) at certain values of p and E "" -woo In 
order to find ~- and r- in the vicinity of these E and 
p, we first find ~+ and r+ at the energy E + 2wo;::> Wo 
and for momenta close to p. Because of the integration 
over Pl in Eq. (11) for r+ in the vicinity of the pole of 
G1 (E, Pl + P2 - p, n), the equations for r+ become 
complex: 

1m lla{3 ~ 1/ a at the energies we need: 

and L is symmetric integral operator. By means of a 
simple generalization of the Schmidt formula[6] it is 
easy to show that the solution of such a system of equa­
tions has the form 

• 
1'.'= 1: 1: 11,,,.,(k) (1,,1jlk)1jlk, 

h f>=t 

where ¢k and Ilk are the eigenfunctions and eigen-
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surrounding these values. There are no solutions of the 
system (10)-(11) that would correspond to the presence 
of non-attenuating (to within quantities of order a) 
states satisfying the condition (17). 

The concentration of electrons in the new states in 
the forbidden band is determined by the expression 

+- - .. 
mOl, S S 

i(2n)'_oo d~oo de G"(ep) 

and, for Wc » Wo, if n( E ) varies little in the range of 
energies in which these levels are located, amounts in 
order of magnitude to 

rz'(no+N)'n(-OlO) (mOl,'/Olo)'''. (18) 

The appearance of new states in the forbidden band 
can have an effect, e.g., in the measurement of the op­
tical absorption. Additional absorption bands appear, 
associated with transitions between these states and 
the Landau levels of the conduction and valence bands. 
The absorption coefficient here turns out to be propor­
tional to the square of the small coupling constant. In 
particular, for transitions from the valence Landau 
level l = 0 to the states EkO(P), 

K(v)=( ep,,) 2 1.:0l , SdpdeG21(epO)G."(e-vpO), 
mo ~t. cnv 

(19) 

where II is the light frequency, n is the refractive in­
dex, Pcv is the matrix element of the momentum for a 
transition between the valence band and the conduction 
band, mo is the free-electron mass, and Cih2 is the 
Green function of the holes. For a parabOlic valence 
band in the case when the states Ekl(P) are not occupied 
(no = n( -Wo) = 0), and under the same conditions for 
which the expression (18) was obtained, for frequ~n<:ies __ 

1
m. I a'N'Ol,' 

Olo--(v-e.+Olo) :>---
m Olo 

we obtain from (19): 
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where mh is the effective mass of the holes, Eg is the 
width of the forbidden band in the magnetic field, and 

P,=[2mh(v-e.+w,) ],/. 

In conclusion, we note that, of course, it does not 
follow from the appearance of the new poles in the 
Green function that the ground-state energy of the sys­
tem is decreased by Wo when the weak interaction of 
the electrons with the phonons is taken into account. 
For weak coupling, the ground-state energy of the whole 
system is decreased by a small amount. But, because 
an electron interacting with phonons is in a field that is 
periodic in time and, consequently, should possess a 
quasi-energy determined to within 'fkwo (k is a natural 
number), the electron density matrix contains terms 
oscillating with frequencies Eo ± kwo and proportional 
to powers of the coupling constant. This is conveniently 
illustrated by means of the exactly soluble problem of 
the interaction of an electron that can be in a state with 
energy E, with an assembly of linear oscillators of fre­
quency woo This problem is described by the Hamilton­
ian 

~ ~ (P? Mwo' ~ ')' + ~ l'-M 3 +' i/= L.; 2M +-2-Xi +ea a+ L.; "(. Wo a ax" 
I 

in which the last term describes the interaction. This 
Hamiltonian can be brought to diagonal form by the 
transformation 

The ground-state energy of the system in this problem 
is 

But when we separate out the purely electronic energies, 
we find a set of energies € ± kwo. In fact, the Heisenberg 
electron annihilation operator can be represented in the 
form 

G(t) = S exp [~V~(btei~.t - bie-''''of)] as+,,0 

(bi and bi are phonon creation and annihilation opera-
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tors). Its time dependence contains the frequencies 
E ± kwo and it is clear from the form of a(t) that the 
electron Green function should have poles correspond­
ing to these frequencies. In particular, for weak coup­
ling (n « 1) the greatest amplitude corresponds to the 
frequencies E, € ± Wo: 

The example considered shows that additional poles of 
the electron Green function at energies € - kwo should 
also appear in the problem, investigated in the 
papers[B,91, of the interaction of an impurity-center 
electron with optical phonons in semiconductors. 
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