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The temperature behavior of threshold singularities of the high frequency conductivity of magnetic crystals 
is investigated. It is shown that in ferromagnets and antiferromagnets with two magnetic ions per unit cell 
the shift and the smearing of these singularities near the transition point Tc are of a critical nature, i.e., 
they are proportional to (T - Tc)-X, and the exponent x depends both on the type of the singular point of the 
spectrum and on the magnitude of the critical exponent of the correlator of the angular momenta. Similar 
anomalies also occur in the refractive index. 

Optical properties of crystals are determined to a 
large extent by interband transitions which depend to a 
Significant extent both on the spectrum of Bloch elec­
trons and on electron interactions (among themselves, 
with phonons, etc.) [1,2J. The interaction of electrons 
with a magnetic system leads to a change in their spec­
tra [3] and to additional scattering [4,5] by the fluctuations 
of the magnetic moment. 

In the present paper we consider the manner in which 
the ferro- or antiferromagnetic ordering and the large 
scale fluctuations near the Curie (Neel) temperature1 ) 

Tc affect the Van Hove singularities in the frequency de­
pendence of the electrical conductivity tensor. These 
Singularities appear as the result of singular points of 
interband or intraband spectral densities [2,6]. The in­
teraction with the spin system splits, shifts and smears 
out such singularities. The temperature dependence of 
these changes in the spectrum has anomalies at the 
Curie point. 

1. CHOICE OF MODEL 

We consider a system of conduction electrons in a 
crystalline lattice which undergo interband transitions 
under the action of the electric field of a light wave. 
These electrons interact with the system of spins Sn 
localized at the sites rn of the lattice. Such a model 
corresponds well to f-metals. 

We describe the electron transitions by introducing 
the single-particle density matrix 

pp' ,',p, (t) = <ap~,' (t) ap, (t) >. (1 ) 

Here aps(t) and ~s(t) are the Heisenberg creation and 
annihilation operators for a Bloch electron in a state 
characterized by a quasimomentum p and spin s = ± %. 
Just as in the paper by Kopeliovich (lJ, in the present 
problem it is also convenient to utilize the "expanded 
band" scheme. In such a scheme the quasimomentum 
vector p varies over the whole reciprocal space, while 
an interband transition is a transition in p-space with a 
change of the quasimomentum into some other vector of 
the reciprocal lattice g. 

We write the complete Hamiltonian for the system in 
the form 

p,' 
(2) 

where ~p = E(p) -lio is the excitation energy of a con-
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duction electron, E(p) is the dispersion law, lio is the 
chemical potential. The Hamiltonian for the interaction 
with the electromagnetic field is 

Hn = -~-A L vpIP7a;,ap1" 
ic ic 

A=-E=-Eoe;·'. 
!J) !J) 

PI,P!,' 

Here the matrix elements of the velocity VP1P2 differ 

from zero under the condition P1 - P2 = g, E is the inten­
sity of the electric field in a wave of frequency w. 

The Hamiltonian Hsf describes the exchange interac­
tion between the subsystems of unlocalized conduction 
s-electrons and magnetic f-electrons localized at the 
sites of the lattice, and has the form [7] 

H./ = LIn (p, p') {(a:+ap,+-ap ___ ap,_)Sn'+a:+ap,_Sn -+a:_ap'+S,,+). 
•. ,',n 

In(p, p') =- (fiN) exp [i(p'-p)rnl/(p, p'). (3) 

Here the sum over n is taken over all the N lattice pOints, 
the components of the spin operator SZ, S± = SX ± isY 
satisfy the well-known commutation relation [7J , while 
the quasimomenta p and p' take on all values in recipro­
cal space. The quantity J(p, p') determines the energy 
of the exchange interaction. The ratio J/Eo, where Eo is 
the characteristic band energy, is a small parameter. 
As a result of Hsf a splitting and a shift of energies ~~! 
as well as a damping ~'Y appear, which will be the sub­
ject of our investigation. On the other hand, Hsf leads to 
an indirect spin exchange between the spins of the f-sys­
tem and to magnetic ordering. 

We include in the term H' the remaining (Coulomb) 
interaction of electrons with each other, and also the in­
teraction of electrons with phonons. The effect of these 
interactions on the interband transitions has been exam­
ined in detail by Kopeliovich in [1] where it was shown 
that such interactions lead 1'0 a renormalization of the 
spectrum ~~ 0 and to an effective damping of electron 
states 'Yo ~ niTo, where To is the lifetime of an excita­
tion of the type electron-hole which appears as a result 
of photon absorption. Generally speaking, ~~ 0 and 'Y 0 

are of the same order as the analogous quantities ~~± 
and ~'Y associated with the exchange interaction. But in 
the principal approximation ~~ 0 and 'Y 0 are smooth func­
tions of the temperature in the region of the phase tran­
sition. Since we are interested in temperature anomalies 
near the Curie point, we shall take ~~ 0 and 'Yo to be con­
stant and include ~~ 0 in ~. Thus, we take H' into account 
by introducing into the spectrum the damping 'Yo. 
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2. THE EQUATION FOR THE DENSITY MATRIX 

We carry out a detailed investigation for the case of 
a ferromagnetic, We d:.fferentiate the density matrix (1) 
with respect to time and utilize the equations of motion 
for the operators aps(t) and lips(t) obtained in the usual 
manner by commuting with the Hamiltonian H. Since the 
effects in which we are interested appear in second 
order with respect to the exchange interaction we must 
retain the two first equations of the chain of equations of 
motion for the correlators. 

np, 

- e 
T,', <a.',a.,> + - Avpp ' (np'.-np,) 

c 

-In (p" p') «a::,.ap,/lSn'>±<a;,_.ap,/lSn ±» ], 

Tp,p, <ap~,ap,,/lSn'> = ± L [In, (P2, P3) (a:'.ap"IlSn' /lSn:> 

-In, (P3, p,) <a:',ap,,/lSn' /lSn:>], 

- ,a U) , 
Tp,p,=lti at + sp,p,+t1 sp,p,,+qo, np,=(ap,+ap.>, 

(4) 

(5) 

Further simplification is associated with the fact that 
the integral term in (8) can be neglected [1J. The phys­
ical meaning of such neglect consists of the fact that the 
addition to the density matrix has a resonance character 
for each value of the momentum (this can be seen by 
neglecting the right hand side part in (8)). We shall be 
interested in those cases when the frequency is close to 
the resonance frequency for one of the singular points of 
the interband density of states. Then the contribution to 
all the quantities in which we are interested is made by 
a small region in the neighborhood of the singular point 
in a manner similar to what happens, for example, in the 
case of cyclotron resonance [2J. For this reason we shall 
not in future take the term fp(1) into account. From 
equation (8) we obtain 

(I) ieEvpp ' (np,.-np,) 

p,'"p. = Ol[Tp'p(Ol)+t16('! +it1~p'p,]' 
P P$ i 

(10) 

(11) 

We utilize formulas (9)-(11) to calculate the interband 
part a?J3(w) of the high frequency conductivity. 

(;p'p=sp'-sP> t1s.',:;.=± (/(p, p) -/(p', p'» <8>. (6) 3. THE HIGH FREQUENCY CONDUCTIVITY 

Here the upper sign corresponds to s = %, and the lower 
sign corresponds to s = -%, oSn = 8n - (8) and (8) is 
the average value of the spin at a lattice point. Near the 
Curie pOint the magnetization (8) ~ ITIJ3 with 
T := (T - Tc)/Tc < 0 is small and (8) = 0 for T > O. The 
equations of motion for (a+aoS~) have a form similar 
to (5). 

The chain becomes closed if in (5) we pick out the 
part (oSnoSn1) averaged over the ensemble from oSnoSn1 
and neglect the deviation from this average. It is not 
difficult to understand that the domain of applicability of 
the approximation made by us above is 

(7) 

Linearizing the equations obtained above with respect 
to the small deviation from equilibrium proportional to 
the electromagnetic field we obtain from the system of 
equations for the linear addition to the density matrix 
P~'>s,ps the integral equation 

Tp'p (Ol) pp\~)p, + -':"'Avpp ' (np'.-np.) =-8p:'~),P'+ ipp~::,p"" (8) 
c 

8=-N'\1 [ In(p"p)/(p,p,) 
~ Tp'p,(Ol) np, 

+ In(p', p,)/o(p" p') ] (/l80 68 n ), (9) 
Tp,p(Ol) 

Tp'p(Ol)=-tiOl+6p'p+t1S:.'~.+i10. 

For the derivation of (4)-(8) we utilized the identity 

(1/N) 1: e- ik " = 1: 6k< 
n , 

and in the resultant sum over the vectors of the recipro­
cal lattice g we have retained only the term with g = 0, 
since, as will be clear from what follows, the addition to 
the density matrix near the singularities of the spectrum 
at appropriate frequencies has a singularity at 
p' = p + go, where go is the vector of the reciprocal 
lattice which describes within the expanded band scheme 
the given interband transition2), Moreover, we have 
neglected terms arising due to the noncommutativity of 
the spin components, since such terms in the principal 
approximation are ~(8), just as 6~(1), but at the same 
time are smaller than ~ (1) by a factor of Eo/ J, and we 
also neglect terms describing electron transitions ac­
companied by spin flip since p;/Js,p-s ~ (J/Eo)pp1,>S,pS' 
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In order to calculate aP'J3(w) we obtain the interband 
1 

current h (w) in accordance with the formula 
. e 
], (00) = V Sp p(t)v, (12) 

where V is the volume of the system, Substituting (10) 
into (12) and taking into account the fact that j? = a?J3EJ3, 
we obtain for aP!J3(w) the following expression: 

1 

a.p ie! ~ S ~ as V;P+IV:+" (np,-np+.,) 
cr,. (00)= (2n)3 00..... d~ :r I Vps •• (p) I -tiOl+~+i1 •• 

s ~g8(P)=\; 

s •. (p) = sp+o,p+t1s:~~,p.+t16('), 1"=10+t11, 

t1 s (')~t16::)'p" t11~t11p+o.p •. (13) 

As is well known, the real part of the conductivity 
aaJ3(w) has smeared out singularities at frequencies for 
which the equation V'P~,s(P) = 0 is satisfied at some 
point po on the surface liw = ~gs(P), and the existence of 
such points leads to the appearance of the so-called 
Van Hove singularities in the interband density of 
states [2J 

1 rh dS 
v •• (~)~ (2n)3 'j' IV 6.( )1' 

~gs(p)=t P II: P (14) 

In order to determine the analytic behavior of the func­
tion VgsU;) near a singularity of the Van Hove type ~gs(p) 
is usually expanded into a Taylor series near the critical 
point po: 

1 ' 
Sg.(p) = tiOlo +"'21: M;-' (p;-po;)', 

j=1 

(15) 
tiOlo~Sg. (Po), M;-'~a'Sg. (Po) I apt 

Depending on the set of signs of the coefficients of Mt 
the point po can either be an extremum or a saddle 
point. Calculation according to formula (14) shows that 
the singular part of v gs (') for 7] ((; - li w 0) > 0 has the 
form 

±2-'I'lC'[ 1] (~-tiOlo) IM,M,M,I]"'. 

i.e., it has divergent derivatives: the plus sign here 
refers to the case of an extremum (thx:eshold), the minus 
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sign refers to a saddle point (ridge), the axes in the ex­
pansion (15) are always so chosen that M2 and M3 have 
the same sign. 

With the aid of (13), taking out the smooth functions 
from under the integrals, and utilizing the form of the 
anomalous part of Ilgs U:), it can be easily shown that 

He (J"a~(co)=He (J,a~(co) ±L ~ {'1 (ro-roo.)+[ (ro-roo.)'+y • .' (Po) 11!'l"'}'\ ...... , 

(16) 

Here af!{3(w) is a smooth function of the frequency, the 
plus sign refers to an extremum, and the minus refers 
to a saddle point. 

The derivative dRe a (w )/dw has peaks in the neighbor­
hood of the frequencies wOs' The quantities that are ex­
perimentally measurable are the positions of these 
peaks, their width and their height. We denote the width 
of the peaks measured at half height by r 1. In some ex­
perimental papers the magnitude of the smearing out of 
a singularity is characterized by the difference in the 
positions of the extrema of the second derivative 
d 2 Rea(w)/dw 2 ; we denote this difference by r 2• In future 
we shall everywhere state values both of r 1 and of r 2• 

Since wOs is different for s = +% and s = -7'2, then 
from formula (16) it can be seen that magnetic ordering 
leads to a splitting of the singularities by an amount ~ 
which in accordance with (6) is equal to 

£\=2(/,-1,) <S>~ I 1: I~, 1:<0, 
1,==/(po, Po), 12""/(Po+g, Po+.g). 

(17) 

This result agrees with the usual phenomenological dis­
cussion [3J of the effect of magnetic ordering on a spec­
trum. 

In order to calculate the smearing out and the shift 
arising in second order with respect to the exchange in­
teraction we write (9), (11) in the form 

(18) 
(2) • J d'r J' J(Po,p)J(p,po) . 

£\s, +1£\Yl = - (2n)' d P -~+sp.-s.+iy.(Po) exp[,(po-p)r]g(r), 

") . J d'r J ' I(p, Po+g)J(Po+g, p) . 
£\s, +L\Y,=- --, dp. . ( exp[/(p-po-g)r]g(r), 

(2n) -~+~.-i; •. H+q. Po) 

where g(r) = (6So6Sr ) is an irreducible correlator, 
(3 = ti(w - wo), where in the denominators we have taken 
into account in a self-consistent manner terms of the 
next order in J/Eo. As will be seen from the following, 
the circumstance that ~~ (2) and l1y are functions of the 
frequency can have a significant effect on the shape of 
the curve Re a(w). 

At a frequency close to Wo, as a result of the reson­
ance nature of the denominators of the integrand the 
prinCipal contribution to the integrals over p in (18) must 
come from the immediate neighborhood of the points po 
for the first term (the contribution of the lower band) 
and po + g for the second term (the contribution of the 
upper band). Near these pOints we can carry out an ex­
pansion of ~p' Thus, in the neighborhood of po we obtain 

1 J -1 

~.=6."+V.,,(P-Po)+2 L m.0 (Pi-POi)', 
J=1 

An analogous expression can also be written for the 
neighborhood of the point po + g. 
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(19) 

In accordance with the theory of second-order phase 
transitions based on the hypothesis of the similarity of 
correlations the function g(r) ~ 1/r1l1 for rc »r »a 
and falls off rapidly for r »r c. Here a is the inter­
atomic distance, rc is the range of correlation. As we 
approach the critical point T - 0, while rc ~ T-IJ. in­
creases. For the sake of Simplicity we shall approximate 
the cut-off factor in g(r) by the exponential exp(-r/rc )' 
The exact form of this smooth function has no significant 
effect on the results of the calculation. 

It turns out that, depending on the structure of each 
of the two bands, the results in the neighborhood of their 
interband critical point will be significantly different in 
the following characteristic cases: 

I. The usual critical point: VPo = vPo+g = Vo I O. In 
this case in the expansion (19) it is sufficient to restrict 
ourselves to the approximation linear in p - Po == q. 

We substitute (19) into (18) and we choose the direc­
tion of the z-axis along Vo. Then we have 

X exp(-iqxX-iq,y)dq,dq,=i-'--' ar(1-\",) -+i- , J 1 '+1"' ( a ~a) v,_1 

" I Vo (20) 
11l=1/r, +ylvo, r= (x'+y'+z') "'. 

In evaluating (20) we utilize the fact that in integra­
tion over qx and qy the contribution to the integrals from 
the limits Iqxmax l, Iqymaxl ~ l/a is small in terms of 
the parameter a/Zeff' where leff = min{rc ' vol{3, voly}, 
so that these integrals can be replaced by 6 (x)6 (y). 

It can be shown that within the domain of applicability 
of our theory because of the inequality (7) we have 1 ~ rc' 
It is also not difficult to verify that the position of the 
maximum 13m and the values of {3 which determine the 
widths r 1 and r2 fall in the region {3rclvo « 1. At the 
same time we have 

£\y =-'--' ar(1-v,) --"- , 
J '+1 ' (r ) ,-v, 

Vo a 

£\s(» = 1"+J~~r(2_v,) (~) ,_v, . 
Po VI) a 

(21) 

For III = 1 the anomalous part of y varies logarith­
mically ~ln(rc/a). Such a behavior is quite close to the 
behavior of the specific heat of magnetic materials near 
the Curie point. The shift ~~ (2) is small in this case. 

From formula (16) it follows that the position of T/!3m, 
the quantity (dRealdT/{3b. and the widths r l and rz of 
the extremum of the derivative dRealdT/{3 are given by 

'1~m=0.58y, (dHe(Jld'1~)m=0.57Ly-\ r,=i,1y, r,=i,7y. (22) 

Thus, the position, width and height of the peaks have 
in the present case the same temperature anomaly 
~T-IJ.(1-1l1) (for III = 1 the anomaly is ~lnITI). 

II. The symmetric critical point: vpo = Vpo+g = O. 

There are no linear terms in the expansion (19). At the 
same time in each of the two bands partiCipating in this 
transition the critical point has, in its turn, the nature of 
an extremum or a saddle point, while the combination 
between them can be arbitrary. For the sake of simplic­
ity we assume that all the intraband effective masses in 
(19) are equal in absolute value, and this does not quali­
tatively affect the nature of the anomalies. 
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We quote the results of calculations in accordance 
with (18) of the contribution of the lower band. 

1. If the point po is an extremal intraband critical 
point, then the constant energy surfaces near it are 
spheres. Then we have 

- L (',. =~S~S exp(--rlre-iqr) d' 
S.-6 .. + 2m.,' Ll6' +I'~<1' (2n)' (ria) v, ~+q'/2m •• -i"( (~'3) 

Integration in (23) can be carried out in an elementary 
manner. As a result we obtain 

Ll6,('1 +iLl"(, 

, 2/,'m",a'f(2-v,} 

[alr,+a( x+m •• ~} '/'-i(sign m •• }a(x-m •• ~} 'I, ]'-" ' 

x=lm •• 1 W+"('),".. (24) 

The region which is of the greatest interest to us is the 
one in which the inequality 

is satisfied. In that range we have 

(30) 

where ~Y1 and ~Y2 are determined by means of formulas 
(25) and (28). 

a) For transitions of the type saddle point-saddle 
point, saddle pOint-extremum or extremum-saddle 
point the principal contribution to ~y is made by the 
saddle points. In this case (d~/dl1{3)m' 13m, r1, r2 are 
determined by formulas (22), (28) with ~y ~ IT 1-fJ. (2 -111), 
i.e., the temperature anomaly is considerably stronger 
than in the case of the ordinary critical point. 

b) For transitions between two extremal points with 
intraband masses which coincide with respect to their 
sign with the interband mass, it is possible to obtain a 
function reciprocal to ~ (11 (3): 

t]~(~} =lh~'_1/2B2(1 +"(oIB~}', B=B,+B" 

B,=2/,' I m'i I "a'f(3-v,} (rJa) '-v'~8;'/' (//eo) '(rJa) '-v,, 
(31) 

where one of the vectors PI, P2 is equal to po, and the 
other is equal to po + g. 

c) If the signs of the intraband masses are the same 
(25) and do not coincide with the sign of the interband mass 

(26) 

2. If the point po is an intraband critical saddle point, 
then the constant energy surfaces near it are the hyper­
boloids 

Substituting ~p into (18) and introducing spherical coor­
dinates we have 

LlS,(21 +iLl"(, =.!l.... S r'd rd cos 'I' S q' dq d cos 8 exp (-rlr,-iqr cos '1')_ 
2n (rIa)" ~+(q'/2m.") (1-2cos'8}-i,,( 

We break up the integral over cos (J = u into two regions: 
u2 < % and u2 > %. In the former we carry out the re­
placement 1- 2u2 = lie, and in the latter 2u2 - 1 = 1/t2 • 

Integrating over ifJ and q we obtain 

A (21+. 'C,' S~ rdr (S~ dt : (" ilS, ILl,,(,=2 I, m •• -.-.-)- -( z )'/ exp(lqo rt} 
o (ria 'VI 1 t -1 a 

SOO dt (21) 
- ,(1'+1)'1' exp (iqo rt) exp (-rlr,) , 

qo('~ = (sign m •• ) (x-m •• ~) '!'+i(x+m •• ~} ''', q;'1 =i(sign m •• } q!'I. (27) 

In particular, for rcKl12 « 1 we have 

Ll,,(,= (2n) '/'/,' I In •• I a'f (2-v,) (rJa) '-v" (28) 

Substituting ~ into (18) it can be easily seen that the 
contribution or the upper band is obtained from expres­
sions (25)-(29) by means of the following replacement 
in them 

We describe the frequency behavior of the conductiv­
ity near the singularity by the function 

~(t]~) ""Re «J,~~-(Jo"~}IL. 

The shape of the curve ~(11{3) depends on the combination 
of the intraband points and is obtained by substituting 
into (16) the solutions of the system 
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t]~ (~) =1!2~'_1/2"('1 (~-B)', ~>B. (32) 

d) If the transition occurs between two extremal 
points with effective masses of opposite sign, then we 
have 

() 1, 1 ('Yo+B,~), 
'l~ ~ -2~ -2 ~-B, ' ~>B.; (33) 

here 11 = sign ffip1' 

Formulas (31)-(33) completely determine the shape 
of ~ (11{3) and its temperature behavior and enable us to 
find temperature dependences of (d~/dl1{3)m' 13m, r1 and 
r2 in terms of Bi (T) ~ I Tj-I-L (3-11 1 ) ~ X (T), where X (T) is 
the magnetic susceptibility). The effective parameter is 
the quantity B2/yO' In particular, for 

B'.. (J' (J ) ') ';"('-") 
-«.1,1. e., - - «'t. 

"'(0 8o"'{o 80 

we obtain that 

(d~/d'l~)m=0.57'Y;'I., 'l~m=0~58'Yo. f,=l.l'Yo. f.=1.7'Y. (34) 

have a weak temperature dependence near T c. 

In the opposite limiting case B2/yo ::?> 1 for transitions 
of type b) we have 

( d~ ) ( "(0 ) 'I, _'I. , - =0.53 - "(0 _;.;-I,('t) 
d'l~ m B' ' 

( fl') 'I. 
f,=1.6 10 ,,(o-x'I,('t) , f,=0.8f,-x' I ,\'t). (35) 

For transitions of type c) we have 

2 (B') '/, f, = 3B'-x·('t}, f,=1.3 -:;- "(o-x·/'('t). (36) 

For transitions of type d) we have 

( ::~) m = ~,i' (-i,) -x-' ('t), t]~m=B,'j, (~~) -x'('t), 

f,=B?j, (;,) -x'('t), f,=B,'j. (~J -x'(Tl, (37) 

where fa (a = 1, 2, 3, 4) are functions which do not de­
pend on T with fa ~ 1 for B1 ~ B2• 
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The experimentally measured anomaly in the position 
of the extremum of d Re a /dw is described by the quantity 
~wo = ~~ (2) + 13m , where ~~ (2) is defined by formulas 
(21), (26), (29). 

4. ANTIFERROMAGNETICS 

In the case of antiferromagnetics the investigation is 
carried out in an analogous manner. It is not difficult to 
verify in this case that if in an elementary crystal cell 
there is present only one magnetic ion, then no splitting 
into subbands with oppositely oriented spin occurs (we 
do not touch upon the effects of exchange splitting as­
sociated with a doubling of the period below the Neel 
point), and the shift which appears in second order is 
proportional to (8)2, where (8) is the magnetization of 
the sublattice, while the fluctuation smearing out and 
shift are small and do not undergo anomalous growth as 
T - Tc due to the fact that the correlation function g(r) 
= (oSooSr> is of an oscillatory nature. 

However, if in a unit cell of the crystal there is pres­
ent more than one magnetic ion, then a splitting, smear­
ing out and shift can arise with a behavior analogous to 
the one in the ferromagnetic case, since in (3) the in­
tegrals for the exchange interaction J(p, p') for a Bloch 
electron with ions localized on different sublattices can 
become differenL For the case of a two-sublattice anti­
ferromagnetic in distinction from a ferromagnetic the 
parameter J(po, Po) in the results is replaced by 
JI(po, po) - In(po, Po), i.e., by the difference between the 
exchange integrals for the first and the~ second sublattice; 
the anomalous quantity X(T) ~ /T/-fl(3-V1) no longer has 
the meaning of the static magnetic susceptibility. 

5. CONCLUSION 

An investigation of the temperature behavior of the 
frequency dependent characteristics of crystals near the 
Curie point is of interest both for the theory of phase 
transitions, and also for the study of electron spec-
tra [2, 9-11J, since a possibility appears to distinguish by 
the nature of the temperature behavior of the anomalies 
near Tc the type of critical points in the electron spec­
trum. However, we do not know of sufficiently accurate 
data on the temperature dependences of the optical prop­
erties of transition metals in the neighborhood of the 
point of magnetic ordering. 

Generally speaking, our results are valid both for 
metals and for dielectrics to the extent to which a 
Hamiltonian of the type (3) is applicable to describe the 
interaction of Bloch electrons with localized spins. In 
this case it is of interest to calculate the magnetic addi­
tion ~nU to the index of refraction, which was recently 
studied in experiments on double refraction (12J in the 
fluorides of transition metals (MnF2, NiF2, COF2) which 
are two-sublattice antiferromagnetics with two magnetic 
ions in an elementary cell. For this it is necessary to 
evaluate the imaginary part of the conductivity. Near the 
threshold for self-absorption we obtain with the aid of 
(13) 

Jm G,."' (Ol) =Jm Go"'(O) +L ~ {t] (Ol,,-Ol) + [ (Olo.-Ol)'+y • .' (Po)/Ii']"'F'. 

(38) 
If the frequency is such that / ~Po +g,po - fiw I »~~, 

~y, then for antiferromagnetics with tw.o magnetic ions 
per cell we have 

~n."'=A,"'<S>2+A .. "(rJa)2-'" (39) 

where (S) is the magnetization of the sublattice. We 
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note that far from the threshold for self-absorption it is 
not possible, strictly speaking, to neglect the integral 
term in (8) and perturbation theory should be used for 
the solution. However, it can be shown that the result 
(39) remains valid as long as the parameter 

r, (/ ill (~." .. , •• -liOl) /) '/'<t:1, 

is small, and for this it is required that the frequency 
should be not too far from the threshold frequency. In 
the opposite limiting case the dependence on rc dis,­
appears. Such behavior of ~n~ agrees with experimen­
tal results [12J in which it is found that for MnF2 for 
T > 0.1 a growth of ~nf! is observed according to a law 
close to 

with an asymptotic approach to a constant value for 
T ~ 0.1 (and this, apparently, corresponds to a com­
paratively large distance to the nearest threshold). It 
would be of interest to obtain analogous data for NiF2, 
for which the operating light frequency lies near the 
threshold of the absorrstion band, and this means that the 
growth of ~nff ~ T -2 3 ought to be observed down to con-

siderably smaller values of T. The same should also 
occur in MnF2 at frequencies close to the threshold fre­
quency. 

In conclusion we note that temperature singularities 
analogous to those discussed above must also occur in 
photoemission, and this was observed in the paper of 
Rowe and Trasy [13J . 

The authors are grateful to M. I. Kaganov and Yu. P. 
Irkhin for a discussion of the results of this work. 

1) Below for the sake of brevity we shall always speak of the Curie tem­
perature. 

2)In this paper we shall not discuss cases when the singular point Po is a 
point of band degeneracy. 

1 A. I. Kopeliovich, Zh. Eksp. Teor. Fiz. 58, 601 (1970) 
[SOy. Phys.-JETP 31, 323 (1970»). 

2 J. Phillips, Optical Spectra of Solids (Russ. Trans!.) 
Mir, 1968. H. Fan, Photon-Electron Interaction in 
Crystals (Russ. Trans!.), Mir, 1969. 

3S• V. Vonsovskit and A. V. Sokolov, Zh. Eksp. Teor. 
Fiz. 19, 615 (1949). 

4 T• Kasuya, Progr. Theor. Phys. 16, 58 (1956). 
5 V• M. Nabutovskit and A. Z. Patashinskit, Fiz. Tverd. 
Tela 10, 3121 (1968) [SOY. Phys.-Solid State 10, 2462 
(1969»). 

6 M• L Kaganov and I. M. Lifshitz, Zh. Eksp. Teor. Fiz. 
45, 948 (1963) [Sov. Phys.-JETP 18, 655 (1964»). 

7 S. V. Vonsovskit, Magnetizm (Magnetism), Nauka, 1971. 
8 M• Ya. Azbel' and E. A. Kaner, Zh. Eksp_ Teor. Fiz. 

32, 896 (1957) [Sov. Phys.-JETP 5, 730 (1957»). 
9 D. Phillips, Phys. Rev. 133, A1020 (1964). 

10 M• M. Kirillova, Zh. Eksp. Teor. Fiz. 61, 336 (1971) 
[SOY. Phys.-JETP 34, 178 (1972»). 

11 I. I. Sasovskaya and M. M. Noskov, Fiz. Met. 
Metalloved. (Metal Phys. Metallogr.) 33, 86 (1972). 

12 A. S. Borovik-Romanov, N. M. Kretnes and M. A. 
Talalaev, ZhETF Pis. Red. 13, 80 (1971) [JETP Lett. 
13, 54 (1971)]. A. S. Borovik-Romanov, N. K. Kretnes, 
A. A. Pankov and M. A. Talalaev, Zh. Eksp. Teor. Fiz. 
64, 1762 (1973) [SOY. Phys.-JETP 37, 890 (1973»). 

13 J. E. Rowe and J. C_ Trasy, Phys. Rev. Lett. 27, 799 
(1971). 

Translated by G. Volkoff 
22 

V. M. Nabutovskii and Yu_ G. PeTsakhovich 84 


