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The problem analogous to the well known Benard problem in hydrodynamics is formulated for hot 
electrons and solved in a linear approximation. The "quasihydrodynamical" approximation is used, which 
is valid when the momentum relaxation time is much smaller than the interelectron collision time and the 
latter in turn is smaller than the energy relaxation time. Heating of the electron gas is achieved as a result 
of intraband absorption of light incident on one of the surfaces of the sample. The criterion for instability 
of a spatially homogeneous distribution of the electron temperature is indicated; This criterion also 
determines the conditions under which a stationary two-dimensional spatially periodic distribution of the 
electron temperature appears. The period turns out to be a function of the intensity of the light incident on 
the sample. 

1. INTRODUCTION 

As is welllmown from hydrodynamics, [1] stationary 
free convection appears in a layer of incompressible 
fluid bounded by two horizontal planes in the prE!s~nce 
of a sufficiently large temperature gradient parallel to 
the force of gravity. In this connection the one-dimen
sional (vertically) distribution of the temperature, pres
sure, etc., existing in the presence of small gradients, 
becomes unstable. In its place a three-dimensional dis
tribution is established, which is periodic in the direc
tions perpendicular to the force of gravity. The reason 
for this instability is that the pressure, which has al
ready been increased somewhat in the lower part of the 
layer due to the effect of the force of gravity, increases 
additionally there as a result of heating. In the presence 
of a small temperature gradient this perturbation is 
disSipated by the usual thermal conductivity; with an in
crease of the gradient, however, this mechanism becomes 
inadequate, and heat transfer associated with macro
scopic motion of the fluid begins. 

The described phenomenon was investigated by 
B~nard[2] as long ago as the beginning of the present 
century. In recent times it has attracted attention for a 
number of reasons-among them the extremely fundamen
tal characteristic: this is an example of the formation of 
an ordered structure as the result of an external influ
ence, essentially deriving the system from a state of 
thermodynamic equilibrium. [3] 

It is interesting to investigate whether it is possible 
to realize a somewhat similar situation in regard to 
the gas of charge carriers in a semiconductor/) Of 
course, here an electric field might play the role of the 
gravitational field. The reasons for posing this problem 
are clear: a periodic distribution of the electron tem
perature and (or) of the concentration of charge carriers 
(with a period exceeding the mean free path with respect 
to momentum) would imply that various macroscopic 
characteristics of the system are also periodically dis
tributed, among them the electrical conductivity, the 
light absorption coeffiCient, etc.-with obvious consequen
ces. 

Heating of an electron gas can be achieved even with
out the participation of a static field-with the aid of light 
(this possibility has been investigated in a different con
text by a number of authors [5-10]). 

Thus, we arrive at the scheme represented in the 
figure. There the force acting from the side of the ex-
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The sample is bounded by the planes 
z = 0 and z = I and is infinite in the x and 
y directions. The half-tlpaces z < 0 and 
z > I are occupied by dielectric media. 

Z=t-------------~F 

z=o-------------

Light 

ternally applied electric field is denoted by F. It is 
necessary, however, to keep in mind that the carriers 
redistribution due to compression of the electron gas 
may lead to the appearance of an additional field in the 
sample. The latter, of course, impedes the effect of 
interest to us. 

In the present article we shall consider a monopolar 
semiconductor under conditions in which the character
istic times of inter electron collisions (7' ee), momentum 
relaxation (7' p), and energy relaxation (7') satisfy the 
inequalities 

(1) 

In this connection the concept of an electron temperature 
T has a unique meaning, and all kinetic coefficients de
pend on T. The latter fact allows us to avoid the compli
cations indicated above, which are related to the com
pression of a gas of charged particles. In fact, a new 
mechanism for variation of the pressure appears in the 
conditions under consideration, resulting from the tem
perature dependence of the energy relaxation time and 
the temperature dependence of the thermal conductivity 
K of the electron gas: it is obvious that the pressure of 
the electron gas is very strongly increased in the lower 
part of the sample2 ) (see the figure) for d7' /dT > 0 and 
dK/dT> O. In this connection the compressibility of the 
gas can generally be neglected, which we therefore do.3 ) 

Consequently the presence of an external field is no lon
ger compulsory (although it may turn out to be of some 
use); here we assume F = O. 

The absorption of warming light in the conditions un
der consideration must be caused by intraband transi
tions. In this connection energy is put into the electron 
gas, but new charge carriers do not appear, and the 
redistribution of the electrons in space also does not 
play an important role. 

2. FUNDAMENTAL EQUATIONS 

Under conditions (1) the fundamental equations of 
the problem are the equation of continuity, the expres
sion for the current density j, the energy transport 
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equation, and Poisson's equation. Let us introduce the 
following notation: n denotes the carrier concentration;4) 
15n denotes its small fluctuation; u = lien is the drift 
velocity; To is the lattice temperature (expressed in 
energy units, just like T); a is the differential thermo 
e.m.f.; fJ. is the mobility (fJ. ~ Tr, where r is a known 
number); m is the effective mass; £ is the dielectric 
constant of the sample; y is the coefficient for the ab
sorption of the "warming" light; J(z) denotes the flux 
of light energy into the sample, and J m is its value at 
z = +0. 

It is clear that three characteristic lengths exist in 
the problem: 1, y -\ and >"01 = (2KoTo/3)1I2 (the subscript 
o denotes the corresponding quantity in the absence of 
heating (for T = To)). Depending on the relationships 
between them, the following cases are distinguished: 
a) surface absorption, a "thin" sample: y-1« 1«>"01 ; 

b) surface absorption, a "thick" sample: y-1«>..~1«1; 
c) bulk absorption: y-1» >..~1. 

In cases a) and b) the absorption of light energy can 
be taken into consideration with the aid of the boundary 
condition on the equation of energy transport; in case 
c) the absorption must be taken into consideration in 
this equation itself. The latter situation is eVidentlyen
countered most frequently, and it is the only case which 
will.be explicitly treated in this article. One can show, 
however, that results analogous to those indicated be
low are obtained for surface absorption. We shall also 
assume that 1» y-1. In this connection the sample can 
be regarded as "infinitely thick." 

Thus, in the case of a nondegenerate gas the equations 
for the problem have the form 

divu=O, 

u=JLE-/.laVT, 

IITlat+ l /a(5+2r) div (uT)-'I,euE 
-'I.div (xVT)+ (T-T.)!-r='I,n-tl/(z) , 

div E=4nellnh. 

(2) 

(3) 

(4) 
(5) 

Formula (3) is obtained from the well known expres
sion for the current density (see, for example, [12], Chap. 
II, formula (4.18)): 

j=en/.l(T) fE - ~ Vn-a(T) VT }-

Here the gradient Vn is taken at constant temperature. 
The approximation of incompressibility assumed by us 
consists, as usual, of neglecting the second term inside 
the curly brackets (retaining the possibility of changes 
in n due to a variation of the temperature T). Poisson's 
equation (5) is the only equation where it is necessary 
to take the small change of the electron concentration 
into consideration. As is customary in such a formula
tion of the problem, in what follows it will be utilized 
in order to estimate on and to establish the conditions 
for applicability of the quasineutrality approximation. 

The boundary conditions on Eqs. (2)--(5) are the usual 
continuity conditions for E (they determine the field out
side the sample), the conditions of boundedness of all 
quantities upon unlimited (in absolute value) growth of 
the coordinates x, y, and z, and the equations 

u.=o, z=o, (6) 

-nxIlTlllz=vn(T-T.l, z=o. (7) 

Here II is a phenomenologically introduced positive co
efficient (having the dimensiOns of a velocity), which 
characterizes the heat exchange between the electron 
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gas in the semiconductor. and in the dielectric medium 
adjacent to it. Its exact calculation requires a detailed 
investigation of the kinetics of the electronic processes 
in the contact region. For not too large a difference be
tween T and To, in order of magnitude one has 

( T )'" v'" - P, 
m 

(8) 

where P is the probability for the passage of an electron 
through the contact. In fact, by passing into the dielectric 
medium the electron carries away an average energy of 
order T, but returns from there with an energy of order 
To. 

In what follows we shall assume that y does not 
depend on T, and consequently 

I(z) =Ime-". (9) 

Interesting conditions exist experimentally (see below, 
Sec. 4) in which the adopted assumption is satisfied. 
Upon giving it up, the problem becomes complicated, re
quiring the enlistment of the methods developed in[5-7]. 

Let us assume 

T=T.(1+~), (10) 

('I,x't)-t=A.'f(6) , I=x.'tolx't, 1(0)=1 (11) 

and let us introduce the following units of measurement: 
length >"01, time To, velocity Uo = 3/A.oTo(5 + 2r), energy 
To, field strength Eo + 3To/2eToUo, mobility uoEo1, dif
ferential thermoelectric power e-1(5/2 + r), and energy 
flux Jo = (3/2)nToTo1>..0\ 

Keeping the previous notation for dimensionless quan
tities, we may rewrite Eqs. (3)--(5) in the following form: 

u=/.l(E-aV6), (3') 

~[~+(U Vs-E)]-V's+um- (n)' dInx =~llme-T' (4') 
x lit ' 1+s dInT x ' 

T] div E=lInln, 
where 

T]=('I,+r) eT oAo'/4nne'. 

(5') 

(12) 

Here the quantity y is still dimensionless. By definition, 
y « 1. The approximation assumed by us of incompres
sibility of the gas is valid for 1/« 1. 

Equation (2) formally remains without any changes, 
and the same is true of the boundary condition (6); con
dition (7) takes the following form (z = 0): 

(7') 

In the case of almost complete degeneracy, it is con
venient to measure the time in units of (2/3)To, and the 
velocity in units of Uo = 9Fo/7T2(4r + 5)ToA.oTo, where Fo 
is the Fermi level for T = To = O. In this connection 
Eqs. (3') and (5') remain without changes, instead of 
Eq. (12) we obtain 

T] = ~(4r+5)~ eT.A.' 
6 F. 4:rrne' , 

(12') 

and in Eq. (4') the expression inside the square brackets 
should be replaced by 

[ (1+6) (c 11&: +un ) -uE]. 
Here c = 7T2To/2Fo is the heat capacity per electron for 
T = To. 

Under conditions (1) we have the order of magnitude 
relationship [13] 
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(13) 

Formula (13) is valid in the absence of Fermi degeneracy 
as well as in the presence of complete degeneracy: the 
numerical coefficient omitted in it depends on the scat
tering mechanism. Therefore, 

V' =P (T.I Tp) "'=aPV"', (14) 

where p = To/T is the "coefficient of inelasticity." Under 
conditions (1) R exceeds unity noticeably. However, the 
probability P strongly depends on the nature of the con
tact and, in particular, may be extremely small. Because 
of this, in principle almost any value of v' is possible
ranging from very small values to values appreciably 
exceeding unity. 

In what follows we shall use the same calculation 
scheme as in hydrodynamics. [11 Namely, we shall first 
find the one-dimensional static solution, assuming 
u = 0, ~ = ~s(z), E = Es(z) II Oz, and then we apply to it 
a small perturbation o~, oE depending on all three spa
tial variables and, perhaps, on the time. 

3. STATIC, ONE-DIMENSIONAL SOLUTION 

For; = ;s (z) and E = Es (z) Eqs. (3') and (4') give 

(15) 

Linearizing (16) with respect to ;s' we obtain 

(17) 

In virtue of the smallness of y, the second term on the 
right hand side of Eq. (17) is important only in a com
paratively small region near the surface of the sample: 
the right hand side of (17) reaches a maximum at the 
point 

1 '11'+1 
Zm=--ln---. 

1-1 y(v'+1) 

For v' » y and v' « y this gives zm ">l In(l/y) and 
zm i':;j 0, respectively. On the other hand, the important 
values of z for what follows turn out to be of order 
(2/y)ln(2/y) (see Sec. 5). Because of this, in what fol
lows expression (17) can be replaced by the simpler 
expression 

(17') 
It is difficult to find the value of ;s in the nonlinear 

problem, without specializing the form of the functions 
T(T) and K(T). However, here one can verify that in the 
overwhelming part of the sample the characteristic 
length, over which the quantity ~s changes noticeably, 
is ,,-1, and the derivatives ~~ ~d ;;; are small with re
gard to the parameters y and y • Thus, in the case of 
almost complete degeneracy, when (see Sec. 4 below) 
T ~ T, K ~ T ,and for yJm < 1 (but not necessarily 
« 1), From Eq. (16) we obtain 

4. THE KINETIC COEFFICIENTS AS FUNCTIONS 
OF THE ELECTRON TEMPERATURE 

Let us introduce the notation 

;.=(dlnX) , 
dIn T • 

~ = ( dIn 1: ) 

dInT, 
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(18) 

(19) 

and so forth. The values of k, tL, a, T, and .y depend on 
the degree of degeneracy of the electron gas. Under the 
conditions of strong degeneracy we have the following 
result, independently of the mechanism for the scat
tering of energy and momentum: 

(20) 

The first three of these equations are well known; the 
fourth is also quite obvious; a derivation of the latter is 
given in the Appendix. For a nondegenerate gas the well 
known results, cited in the Table (for a quadratic dis
persion law), are obtained instead of Eqs. (20). 

Generally speaking it is impossible to use the results 
of the kinetic equation for a calculation of t, because 
the case when T ~ ftw is quite possible, where w is the 
frequency of the absorbed light. In the case when the 
quasimomentum is primarily scattered on a charged im
purity, we have [14-161 

y=_3/, for T:»I/,h!iJ; y=O for T<I/,h!iJ. (21) 

In accordance with what was said earlier, we shall 
confine the investigation to rather low temperatures, 
when either the second of inequalities (21) is realized 
or the gas of charge carriers is strongly degenerate 
(in both cases t = 0). We note that it is preCisely this 
temperature range which is obviously of greatest ex
perimental interest: the phenomena considered below 
can be observed only for a sufficiently long energy re-
laxation time. . 

5. INSTABILITY OF THE ONE-DIMENSIONAL 
SOLUTION AND THE PERIODIC DISTRIBUTION 
OF THE ELECTRON TEMPERATURE 

Let us assume 

~=~.+Ils, E=E,-Vcp, u=u(x, y, z, f), (22) 
6'5=fl (z) eM''', 

cp=f.(Z)e·r+ ... , 
(23) 

Here k = {kx , ky}, r = {X, y}, and Ul = {ux , uy} are two
dimensional vectors with real components, and s is a 
complex parameter. 

Varying Eqs. (2'), (3'), and (4') about the static solu
tion and discarding the terms which are small with re
gard to the parameters y and ,,2, we obtain (for the non
degenerate gas) 

/.=-1-1('5.) [/,'+0:('5.)1.'1. 

f.L =-ikf! (6.) [/,+0: (6.) Ill, 
j."-k'I.+o:(i;.) [lr"-k'l. I =0, 

/." - [k'+1 +s- (x+2i+sx) '5.lfl =0. 

(24) 
(25) 

(26) 
(27) 

The boundary condition (7') now takes the form (z = 0): 

(1-xs.)!.'=-v'/,. (7 ") 

It is convenient to introduce the function 

jJ) (z) =1,+0:('5.)1,. 

According to Eqs. (24}-(26) 

/.""-f!(6.) jJ)', f.L ,.,;-ikf!('5.) jJ), 

jJ)"-k'jJ) =0. 

(28) 

(29) 

(30) 

For k f 0 Eq. (30) with (6) taken into consideration 
has only the trivial solution: c) = O. In this connection 

/.=-0:(6.)/.. f.L =/,=0. (31) 
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Scattering mecIJanism 

Acoustic phonon. (deforma
tion potential) 

'I. _'I, -(1+ 2To/IFIJ 

Acoustic phonons (piezo
e1ectric potential 

'I, -(1+3To/IFIJ 'I. 

Opticsl nonpolar and inter
..u.yphonons 

Optical polar phonon. 

. Chargecllmpority "I. 'I. - (1 + 4To/I F Il 
NeutraIlmpority 1 0 - (1 + "I. Toll F I) 

'I" To>'/,liooo 
- i OOo/2To, To < '/.iooo 

'I" To>'/.i"", 
-ifiJo/2To, To < '/.1iooo 

Note. The limiting energy of the corresponding phonons is denoted by h:.J .. The 
values of K, jJ., and ix associated with scattering by optical (or intervalley) phonons 
are not indicated since these mechanisms for the scattering of quasimomentum 
will not be of interest to us. 

The last equation indicates that the drift velocity turns 
out to be a quantity of higher order in smallness. This 
was to be expected: according to Eq. (29) !f1 is the velo
city potential in the assumed approximation, whereas 
the motion should be rotational. On the other hand, upon 
taking account of terms of the next order in y in Eqs. 
(25) and (26), the connection of !f1 with fz and fl would 
turn out to be more complicated, and instead of Eq. (30) 
we would obtain: 

(I" -k'(!I=-a:(£.) at/so'. (30') 

One can substitute the solution (27) into the right hand 
side of Eq. (30'), as a result of which in the stationary 
case the quantities !f1 and u turn out to be of the order 
of YlalkI6~1. 

Equation (27) is easily solved if ~s is approximated 
by expression (17,).5) Introducing the notation 

q·-(2T+~+s~)y/ .. , ( 32) 
we obtain 

f.-AI.(t)+B'-.(t)_ (33) 

Here J±p are Bessel functions, A and B are constants, 

p=21-' (1 +s+k') ''', t=2q1-'e-v<I' (34) 

(it exists in the form of the branch of the square root 
corresponding to its positive value for arg(l +k2 +s) =0). 

For the investigation of a possible fluctuation insta
bility of the static one-dimensional solution, it is suf
ficient to consider the case of purely real values of s, 
and moreover values such that (for real values of p) 

1+s>O. (35) 

In fact, the latter condition also satisfies, in particular, 
the inequality s > 0, corresponding to the indicated in
stability. Under conditions (35) B = 0, and Eq. (7") takes 
the form 

I p _. (~)-.1!...J. (~) = __ "_.' _.l/p(2Q). (36) 
1 2q 1 1-~q/m 2Q 1 

According to Eqs. (32) and (34), the argument 2q/y 
and the order p are very large. Let us set 

2Qh=~p (37) 

and let us assume that t: = 1-11, O:s 11« 1. This assum
ption will be justified by the subsequent calculation; it 
essentially reduces to a condition which is imposed on 
the energy flux Jm . The following asymptotic represen
tation of the Bessel function is valid for such values of 
the argument and order: 
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and for Jp-l(!:P) we have, correct to within quantities 
of order 11, the expression 

t·-· exp[ (p-1) (1-~') 'I,) 
I.-.(tp)= (2n(p-1))"'(1-~')"'[f+(1-~')'h)." 

Substituting these expressiOns into formula (36), one 
can easily find 

1 ( 2,,') 
'1]= 2p 1+ 1-iq/m . 

It is seen that the adopted assumption is actually valid 
whenever 

2,,'1 (1-*l/m) <1. (38) 

The meaning of the last condition is clear: it will not be 
possible to heat the electron gas in the semiconductor 
at all if the heat transfer at the illuminated boundary of 
the sample is too large.6 ) 

Neglecting quantities of order y, from Eq. (37) we 
obtain 

1+s+k'=q'. (39) 

It is obvious that, in the conditions under consideration 
this is possible only if q2 > 0, i.e., if 

2~+~+s,(>0. (40) 

This inequality, in conjunction with the table, determines 
the mechanisms for the scattering of energy and momen
tum and the experimental conditions under which the phe
nomena considered below can take place. 

Setting k = 0 in Eq. (39) (a one-dimensional distribu
tion) and taking Eq. (32) into account, we obtain 

(41) 
1-~1/ .. 

Here condition (40) takes the form 

-i:(1-1XJm)-'>0. (40') 

We see that s > 0 and the static one-dimensional distrib
ution of the electron temperature turns out to be fluctua
tionally unstable upon fulfilment of one of the following 
two systems of inequalities: 

'(-'>11 m> (2T+~) -', T>O, 
(2';+~)-t>1/m>,(-', T<O. 

(42a) 

(42b) 
We shall only be interested in the first case, (42a). 

Upon fulfilment of the indicated inequalities, the one
dimensional distribution, having become unstable, is 
replaced by the steady-state, three-dimensional, tem
perature distribution of the electrons. In fact, setting 
s = 0 in Eqs. (32) and (39) and changing to the usual 
units, we obtain the following result: 

k=(3I2x,ro)'''(/m1lc-1)''', 1m ';;ole. (43) 

Here J c denotes the critical value of the energy flux, 
the value at which the considered change in the state of 
the electron gas takes place: 

I c=3nTo!2'YT.(iT+·X). (44) 

We note that Yin = a, where a is the cross section for 
photon absorption. 

Similar results are also obtained in the case of a 
degenerate gas: it is only necessary to replace the de
nominator in (41) by a constant c, and out of the inequal
ities (42a) to keep the last two (here the case (42b) does 
not arise at all). In this connection formulas (43) and (44) 
remain without changes. The numerical factor in for-
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mula (44) is changed for surface absorption, and Ao ap
pears in the denominator in place of y. 

As is clear from formulas (33), (34), (39), and (43), 
the function f1(Z) differs significantly from zero for 

2 (2 (1m) 'j,) Z.,;Z~ 55 -.yIn 1 lc . (45) 

At the same time, for q2 = 1 formula (17') turns out to be 
valid even for z S y-1 (compare with Eq. (18)). Thus, our 
calculation is valid under the conditions of smallness of 
y. 

6. CONCLUDING REMARKS. ESTIMATES 

The dependence of the critical value J c on the para
meters of the material and on the experimental condi
tions, expressed by formula (44), has a clear meaning. 
In fact, heating of the electron gas implies an increase 
of the average energy per charge carrier. Hence, an 
increase of the factor n. Comments on the role of y 
and To are not required;7) finally, To is the only inde
pendent quantity having the dimensions of an energy 
which exists in the problem in the conditions under con
sideration. The meaning of the inequality 2,. + K > 0 is 
also clear from what was said in Sec. 1. The conditions 
under which this inequality is satisfied are clear from 
the table. In this respect either the degenerate case 
(k + 2t = 3) or the case when the energy is scattered by 
piezoelectric (acoustic) vibrations but the quasimomen
tum is scattered by charged impurities (k + 2+ = 7/2 in 
the absence of degeneracy) is especially interesting. It 
is clear that such a situation exists in n-InSb at liquid 
helium temperatures, h 71 and also T 0 ~ 10-7 sec. 

According to[181, in this material (j ~ 2.3 X 10-17 
(A/9iL)2 for a wavelength A ~ 9 fJ.. For A = 300 fJ. this 
gives (j ~ 2.5 X 10-14 cm2, and therefore (at T = 3°K) 

Ie"" 2.5 . 10-' [ ~ ] . 
2t+x em' 

In addition to n-InSb, the other narrow band semicon
ductors might also be of certain experimental interest 
in regard to the relation under consideration. In connec
tion with this, we note that for a sufficiently large hole 
mass we can also apply the calculation set forth above 
to bipolar material, provided that the holes are simply 
treated as scattering centers (in this connection their 
role is indistinguishable from the role of charged im
purities). 

APPENDIX 

DEPENDENCE OF THE ENERGY RELAXATION 
TIME ON THE ELECTRON TEMPERATURE UNDER 
THE CONDITIONS OF STRONG DEGENERACY 

The energy relaxation time used above is determined 
by (for a sufficiently small drift velOCity) the equation 

'1,(dWldt) = (T-T,)h:. (A.l) 

Evaluating the left hand side of Eq. (A.l) by the usual 
method~111 we obtain 

~= jdqdknp(W.) [1-nF(W.+liwq ) ]Nq (. •• ). 

x T~TJ exp [~~, (T-T,) ] -1}. (A.2) 

Here q and k are the quasiwave vectors of the phonon 
and the electron; nF and Nq are the Fermi and Planck 
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distribution functiOns, which depend on T and To, respec
tively; Wq denotes the frequency of the phonon for the 
branch under consideration. The matrix elements and 
the other factors, which do not contain T and To, are 
denoted by the symbol ( •.• ). Under the conditions of 
strong degeneracy, the corrections to T-1 , which are 
related to temperature broadening of nF' will be of the 
order of T2/F~. Correspondingly, the electron tempera
tUre only enters into the last factor in Eq. (A.2). It is 
immediately seen that, as T - To we have T ~ T and, 
according to Eq. (19), T = 1 for any scattering mechan
ism, any type of anisotropy of the isoenergy surfaces 
in any kind of phonon spectrum. 

l)The problem of the formation of a static, spatially periodic distribution 
of the temperature and of the concentration of carriers in the presence 
of any external flux has been investigated in a number of articles. [4] 
In these articles, however, heating of the electron gas, which will playa 
major role below, was not taken into consideration. 

2)As is well known (see, for example, [11], in the presence of a sufficiently 
strong current passing through the sample the condition dr / dT>O may 
lead to the emergence of S-type current-voltage characteristics. The effects 
considered below represent, in fact, the appearance of this same instabi
lity in static conditions and in the absence ofa continuous current through 
the sam pie. 

3)In a monopolar semiconductor this is obviously equivalent to the appro
ximation of quasineutrality. 

4)In what follows it is convenient to talk about electrons, but the equations 
are written for particles with positive charge e. 

s)This is justified by the subsequent calculation: the important values of z 
turn out to be rather large (see below, formula (45». 

6)Formally the denominator in (38) may also be negative. Then the inequa
lity (38) is automatically satisfied: the thermal conductivity of the elec
trons grows so rapidly under the influence of heating that the energy is 
not able to escape from the sample into the dielectric medium adjacent 
to it. In this connection, however, the condition of small overheating 
turns out to be poorly justified, and we shall not investigate this possibi
lity. 

7)Of course, 'Y depends on n. In the case of a nondegenerate gas 'Y-n, and 
Ie actually does not depend on the concentration of free electrons. 
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