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A method of connecting the Korteweg~e Vries (KdV) equation, known from the theory of nonlinear 
waves, with the SchrOdinger equation was discovered in 1967,Pl This method is applied in the 
present paper to a study of a periodic problem. We find exact analytical formulae for a class of 
solutions u (x ,t) such that at any moment in time t the potential u (x ,t) of the Schrodinger 
operator has only a ftnite number of forbidden bands in the Bloch spectrum. We ftnd in this 
connection all potentials with a ftnite number of bands. This class of solutions contains as a 
degenerate limiting case the well known N-soliton solutions of the KdV equation, which decrease 

rapidly as Ix~oo. 

INTRODUCTION 

It is well known that the nonlinear Korteweg-de Vries 
(KdV) wave equation 

Ut=6uux-uDt .1: 

reduces to the inverse problem of scattering theory for 
the Schrooinger (Sturm-Liouville) operator 

-d' 
L= dr' +u(x), u(x)=u(x,t)lt~<on", 

if the solution u(x, t) decreases rapidly as Ixl - 00 

(see [1,2J ). The most effective study has in this case 
been made of the so-called "multisoliton" solutions 
which describe the interaction of a finite number of 
solitons-solutions of the kind u(x - ct). They have the 
form u(x, t) where at any time t the potential u is non­
reflective (the reflection coefficient vanishes identically). 
Although the algebraic mechanism connecting the KdV 
equation with the Schrodinger operator continues to func­
tion also in the case of periodic boundary conditions, 
nobody had succeeded in applying it seriously to an effec­
tive study of the KdV equation until the recent work by 
the present authors [3, 4J and by Its and Matveev. [5 J 

The basis of this procedure is the fact, noted by one 
of us, [3J that a strictly periodic (and conditionally per­
iodic) analog of the many-soliton solutions consists in 
those u(x, t) for which at any time t the potential u(x, t) 
has only a finite number of forbidden bands in the Bloch 
spectrum. Such a class of potentials, which we shall call 
in what follows finite-band potentials, contain as a de­
generate limiting case all non-reflective potentials which 
decrease fast as Ixl - 00; all finite-band potentials and 
the corresponding solutions of the KdV equation can be 
found in terms of exact, albeit complicated, formulae. 
The solutions of the form u(x - ct) are in the periodic 
case potentials with a single forbidden band. This is a 
Weierstrass elliptic function 291'(x) + constant. Even a 
consideration of their simplest perturbations leads to a 
two-band (i.e., two-forbidden-band) conditionally periodic 
potential u(x, t) with two, generally speaking, non­
commensurate periods, where u(x + ~1' t + ~2) = u(x, t) 
(i.e., after a period T = ~2' the picture is re-established 
with a shift x - x - ~l)' 

In this paper we describe a class of periodic and con­
ditionally periodic finite-band potentials and the corre­
sponding family of solutions of the KdV equation. 
Although many facts can easily be generalized also to the 
case of an infinite number of bands, to a large extent the 
results lose their effectivity. We must note here that 
finite-band periodic potentials turn out to be relatively 
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numerous among the periodic functions in contrast to 
the IlQn-reflective Bargmann potentials: apparently one 
can approximate any smooth periodic potential by a 
finite-band one, although we have not proved this. We 
note that the procedure developed in the present paper 
is applicable also to other nonlinear equations which are 
"fully integrable" by the scattering theory method and 
which occur in a study of a periodic problem' it is now 
already known that their number is large [6-8j (Zakharov 
and Shabat [9J have developed a regular method to find 
them). 

1. FINITE-BAND POTENTIALS AND INTEGRALS 
OF THE KdV EQUATION 

Lax rlOJ , using the procedure of [lJ, has noted that the 
basis for the connection between the KdV equation and 
the Schrooinger operator is the representation of the 
right-hand side 6UU/ -U" 1 as a commutator 

6uu'-u"'=[A, Ll. 

L= -.!!.-+u A=-4~+3 (u~+~u \ (1.1) 
dx" dx' dx dx ' 

whence it follows that the equations 

u=6uu'-n"'andL=[A,Ll (1.2) 
are equivalent. 

If cp is an eigenfunction, LqJ = Ecp, we easily get from 
(1.1) the relation 

(L-E)~=(L-E)A",. 

We fix two eigenfunction bases 
",(x, XO• E), !p(x, Xo, E), 

x=xo, ",=1, q/=ik, k'=E; 

c(x, XO, E), six, Xo, E), 

x=xo, c'=o, c=l, s'=1, s=o. 

(1.3) 

(1.4) 

(1.4 /) 

For a periodic potential u(x) with period T the trailS la­
tion operator produces when acting upon the eigenfunc­
tions a shift over the period T: 

(1'",) (x) =q>(x+T). (1.5) 

We obtain in both cases (1.4) and (1.4/) a second rank 
matrix with a determinant equal to unity: 

T(XQ,k)=(~ :), lal'-lbl'=1 

in the base (1.4), or 

f(x" k)= (all a,,) • 
ct21 CG22 

where the O!ij are real, k 2 = E, in the base (1.4/ ). 
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For r~idl}' decreasing potentials one usually chooses 
Xo = ± co, T = T(k) in the base from two exponents. In the 
case of a finite period the choice of the pOint Xo is arbi­
trary and when we change Xo (in the base (1.4» we have 
the equation 

, ~ 

dTldx,=[Q, T), 

. (1 0) iu (1 -1) 
Q = ik 0 -1 - 2k 1 -1 . (1.7) 

The Bloch eigenufnctions I{!t.(x, XO, E) are determined 
by the conditions 

L¢±=E¢±, T¢±=exp (±ip(E) )¢±, ¢±1,_ ... =1, (1.8) 

where the dispersion law peE) is determined in the 
allowed bands. The trace of the matrix T is of the form 

(1.9) 

in the base (1.4) and is independent of Xo. The allowed 
bands are determined by the condition 

(1.10) 

We note that the eigenvalues of the matrix T have the 
form aR ± (aR - 1)1/2, or aR = cos peE). The points of 
the discrete spectrum En of the periodic and the anti­
periodic problems: I{!(x + T) = ±l/!(x), are determined by 
the conditions aR(En) = ± 1. They are the edges of the 
forbidden bands

A 
only when these levels are nondegenerate 

(or the matrix T is a Jor~an matrix for E = En). If 
aR = ± 1, but the matrix T is diagonal (and equal to ± 1) 
the forbidden band is collapsed to nothing. This is char­
acterized by a condition similar to the non-reflectivity 
condition: 

b (x" k.) "'0, k.'=E •. (1.11) 

The finite-band character of the potential means that all 
higher periodic and antiperiodic levels En are twofold 
degenerate. 

We find, clearly, from (1.6) that in the points of the 
spectrum En of the periodic and antiperiodic problems: 
aR = ± 1, we have the equations 

la,I=lbJ, E=E,,, (1.12) 

where a= aR + iaI' Ibl ~ 0 in the non-degenerate points 
of the spectrum for all Xo. 

If X (x, E) = -id (In I{! )/dx, then X will be independent of 
the point Xo and will satisfy the Riccati equation which 
expresses, in particular, its imaginary part in terms of 
its real part: 

(1.13) 

and allows an asymptotic expansion as E - co 

( X k') _ k + ~ x.(x) 
X , ~ (2k)' . . ", (1.14) 

By virtue of (1.13) all functions Xn (x) are polynomials 
in u(x) and its derivatives with respect to x, while the 
X2m (x) are total derivatives. 

It is well known that all integrals 

I(k) = J xix, k')dx, I m-, = J X'm+' (x)dx, m;;'O, (1.15) 

are conserved by virtue of the KdV equation. Moreover 
(Lax and Gardner [lO,llJ) all "higher KdV equations" 

. a Mm (1.16) 
U =a; 6u(x) 

admit of a representation in the form (1.1): 
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(1.17) 

where all Pi are polynomials in u and its derivatives 
with respect to x. The KdV equation itself is obtained for 
m = 1, and the operators Ao, A1 , and A2, and the integrals 
1-1 , 10 , 11 , and 12 take the following form: 

1-, = J u dx, I, = J u' dx, A, = 2 d: ' 

I, = J [u' ++(u')' ]dx, 

d' d d 
A,=-4-+3 (u-+-u) 

dx' dx dx ' 

I,=J[{(u")'-: u'u"+~ U']dX, (1.18) 

d' (d'd' d dd 
A,=16--20 u-+-U)+30u-u+S(u"-+-u")' 

dx' dx' dx' dx . dx dx . 

Any equation of the form u = Q(u, u', ... ), where the 
right-hand side is a polynomial and can be written in the 
form of a commutator [A, L] = Q, is of the form 

(1.19) 

Let some such equation be given. It turns out that all its 
periodic stationary solutions u(x) are finite-band poten­
tials, and we obtain thus all finite-band potentials. The 
conditionally periodic solutions of this equation are also 
finite-band potentials (see [3 ,4J). We shall indicate below 
the algorithm for integrating these equations: 

N M, 
~ c, 6u(x) =const. 
i_O 

(1.20) 

By virtue of (1.3) we have for the basis (1.4) of the 
eigenfunctions the equations 

cP=A<pH,<p+Wp, <P=Aq;+p.tpHIp, (1.21) 

where the matrix 

A=A(x"kl=( ~ ~) (1.22) 

has a zero trace ~ + ~ = 0 and has a polynomial depend­
ence on k, on u, and on its derivatives with respect to x 
in the point x = Xo. It is determined from the conditions 
(p = 0 and (p' = 0 when x = Xo. It turns out that we have 
for the matrix T (Xo, k) the equation 

aT:at=[A, i']. (1.23) 

Comparing (1.23) with (1.7), we get from the condition 

a a ~ a a ~ 
--T=--T 
ilt ax, a x, at 

the equation 

aA _ aQ =[A,Q]. (1.24) 
ox, at . 

Equation (1.24) gives a new useful algebraic repre­
sentation of the KdV equation and its higher analogs. For 
instance, for stationary solutions of Eqs. (1.16) we have 
Eq. (1.20), whence it follows that 

8Qi8t=8fI8t=0, 

dAldx,=[A, Q), [A,1']=o. 
(1.25) 

Since Tr A = 0, the eigenvalues ll± are given by ll±(k) 
= ± (det 11.)1/2, where det A is a polynomial of k2 = E, the 
zeroes of which (see below) are the boundaries of the 
bands, with coefficients depending on u, u', ... , u(2N). 
These coefficients are also a complete set of commuting 
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integrals of the Hamiltonian of Eq. (1.20) which also 
allows, by virtue of (1.25), a commutator representation 
with second rank matrices with coefficients which depend 
polynomially on k. Furthermore, for the matrix elements 
of the second Eq. (1.25) we get 

lA, T).,=(i>-X)b+(a-iil!.t=O, 

or (1.26) 

In the non-degenerate points of the spectrum of the 
periodic and antiperiodic problems we get from (1.26) by 
virtue of (1.12) 

when E = En' Hence it follows that 

P"I'-If.tI'=det.A=O, 

(1.27) 

(1.28) 

The roots of the polynomial det A in terms of k2 = E de­
termine therefore the Bloch bands. 

For the case of one or two forbidden bands the matrix 

bands and turns out to be a meromorphic function on the 
Riemann surface of the root 

h+t. '/ [ II (E-E,) ]. , 
i-I 

which branches at the band edges Ei' Inside the allowed 
bands the values of the same function l/J on different 
sheets then correspond to a pair of linearly independent 
functions l/J±(x, Xc, E). One sees easily that the zeroes 
and poles of l/J can lie on the Riemann surface R only on 
the forbidden bands or their edges on the surface R. It 
is clear that l/J ± ~ exp(± ik(x - Xo» as E - 00, k2 = E. 

From (1.13) we get the following representation 

( ",,(X, E) )',. {s" } ,(x,x.,E)- ",,(x:E) exp i ",,(x,E)dx . .. (2.1) 

Moreover, there is for l/J a representation in the base 
(1.4'): 

(2.2) 

A and the polynomials R(k2) = det A can easily be evalua- We get easily for X (x, E) an expression in terms of the 
ted and have the form matrix T: 

A- (~ ~), uM -6uu'+cu', 

(2.3) )..-ik-' (-u" 12+u'-4ik') , 

JL-u'+ik-'(u"l2-ul-2k1u), 
,64ER(E) = (8E I +2cE+d) '-SaE-d', 

0-1/2 (u') '- (u'+ 1/2Cul+du+a). 
(1.29) in both bases (1.4) and (1.4'). 

If a = 0, we have 

u(x) =2.e> (x) -cl6, (~')'==4~'-g,1li'-g" 
g.='/ "c'-d, g,='/"cd- (cl6) '. 

The function 9'(x) is a Weierstrass elliptic function; 
Ince [12] was the first to establish in 1940 that the poten­
tial 29'(x) leads to a single forbidden band. In the same 
paper, devoted to the Lame equation, it was ineffectively 
shown that n(n + 1)9'(x) is an n-band potential at integer 
n (already for n = 2 this class does not exhaust by far all 
the two-band periodic potentials). 

2) n = 2. Let 
• 

£.E,=O; 

Eq. (1.20) takes the form 
6/, 6/0 ' 

6u(x) + c'6u(x) = d., 

)..=ik-' (l/2Utv - (4uu" +3 (u') '-3u') -2u'k'+16k'}, 
JL= -u'''+6uu' --4u'k'+ik-' {,/,u,v+4ull" 

+3 (Il')'-3u'+k'(2uu"-4u') -8uk'}, 
R(E) =E'+'i,c,E'-'/"d,E'+ ('/"I,+'/,c,')E 

+I,/2'+c,d.t2', 
/,=H (p, q) =P'P'-('/2q,'+'/,q,'q,+'/.q,') 

+c,q,'-d,q" 
1,=p,'-2q,p,p,+2(q,-c,)p,'+q,'+2c,q,' 

+d,q,'-4q,q,'+4c,q,q2-2d,q,; (1.30) 

where PI = q~, P2 = u', ql = u, q2 = -%u2 + u". In particu­
lar, we have for the potential v(x) = 69(x) - c/2 the band 
edges: 

2. FINITE-BAND POTENTIALS AND RIEMANN 
SURFACES 

(1.31) 

For the periodic potential u(x) the Bloch eigenfunction 
l/J±(x, Xo, E), normalized by the conditions (1.8), can be 
analytically continued with respect to E from the allowed 
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One can easily show that the entire function 
."+' '/2 

11"='%,, (1-aa') -".( II (E--E,») , 

has zeroes only at the edges of the forbidden bands and 
behaves asymptotically like En as E - 00. From this it 
follows that . 112!=II (E-YJ(x»=P.(x,E); 

J-' 

Here 

( E R'"(E) 1 P:(x,E) 
"" X, )-P.(x.E) , Xr(x,E)=-2P.(x,E) . 

I.+t 

R(E)= IT (E-E,). -
From (2.1) we get the identity 

#=1jl+,_-P.(x, E)IP.(xo, E). 

(2.4) 

(2.5) 

Moreover, it follows from (2.5) that l/J(x, Xc, E) has up to 
one pole Yj (xo) and one zero Yj (x) in each of the forbid-
den bands or at their edges; more precisely, the function 
has on the Riemann surface R a pole on only one of the 
sheets: (Yj(xo), <1 j ), where <1j =±. 

From the condition that there be no pole on the other 
sheet (Yj(xo), <1j') and from Eqs. (2.2) and (2.4) we find 
that the quantity 

[ , t dP.(x.,E)]/ 
x(x.,E)= R"(E)- 2 dxo P.(x., E) 

has no pole when E = Yj(xo) and the sign in front of the 
radical RI/2 is equal to <1j. Hence follows the equation 

dP.(x,E) I -2 "R'"( ) - OJ t Yj. 
dx E-lj{X) 

(2.6) 

Solving (2.6) for yj we get 

"(/=±2iR'" ("(j) '/ II (1;-Y')' (2.6') 
IJ.,.j 
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For the two-band case (n = 2) these equations take the 
form 

, 2iR'I'(N 
,,(2=---, 

1.-1. 

and can be integrated by the substitution (O! = 1, 2) 

E.<E,<E,<E,<E" . 
X-X,= S h'(-<)-l.(T) ]dT, 

, 

(2.61') 

The parameter Xo is chosen here such that Yl(XO) = E2; 
the functions '}'l and '}'2 are periodic in T and possess the 
properties 

(2.8) 

From the asymptotic behavior of XR as E - 00 (Eq. 
(1.14» one can derive relations that express symmetric 
polynomials in '}'l and '}'2 in terms of u, u', u ll , .... In 
particular, we have for n = 2 

, 
u(x)=-2(1.+12)+ 1: E" 

i=1 

1.12'~'/' (;3u'-u") -A, A =-'/i"i.E,Ej+'/, ("i.E,)', 

1., '=-'/4 [n± (-5u'+2uf/+16A) "']. (2.8') 

Let us explain the geometrical meaning of Eqs. (2.6') 
and (2.6 11

), which are written on the Riemann surface R. 
The forbidden band number j corresponds to the section 
lj = [E2j' E2j + 1] in the E-plane. However, on the 
Riemann surface R this section corresponds to the cycle 
aj - a circle consisting of two sections (lj' +) and (lj' -), 
the ends of which are identical (see Fig. 1).- The set of 
points (Yj' aj ) lies on the circles aj and Eq. (2.6') holds 
for them. By varying x we get the motion of every point 
(Yj' aj) along the circle aj and the signs of aj change 
after passing through the pOints E2j or E2j + l' 

In fact, (2.6') describes the motion of all "phase 
points" (Yl' al, Y2, a2, ... , Yn' an) over an n-dimensional 
torus. It is convenient for the integration of Eq. (2.6') 
for all n ~ 2 to give a different description of the same 
torus. We consider differentials on a Riemann surface 
which have no poles (of first order) 

(2.9) 

normalized by the conditions 

p Q m =2"illjm • (2.9') 
"I 

We introduce cycles bj on the Riemann surface which 
do not intersect the ~ with m f. j, while each bj inter­
sects a j in one point, E2j (see Fig. 2). We have the real 

matrix Bmj: 

(2.10) 

It is known (Riemann) that Bmj = Bjm, that the matrix 
(Bmj ) is negative definite, and that it cannot be broken 
up into blocks (e.g., it cannot be diagonal). At n = 2 this 
is the complete set of conditions for the matrix Bmj . 
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FIG. I. The functions 
2N+1 

Y - II (E-E,)'" 

where the Ei are the band edges, are on 
the Riemann surface R determined by 

9 

the cycles aj which are situated above i l lz 

the forbidden bands lj. The poles 'Yj,±) 

( II'+) 

of the Bloch function move along the (I,,-) 

cycle aj. 
(Iz,-) 

FIG. 2. Basis of closed contours (cycles) on the Riemann surface R 
(two-band case). The cycles aj correspond to forbidden bands while the 
part of the cycle aj which lies on the lower sheet is shown by a dashed 
line. 

Let Ql, ... , Qn be a set of points on the Riemann sur­
face R. We consider the complex parameters 

• °1 

1]'0 (Q ..... , Q.) = .E P ~~m, (2.11) 

It is clear that these parameters are not defined uniquely 
since we have a choice in the path on R connecting the 
points E2j and Qj . We can change the path by any integral 

number of linear combinations of closed contours, the 
cycles al, ... , an' b i , ... , bn, after which we get . . 

1].-1].+ .E m,p Q.+ 1:. nip Q., (2.12) 

where mj and ~ are arbitrary integers. 

We have thus a lattice of 2n vectors in the space of 
the n complex parameters (111' ... , 11n) which can be ex­
pressed in terms of the basis vectors of n x 2n matrices: 

(2"ill,,; B,,). (2.13) 

We arrive thus at a 2n-dimensional torus. The real part 
of the torus is determined by the matrix Bjk and gives 
us the n-dimensional torus in which we are interested. 
The lattice (2.13) determines the standard multidimen­
sional Riemann f)-function: 

e('1., ... ,1].)= .E exp{~.EBj.mjm.+ .E mk1]k} (2.13') 

(see [13 J , Vol. I); the substitution (2.11) is reversible 
and we can write 

Q.=Q.( 11" ... , 1].); (2.14) 
we are interested in the substitution (2.11) or (2.14) for 
the points Qj = (Yj' aj) which lie on the cycles ~ on the 
surface R. 

It turns out that the substitution (2.11) or (2.14) inte­
grates Eq. (2.6') for all n. To be preCise, it means that 

1],=1]'(l.(x), 0., l'(x), 0" ••. ), 

d1],./dx=const; k=1, . .. , n. 
(2.15) 

In fact, we can use an idea of Akhiezer [14J to obtain 
the following expression for 11k: 

d1],jdx=U., 

iU,=p Q=-2c.m ; 

'I 
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the (second order) differential n = (En + q1En- 1 + ••• 
+ qn)dE;R1/2(E) is here normalized by the conditions 

~O=O, j=1, ... n. (2.17) 
'I 

It is well known that one can easily get by using (1.14) 
the following representation for the potential u(x): 

In.:l:.t 

u(x)=-2 L 1j(x)+ L E;. (2.18) 
J-I ,_t 

If Qj = (Yj' a j ) are pOints on the Riemann surface, we can 
write Yj as a numerical function of the parameters 
171, •.. , 17 n, by virtue of (2.11) and (2.14): 

1j=xJ(Ij" ... , Ij.). (2.19) 

Using (2.18) we get 

u(x)=-2 L xj+const ... -2x(1]" ... ,1].)+ const, 
1]J=xuj+1]j' 

by virtue of (2.16). 

(2.20) 

It is well known that the function K (171, ••• , 17 n) is a 
standard algebraic function on the 2n-dimensional torus, 
given by the lattice (2.13). [4] We can follow Its and 
Matveev [s] and take for the function K from the literature 
a convenient expression for calculations in terms of the 
Riemann II-function (see [13]). It then follows for the po­
tential u that 

If we use Eqs. (2.8') and (1.31) for the potential u(x) 
= 6go'1(x) we get the spectrum explicitly (surface R) and 
also the form of Yl(x) and Y2(X): 

, 21 , 27 E,+27 'E 81 
R(E)=E --;;g,E --;;g, -;;g, --;;g,g" 

E.~3e.. E.=-(3g.)"'. E,=3e., E.=(3g.)"', E.=3e" 

4e.'-g,e.-g,=O, i=1, 2, 3; 

"( •.• (x)=-~ [l)"(x)±(g,-3l)"'(X»,/]. 

(2.24) 

It is, finally, relevant to note the general uniformity 
for the Bloch dispersion law p(E): 

zo+r 

p(E)+nn= J x .. (x,E)dx, .. 
dp T dx ~ = - -::--:--:0,.-'dE = 2X"(x, E) , 6u(x) 2x.(x,E) • .. (2.25) 

From the last equation, together with the form of the 
function XR (see (2.3)) we easily get the statement which 
is the inverse of the result of Sec. 1: any finite-band 
potential satisfies one of the higher KdV equations (1.16). 
We note also that in the case of a potential which is 
periodic with period T it follows from the second Eq. 
(2.25) that the differential T-1dp is the same as the dif­
ferential n occurring in Eqs. (2.16) and (2.17). 

3. TIME-DEPENDENCE OF FINITE-BAND u(x)=-2~lne(xU,+Ij,', ... ,xU.+Ij.') + const, 
dx' (2.21) POTENTIALS BY VIRTUE OF THE KdV EQUATION 

n Ta(~) 

1j;'=-x.Uj + L J OJ-Kj, 
1_1 Ea 

It follows from Eqs. (2.20) and (2.21) that, generally 
speaking, the potential u(x) is quasi-periodic with periods 
(T1' ..• , Tn)' where . 

Tr'=L BJI<U., (2.22) .-, 
where the matrix s-ik is the inverse of the matrix 1\:' of 
the periods and, if we continue into the complex regi2n, 
with periods (T~, ••. , T~) where 

T/=2ntIU j • 
(2.22') 

The n - 1 relations 

(2.23) 

with ~ an integer, are necessary and sufficient for the 

periodicity of u(x). If, moreover, the n - 1 relations for 
the imaginary periods, 

LmjT/=O, (2.23') 

are satisfied, we can express the potential in terms of 
elliptic functions. For the two-band case, n = 2, the 
compatibility condition for having both Eqs. (2.23) and 
(2.23') for five parameters (E1' ... , Es) gives us an 
enumerable set of three parameter families. One of 
them (Ince's case) has already been indicated at the end 
of Sec. 1 (see (1.30), (1.31), and (2.8')). To be more pre­
cise, we can obtain from the Lame potential 6go'1(x) + con­
stant other potentials of this family by changing the time, 
by virtue of the KdV equation (see Sec. 3), and they will 
have the same spectrum (correspond to the same 
Riemann surface R, satisfying conditions (2.23) and 
(2.23' )). 
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We consider the "finite-band" solutions u(x, t) of the 
KdV equation which at any time t give a finite-band po­
tential for the Schrodinger operator. If the finite-band 
potential uT(x) is periodic with period T with T - 00 and 
if uoo(x) decreases rapidly, the potential uoo(x) is non­
reflective. The family of finite-band solutions of the 
KdV equation thus contains as a degenerate limiting case 
the many-soliton solutions. In that case the Riemann 
surface R of the root 

[ n (E-E;) r 
i=1 

is degenerate as for T - 00 the band edges converge 
pairwise to one another, and in the limit the root can be 
taken. The parameters (171, ... , T)n)' given by Eq. (2.11) 
have no meaning at all when T = 00. 

We now study the time-dependence of the potential 
u(x) by virtue of the KdV equation. Firstly, the band 
edges are integrals of the system. One can show that the 
derivatives ~k are constants, by virtue of any of Eqs. 
(1.20). One can easily evaluate these constants. We de­
note them by ryk = Wk for the original KdV equation. We 
then get from Eqs. (2.20): 

u(x, t)=-2>«xU,+tW,+Ij,', ... , xUn+tW.+Ij.')+const. (3.1) 

It is, however, convenient to evaluate the time­
dependence for the functions Yj (or the points (Yj' a j ) ~n 

the cycles aj)' We get from Eq. (1.23) for the matrix T 

in the basis (1.4): 

(3.2) 

Moreover, we find from Eqs. (1.7) and (1.24) the general 
relations 

2bR = _~ (al+bl ). 
dx, k (3.3) 

From (3.3) and (3.2) we get, together with (2.3): 
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(3.4) 

Moreover, for E = 'Yj(x) after using (2.6) it follows from 
(3.4) by analogy with (2.6') that 

1;=-410/AI"_,I1"'('Y;) In ('YI-'Y')' (3.5) 
"'1 

In the case of the KdY equation we have A = -2(u + 2E), 
i.e., 

1;=±8{E 'Y0 -4--L,E.)R"'('Y;) III('YI-'Y')' (3.5') 
h¢j k+i 

Through the substitution (2.11) and (2.14) we can in­
tegrate Eqs. (3.5) and (3.5'), and the derivatives .,jk = Wk 
can easily be expressed in terms of the periods of a few 
differentials on the Riemann surface R with poles at in­
finity. 

For the case of two forbidden bands we get, starting 
from Eq. (2.7), for the parameters (Xo, To): 

~,=4, x,=4 ( V t (-t.,) - ! .E E, ), 

u(x. t) =-2(Vt (,(x-x,(t») +v,( ,(x-x,(t)+,,(t») +const. 
(3.6) 

Together with Eq. (2.8) this gives the final form of u(x, t) 
in the two-band case. In the particular case u(x, 0) 
= 6Y(x) we get from Eqs. (2.8') and (1.30), (1.31): 

u(x, t) =2tf (x-~,( t) ) +2tf (x-~,( t) ) +2tf (X-~3 (t», (3.7) 

ill-lh dz 
".+8. ,+",""0, J t ~ ~ , 12 (g,-31f' (z) ) "'. ' 

~'-~3 = +tf-t[ -tf (~t-~,)+(g,-3tf'(~'-~3) )"'J. 

In conclusion we note that the formulae given here 
can be improved upon in a number of cases but, in prin­
ciple' they describe the whole dynamics of the finite-
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band solutions. The parameters 11k on the torus (deter­
mined apart from the lattice periods (2.13)) give "angle 
variables" which are canonically conjugate to the "action" 
variables formed from the eigenvalues of the SchrOdinger 
operator by analogy of the work of Zakharov and 
Faddeev,cls) It is relevant to draw attention to the com­
plexity of the angle variables in the periodic case as 
compared to the fast decreasing case. 
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