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A diagram technique is developed for describing the interacti.on be.twee~ 10n~ave p~onons under 
sound instability conditions. A kinetic equation for phonons IS denved In WhiCh,. oWing. to s~rong 
dissipation of energy by electrons, the major role is played by the four-phonon interactIOn VIa the 
electron subsystem. Variation in the nature of the interaction on narrowing of the beam below the 
limit of applicability of the kinetic equation is analyzed. As the beam narrows,. the ro~e of . 
three-phonon processes increases; in a coherent beam these processes. e~ter the ln~ractlOn via. t.he 
second harmonic. The processes responsible for alteration of the statistical properties on transItion 
from noise to signal are specified. 

1. INTRODUCTION 

In the present work a diagram technique is derived 
from first prinCiples (quantum statistics), which allows 
us to describe the averaged behavior of classical vibra
tional degrees of freedom of a system for the case when 
these are SUfficiently far from equilibrium. The tech
nique is used to study sound (phonon) turbulence in sol
ids. In our approach, initial quantum -statistical aver
aging suffices to describe the stochastic motion of waves 
in terms of their intensity (the diagram technique con
tains only intensities), whereas in the usual description 
of turbulent motion the averaging is performed over 
the phases of already enhanced oscillations (1-4]. The 
advantage of initial-averaging lies not so much in its 
greater consistency as in the fact that the law of the de
coupling of the higher correlators is known exactly 
beforehand, i.e., one knows exactly the statistical prop
erties of the waves involved. The statistical properties 
of developed oscillations are not a priori known and the 
decoupling is fraught with a certain hazard: it may be 
erroneous if the statistical properties vary in the course 
of the nonlinear interaction. Such a variation of the 
statistical properties may occur, if, in the process of 
amplification, a large intensity is concentrated in one 
or several very narrow regions of the spectrum-the 
"self-action" of waves becomes comparable to their 
"interaction." As we shall see, our diagram technique 
provides a convenient method for analyzing the nonlinear 
processes which occur on narrowing the intensive noise 
beams-the processes which under certain conditions 
may lead, say, to separation of a signal from the en
hanced thermal noise. (We shall especially discuss this 
latter point in another work.) 

We shall carry out the analysis using as a concrete 
example an electron -phonon system. It is known in such 
a system there can occur a phonon instability brought 
about by, say, the drift of conduction electrons: if a 
semiconductor is located in a sufficiently strong exter
nal electric field, so that the electron dirft velocity ex
ceeds the speed of sound, then the electron -phonon inter
action can lead to phonon amplification instead of damp
ing (i.e., cause instability) and enhance the thermal 
noise. Since the amplification factor is usually maximal 
at a comparatively low frequency (in a piezoelectric 
semiconductor noises with wavelengths of the order of 
reciprocal Debye radius have the maximal growth rate), 
it is preCisely the classical region of the phonon spec
trum which is enhanced. This raises the question of de
scribing the interaction between enhanced classical 
noises, Le., of developing a theory of phonon turbulence. 
For this purpose, we use the usual quantum diagram 
describing the kinetics of an electron-phonon system 
(the Konstantinov-Perel' technique, to be specific) to 
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derive a technique adapted specially for the description 
of low-frequency and long-wavelength phonons (hwq 
«Ep' Ji.q« p, where q and Wq are the phonon wave vec
tor and frequency; p and Ep are the average electro n 
quasi-momentum and energy). We shall show that the 
technique describing the nonlinear interaction between 
enhanced sound noises is particularly simple when the 
latter are sufficiently far from equilibrium, namely 
when the products of the quasi-classical parameter by 
the phonon number are large (i.e. Nqhwq/Ep » ~ and. 
N hq/p »1) Under these conditions our techmque wlll 

q '.. fW Id(!] prove equivalent In a certaln sense to that 0 y • 
The latter was derived by averaging over phases of 
classical equations of motion and employed to describe 
the classical theory of turbulence in liquids. 

Let us now outline the results of direct application of 
our diagram technique, which are expounded in the pres
ent paper. 

1. An equation for weak phonon turbulence is derived 
from first principles, and limits of its applicability are 
stipulated (such an equation in the hydrodynamic limit 
has been obtained earlier, using phase averaging, by 
V, Gurevich, Laikhtman, and one of US(4]). Here we 
would like to emphasize the following point. Linear 
theories of growing noise involve, along with the amplifi
cation factor, a "source" which determines the initial 
noise level (pre -exponential factor in the solution). In 
order to take the nonlinearity into account one usually 
looks for corrections to the amplification and in one 
way or another avoids the question of nonlinear ~o~rec
tions to the source, since these are extremely dlfflcult 
to incorporate in the averaging over phases. In the pres
ent work we are concerned only with the strongly non
equilibrium noise when the source itse~f is imn:aterial, 
let alone corrections to it. We would hke to pOlnt out, 
however, that in the framework of our method these cor
rections can be systematically taken into account, and 
we believe that this is important in principle. 

2. Recently, Wonneberger (5] made an attempt to 
build a theory of enhanced turbulence in a phonon system. 
Our investigation reveals that only a fraction of signifi
cant diagrams had been summed over, and we shall point 
to a class of left-out diagrams having the same order 
of magnitude as those taken into account. The absence 
of an easily sum mabIe sequence of diagrams reduces 
our hope to build a theory of enhanced turbulence; how
ever, certain relations can still be obtained even under 
strongly nonlinear conditions. Such is, for example, 
the Weinreich relation between the (now nonlinear) am
plification factor and the acousto-electric current. 

3. Some time ago(4] the problem of building a theory 
of interaction between a sound signal and a sound noise 
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was pointed out as an important one. We show that the 
problem of calculating the effect of the noise on the am
plification of a weak signal can be reduced to the above, 
namely to calculation of thenonlinear coefficient of noise 
amplification (since the latter is connected with the re
sponse of a system in which noises are growing to a weak 
external acoustic or electric perturbation). 

4. We shall analyze the distinction between the inter
action in a relatively narrow noise beam and the non
linear self-action of a coherent sound wave, which re
mained unexplained for a number of years. The question 
consists in the following. On the one hand, the nonlinear 
amplification was calculated in(6] for a sound signal 
(i.e., for an excitation of a given intensity concentrated 
in such a narrow region of the phonon spectrum that at 
the typical amplification times it behaves like one mode). 
On the other hand, the coefficients of interaction be
tween noise modes were calculated in(4]. It has been 
pointed out already in (4] that the analytic expression 
for the coefficient of interaction of two noise modes does 
not go over into the self -action coefficient of the signal 
mode evaluated in (6] whe n the separation between the 
modes formally approaches zero. It is evident that the 
discrepancy is due to the fact that the noise approach 
(averaging over phases) is not applicable to a very nar
row beam of which a signal is the limiting case. It 
seems, however, that nobody has understood what really 
happens when the beam is narrowed down beyond the 
limits of applicabilIty of the noise approach. The dia
gram analysis enabled us to answer this question with 
little effort. We shall show that in a narrow beam there 
comes into playa new type of interaction which is insig
nificant in a sufficiently wide beam. In a wide beam, as 
has been ascertained in (4], the dominant role is played 
by the four -phonon interaction phonon scattering by 
each other ("two into two") through the mediation of 
the electron system. In terms of the coupling constant 
the scattering proves to be more effective than the more 
usual "Peierls" processes of one -into-two decay with 
the subsequent two-into-one coalescence, i.e., than the 
three-phonon interaction. We have found, however, that 
this holds only for a wide beam. Closely spaced modes 
interact effectively in both" non -Peierls" and Peierls 
manner, since the latter interaction has a resonance 
character for close modes. In a beam that is narrow 
beyond the limits of applicability of the noise equation, 
the resonant Peierls contribution increases and becomes 
comparable in order of magnitude with the non-Peierls 
one. Adding the Peierls terms to the corresponding non
Peierls ones and then letting the beam width go to zero, 
we obtain, to within a factor of 2, the result of the "sig
nal', theory(6]1). 

5. The less striking, but nevertheless of a profound 
nature, discrepancy between the numerical coefficients 
in the analytic expressions for the amplification of the 
nonlinear signal and that of the noise (the above -men
tioned factor of 2) can also be attributed to the different 
number of diagrams in the "noise" and "signal" the-
0ries (more precisely, the number of ways to close the 
"signal" diagrams). This difference reflects the dis
similarity between statistical properties of signal and 
noise, and we have succeeded in identifying the proces
ses responsible for reorganization of these statistical 
properties on going from signal to noise. We do not 
claim here that we have solved the cardinal problem, 
which is the quantitative description of the noise -to
signal transition (which, incidentally, cannot in principle 
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be described by a closed equation for the mean inten
sities-precisely because of the change in the statistical 
properties during the transition). Nevertheless, we 
believe that our analysis sheds some light on the physics 
of the interaction in a very narrow beam. 

2. THE DIAGRAM TECHNIQUE 

Consider a semiconductor in a strong electric field 
which causes drift of the electrons (and may "heat" 
them). The electrons interact with a thermostat, whose 
role is played by impurities and shortwave nonamplifi
able phonons (hq ~ pl. We assume that the usual valid
ity criterion of a kinetic equation 

(2.1) 

is satisfied for the electrons (T p is the characteristic 
electron relaxation time). The electron system is as
sumed nondegenerate. 

Our task is to calculate the intensity of longwave pho
nons interacting with such an electron system. The in
tensity will be described by the number of phonons Nq(t) 
with the wave vector q and the frequency wq: 

Nq(t)~[Sppl-t sp {pS+(t)b.+bqS(t)}. (2.2) 

Here bq and bq are the phonon creation and annihilation 
operators, p is the density matrix, and S is the time
development operator: 

S(t)~exp (-illtln) , (2.3) 

where H is the total Hamiltonian of a system which con
sists of interacting electrons and phonons, and is lo
cated in an external electric field. We shall neglect the 
interaction between electrons and phonons due to the lat
tice anharmonism, as we are concerned with the stron
ger (piezoelectric) interaction. 

We shall carry out the initial averaging using the 
density matrix 

( HO-IlN) 
p~exp --T- , (2.4) 

where Ho is the Hamiltonian of nonintera;cting electrons 
and phonons in the absence of the field, N is the total 
electron number operator, and T is the thermostat tem
perature (in energy units). 

As was pointed out in the Introduction, we shall be 
particularly interested in the quantity Nq at such q that 

nq<p, nCtlq<Bp. (2.5) 

If the quasi-classical conditions (2.5) and (2 0 1) are ful
filled, the diagram analysis of (2.2) becomes much sim
pIer, as we shall see now. The graph representation of 
the Laplace transform Nq(s) of Nq(t) 

-Nq(s)~ f dte-'Wq(t) (2.6) 

in the Konstantinov-Perel' technique is displayed in Fig. 
1. Time goes from the left to the right-from 0 to t at 
the terminal points. The upper part of the contour is 
directed along the time (points of interaction from S(t) 
fall on here), and the lower part against the time (points 
from S+(t)). In the quasi-classical case, i.e., when (2.5) 
is satisfied, it is convenient to join the graphs which 
differ in the position of interaction points on either up
per or lower halves of the contour. Let us consider the 
simplest process leading to phonon absorption (ampli
fication), namely "conversion" of a phonon into an elec-
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tron "pair" and back (Fig. 2). This diagram corre
sponds to the following analytic expression: 

(2.7) 

Here Cq is the electron-phonon interaction constant, and 
nq and fp are the equilibrium distribution functions of 
phonons and electrons; 1i. = 10 

There exist altogether four diagrams of this kind. 
They can be obtained by transferring in turn points 1 and 
2 from the upper to the lower half of the contour. In so 
doing: 

a) a transfer of point 2 (right -hand point) alters the 
correctness of the phonon line (nq instead of nq + 1) and 
the sign (+i instead of -i); 

b) a transfer of point 1 (left -hand point) alters the 
correctness of the electron lines (fp - fp+q and vice 
versa) and the sign. Adding up these four diagrams and 
using the quasi -classical conditions (2.5) as well as the 
fact that fp « 1 (nondegenerate electrons) we have 

(2.8) 

We represent the sum of the four "quantum" diagrams, 
which yields (2.8), in the form of one "classical" dia
gram (see Fig. 3). Expression (2.8) corresponds to the 
thick line in the "classical" diagram-to an "electron 
arrow" carrying a frequency wq and a momentum q. 
This is none other than an electron -concentration wave 
excited by a phonon. As we pass to the classical case, 
the contour becomes redundant: there remains only one 
type of ordering, namely the time ordering. 

The collecting of the four quantum diagrams into one 
is the main point in deriving the classical technique. 
Now the quantum diagram chains contained in the block 
in Fig. 1 can also be represented as chains of classical 
objects-the electron arrows i3q and i3q-connected in 
series with phonon lines which do not carry the intensity 
nq (Fig. 4). We note, however, that, as the earliest-in
time interaction point is transferred downwards, both 
the electron and the phonon lines change their correct
ness simultaneously (see Fig. 5). Therefore, two terms 
of the same order in the quasi-classical parameters 
will appear at this place: i3qUq and the term 

'.2: f. CXq=Cq • 
s-iwq+iqv (2.9) 

p 

Thus, summation of the chains reduces to summation of 
the geometric progression, with the first term being 
either (aq + aq) or (i3!l + i3q)n. This gives us the follow
ing expression for Nq(S): 

() nq+(aq+a;)ls 
N q s = . 

s- (~q+~q ) (2.10) 

or in the time representation: 
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(2.11) 

where the coefficient of absorption (amplification) is 

lq=2Re ~q, (2.12) 

and the "source" is 

(2.13 ) 

In summing the chains we have neglected the dia
grams with overlapping electron arrows (Fig. 6). In 
the case of overlapping, the free section l/s (see Fig. 
4) is replaced by a non-free one (see Fig. 6) which is of 
order l/wq (or l/q . v). Since in a geometric progres
sion we must have s ~ ')I, the neglect of overlapping ar
rows is justified for small damping (amplification), when 

(2.14) 

which thus furnishes a criterion for existence of the 
linear phonon kinetic equation (2.11). This criterion 
will be assumed satisfied. 

The expressions obtained for the absorption coeffi
cient and the source are applicable to the "collisionless" 
regime ql == qVTp » 1, WTp » 1 in an equilibrium state. 
Let us now take into account the interaction of electrons 
with the thermostat (shortwave phonons and impurities) 
and the effect of the electric field. Since the criteria 
(2.1) and (2.5) are assumed for the electron system, 
the introduction of the field and the collisions reduces 
to, first, incorporation of the field term and of the colli
sion integral in the collisionless propagators: 

(s-iwq+iqv)-';+ (s-iwq+iqv+lp)-', 
Ip'='eEiJliJp+I,." (2.15) 

and second, replacement of the equilibrium electron 
distribution function fp by a non -equilibrium function 
Fp which obeys the equation 

(2.16) 

Taking this into account, we shall henceforth depict 
our basic graphic object-the classical electron arrow
as in Fig. 7. The' 'tail" behind the left -hand interaction 
point will be correlated to the stationary electron dis -
tribution function Fp (the replacement of fp by Fp is 
produced by "stretching out" the line corresponding to 
fp in a graph of the type of Fig. 2 to the left beyond its 
left-hand connection point, and by "saturating" it there 
with points of interaction with the field and with the 
shortwave phonons). 

We correlate the points in the diagram of Fig. 7 with 
±icq (the input point with +i and the output point with -i), 
the right -hand point with the summation over p, and the 

- ---t--- --......-......
~----+--------

FIG. 4 
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~p 
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left-hand point with qa/ap (q is the momentum entering 
the point). The line segment between the points corre
sponds to the propagator Bpl(q, Wq) where Bp(q, Wq) is 
the "response operator" 

B.(q, Ol)=,,-iOl+iqv+I., (2.17) 

All the operators act to their left, i.e. on quantities 
which are preceding in time. Thus, the analytic expres
sion for the diagram displayed in Fig. 7 is of the form 

"_ ,\-'B -'( ) of. P.-c. ~ p q, (0. q-d-' 
, P 

(2.18 ) 

This diagram can be regarded as describing the pro
cess of excitation by a phonon of an electron density 
wave with its subsequent conversion into a phonon. For 
q.$ X (X is reciprocal of the Debye-Hiickel radius) one 
also has to take into account the Coulomb interaction be
tween electron density waves. This interaction is de
picted graphically in Fig. 8. The double point of the 
Coulomb interaction corresponds to i4ITe2/q2, and the 
other rules of correspondence remain the same as for 
the diagram of Fig. 7. The wave momentum and energy 
(frequency) are conserved in the course of interaction. 
Summation of the progression displayed in Fig. 8 will 
reduce to replacing the propagator B~(q; wq) by.'Bp(q, 
wq), where the operator &lp(q, w) is defined as follows 
(xp being an arbitrary function of the quasi -momentum 
p): 

4ne' of. '\1 
$,(q, Ol)x,~B.(q, Ol)x,-i~-q--.t...J X,'. 

q' fJp,. 
(2.19) 

This is the electron -system response operator with al
lowance made for the self-consistent field. 

The linear absorption (amplification) coefficient of 
longwave phonons is given by a sum of the analytic ex
pressions for the diagram of Fig. 7 and for its analog 
with the oppositely directed arrows (which yields the 
complex conjugate expression). The propagators be
tween points correspond in this sum to &lp (or &lfl if 
the arrow opposes the direction of time). Thus, we have 

yq~2Cq'Re{.E$'-'(q,Olq)q ::'}. (2.20) 
, 

or, introducing the longitudinal dielectric constant Eqw, 

{ 
Cq2 '\1 _, fJF. } 

"yq~2 Re --;;-:-;;:... B. (q, Olq)qap , 
q " 

(2.21a) 

(2.21b) 

Here 
4ne'.E fJF. 

eq. ~Il-i~.- B.-'(q, Ol)q-fJ-' 
q2 p 

• 
(2.22) 

The inclusion of the collisions and the field will also 
change the source Ci q in the equation for phonons (2.11). 
The diagram analysis shows that the change in the source 
can be incorporated by replacing (2.9) by (cf. also[8]): 

fIl q = 1:::'1' Ro{.EB,-'(q,Olq)F+ (2.23) 
q , 

Having developed the graphical method using a simple 
example of linear amplification we shall now proceed to 
a nonlinear theory. Under the conditions of amplifica-
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tion after a certain time2) the intensity of the longwave 
noises increases so much that they begin to affect the 
properties of the electron system. This, in turn, affects 
the amplification and the source in Eq. (2.11). In terms 
of the Konstantinov -Perel' diagram technique it means 
that one must fill the electron blocks with non-equilib
rium longwave phonons-phonon lines carrying non
equilibrium intensities Nq. 

As has been mentioned, the pairwise combination of 
graphs which differ in the position of either the input 
or the output point of the phonon line may give rise to a 
term like Nqqa/ap. Such a term appears if the transfer 
alters the correctness of the phonon line, Le., at the 
points where the phonon line goes off to the right (or en
ters from the right). The source Ci q in the linear equa
tion (2.11), which we discussed already, provides an ex
ample of such a term. The expression in braces in 
(2.23) is the correlator of the electron density fluctua
tions [8]. The higher -order terms in phonon nonlinearity 
will bring about more complex electron objects with 
many tails, Le., higher -order electron correlation func
tions. However, if 

(2.24) 

all these "spontaneous" terms can be neglected and 
one can construct a nonlinear diagram technique using 
simple objects-the above -introduced electron arrows 
and phonon lines. 

Condition (2.24) implies a strongly non-equilibrium 
state when the phonon number considerably exceeds its 
equilibrium value. At equilibrium the rejected terms 
would exactly compensate the remaining nonlinear terms, 
and this would guarantee the required absence of non
linear corrections to the fluctuation-dissipation the
orem [9]. Far from equilibrium, on the other hand, only 
the maximal power of the intensity Nq should be retained 
at each power of the interaction constant, Le., both the 
linear source and the nonlinear corrections to it should 
be rejected. This corresponds to neglect of generation 
of new phonons in a sufficiently amplified noise. 

Let us briefly describe the principles of constructing 
a simple diagram technique under the conditions (2.24), 
(2.5), and (2.1). First, we take into account the influence 
of an increased noise on the stationary electron distri
bution function. In the first approximation in Nq this 
addition is given by two diagrams (Fig. 9). The phonon 
line corresponds in this diagram to Nq'. One of the 
interaction points is encircled. This means the renor
malization of the electron-phonon interaction constant 
Cq - Cq/Eqwq (incoming phonon line), Cq - cq/EqWq 

(outgoing phonon line). The renormalization is a con
sequence of the Coulomb interaction between the elec
tron waves (in addition to that incorporated in .~p) (Fig. 
10). Note that only the "inner" points on the electron 
arrows are renormalized (encircled); renormalization 
of the outer points (the nearest one to the "tail" and 

FIG. 9 

+ 
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the extreme right -hand point of an electron arrow) is 
done automatically by including the self-consistent field 
in .'Hp(q, w) (in other words the processes leading to the 
renormalization are taken into account in the chain in 
Fig. 8; for this reason the linear theory involves Cq and 
not cq/€qWq)' 

The analytic expression for the sum of diagrams in 
Fig. 9 is of the form 

1-~ Cq2 • -1 8Fp 
'1'.=/.- ~N'---------<I I' [B.-'(g,wo)+B. (g,w.)]g--

q 8.m• Op 
(2.25) 

(the extreme right -hand electron segment with zero 
momentum is, according to (2.17), set in correspondence 
with Ip). If ql » 1 and WTp » 1, the electron-phonon 
interaction proceeds like a collision 

(2.26) 

The contribution to the amplification due to the 
change in the distribution function can be obtained by 
replacing the tail in the linear diagram of one of the dia
grams in Fig. 9 (see Fig. 11). This is only one of the 
diagrams describing the effect of the phonon q' on the 
amplification of q. Two other diagrams are displayed 
in Fig. 12. To those we must also add the diagrams 
with two electron waves which cannot be reduced to a 
renormalization of Cq (see Fig. 13). Diagrams a in 
Fig. 12 and 13 represent corrections to the electron 
propagator due to the presence of enhanced noise. Dia
gram b gives corrections to the interaction (to the ver
tex part). Let us formulate the correspondence rules 
once again. 

Phonon lines (except for those incoming or outgoing 
from the extreme right-hand point of an electron arrow) 
correspond to the non-equilibrium intensity Nq. All q, 
except for those pointing outwards, are summed over. 
The entering points of phonon lines correspond to 
icq/€qwq (or to iCq if a point is not encircled), and the 

double point of "input" of the Coulomb interaction cor
responds to i47Te2/q2. Every point on an electron arrow, 
except for the extreme right-hand one, corresponds to 
an operator qa/ap, where p is the momentum that enters 
(or leaves) the electron arrow at this point; the extreme 
right -hand point corresponds to the summation over p. 
Each segment of an electron arrow pointing to the right 
corresponds to an operator Br{(Lq, Lwq), where Lq and 
LWq are the algebraic sums of momenta and frequencies 
of the phonons which "constitute" the electron segment 
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involved. Output points and the leftward arrows cor
respond to the complex conjugate quantities. The tail of 
an electron arrow corresponds to Fp. 

Thus, the kinetics of longwave strongly non-equili
brium [according to the criterion (2.24) 1 phonons is de
scribed by a simple graphic technique. Its elements 
are phonon lines of two kinds: those that carry intensities 
and those that do not. The time ordering of the inter
action points, which is essential for this technique, is 
always present in the kinetics in one form or another. 
We also note that the two kinds of phonon lines (carry
ing and not carrying intensity) are inevitable in the clas
sical diagram technique (cf. [ll). They stem from the 
expressions for Nq + 1 (emission) and Nq (absorption) 
which are inherent in the quantum statistics. 

The structure of the extended vertices of the phonon
phonon interaction depends on the particulars oHhis 
interaction. In our case of the interaction via the elec
tron subsystem these vertices assume the simplest 
form for q » X, when one can neglect the Coulomb inter
action between the electron-density waveso In this 
case the extended phonon -phonon interaction vertex is 
represented by a single electron arrow consisting of the 
electron -system propagators with electron -phonon inter
action points in between. 

In order to illustrate the correspondence rules, we 
write down the analytic expressions for diagrams a and 
b in Fig. 12: 

(2.27) 

'\' c.'c/N 0' t" -1 ,0 -1 , 
~ • l...J:JiJp (g, 000 ) q ap:JiJp (q + q, 000 + 000 ,) 

q' 8 qlllqf.QIWq' 

o "",-1' )' oFp 
'qilp ::top (q, wq' q ap 

(2.28) 

and diagram b in Fig. 13: 
'"' c.'c.,'No' 4ne' '"' "" _, ) ( +' 0 ~-o---( + ,),~3iJ. (q,w. q q)a 
q' ~qll)p q q q P 

.-, of. E -, 0 
.~. ('I', wo')q'-- ~.' (q+q',wq+wo,)q-- (2.29) 

~ o~ . 
-1 I ,8Fp ' 

.~.' (g, 00 0') q --ap' . 

By reversing the direction of q' in the diagrams in 
the diagrams in Figs. 11-13 we obtain five more expres
sions which completely account for the first correction 
to the amplification factor.3 ) The next (in intensity) cor
rection can be obtained by including one more phonon 
line in the diagrams of the first correction. The ratio 
of each two successive corrections is of the order of 
magnitude of 

.l._1_,\, N !!!l.._?!!...lNq 

(i) noVo l....J q p no CJ) nq 
q 

(where Vo is the volume, no is the electron concentration, 
X is the reciprocal Debye radius, and nq is the equilib
rium number of phonons). We can confine ourselves to 
the first corrections in intensity if the latter parameter 
is sufficiently small. In this case the equation for Nq 
can be written in the form 

(2.30) 

We shall not display here the analytic expression for 

S. V. Gantsevich et al. 882 



Wqq' which is rather unwieldy, since the graphs for the 
first correction, which determines W qq', have been al
ready listed. 

3. HYDRODYNAMIC APPROXIMATION 

Evaluation of the amplification factor requires know
ledge of the operator ,qjp(q, w), i.e. the solution of the 
corresponding response equation. Let us consider the 
case of long waves ql « 1, wTp « 1, when the inversion 
of fjp(q, w) is trivial. Indeed, in this "hydrodynamic" 
limit we have a simple algorithm [10 ) 

[ 4ne'no iJF.] ,St'p-t(q, oo)y.~ Fp-iqlp-t(v-V)F.+i-,-qlp-t_ 
q iJp 

-iq.E v' Ip·-ty,·/n, (3.1) 
x p' +l.-typ . 
. 4ml+q'D-i(oo-qV) 

The function yp has the property ~yp = 0 (electron num
p 

ber conversion). In (3.1) we have introduced the follow
ing notation: 

for the non-equilibrium diffusion tensor, 

for the differential conductivity tensor, and V = ~vFp/no 
p 

for the drift velocity (no = ~ F p)' The dielectric con
p 

stant Eqw is given in this approximation by 

4ncr+q'D-i(oo-qV) 
q'D-i(oo-qV) 

(3.2) 

(In (3.1), (3.2), and below u and D are the projections of 
the corresponding tensors on the direction of q.) 

In the hydrodynamic limit all the terms that are non
linear in rl should be neglected. Hence, when the al
gorithm (3.1) is applied repeatedly, only the first term 
in brackets in (3.1) proves to be significant. Thus, the 
electron distribution function Fq is carried all the way 
through the expression 

:JJ -I )' OF, _ F i(ql'q') 
, (q,oo q -0-- , 4 + 'D '( V) P ncr q -, oo-q 

(3.3) 

Since in the end we always have to sum over p, the final 
expressions contain the concentration no instead of Fp. 
For convenience, we have introduced one more quantity 
J..I.ik = uik/e2no, i.e., the differential mobility per unit 
force. 

N ow we can readily write down the hydrodynamic ex
pressions directly from the diagrams, modifying the cor
respondence rules in the following way: 

1) replacing the propagator ,qjp(q, w) by i,qjqW where 

:JJq"~4ncr+Dq'-i (oo-qV) ~4ncr+Bq.; (3.4) 

2) replacing the derivative q'a/ap by (qJ..l.q'), where 
q is the propagator momentum after (i.e., to the right of) 
the point at which the momentum q' enters (leaves) the 
line;4) 

3) the "tail" corresponds to no rather than Fp; sum
mation over p at the right -hand point of the electron 
arrow is omitted; 

4) Eqw is given by (3.2). 
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As an illustration, in the linear theory we get (see 
Fig. 7 and Eq. (2.20)): 

(3.5) 

For diagram a in Fig. 12 we have 

i3\' ~Ocq2cq"NQ.(ql'q')(q +q', [1q')(ql'q) (3.6) 
~ I Eq'wq, 12 ,Ja~wq3dq+q" Wq+Wq' 

In the hydrodynamic limit the diagrams describing the 
effect of the change in the stationary distribution function 
(Fig. 11) become insignificant since they contain the 
zero -momentum electron segment which corresponds to 
I~. The sum of the remaining eight diagrams gives the 
correction to the amplification factor in the hydrodyna
mic approximation:5 ) 

~ {~i'noc.'Cq,'Nq. 
L';"(q ~ L.J Wqq·Nq.~2 Re L.J 

q' q' Iflq.UJ q,12.swqlll:~q+q" _q +_ q' 

X[Bq'.q' (ql'q) (q+q', ILq')+B'.q (q'l'q') (q+q', ILq) 1 (3.7) 

[ • ,4ne'n", ,] ~ q' - -q' ) } X Bq .• q.,(ql'q)+-( + ,),(ql'q)(qlL,q+q) + . ' 
q q W q ' -+ -(ilq' 

If we took the imaginary part instead of the real, we 
would obtain the nonlinear correction to the sound velo
city. 

4. REMARKS ON DEVELOPED PHONON TURBULENCE 

If the noise intensity is sufficiently enhanced (lYNql 
nownq ~ 1), we cannot apply the pertUrbation theory 
to the evaluation of the nonlinear amplification factor 
and must sum over all the diagrams. The whole set of 
diagrams can be naturally broken down into three clas
ses: change in the distribution function, change in the 
propagator, and renormalization of the interaction. Let 
us first consider the propagator. All the diagrams 
yielding corrections to the propagator are subdivided 
into irreducible and reducible ones (the latter are those 
which can be cut without intersecting the phonon line). 
We denote the sum of all irreducible diagrams, displayed 
in Fig. 14, by mq(q, wq). The propagator itself, which 
we denote by £ q~q, w), is the sum shown in Fig. 15. 
Summing this series we find 

~p(q, oo)~:JJp(q, OO)+~p(q, 00). (4.1) 

This is the new operator of (, 'instantaneous"!) re
sponse in our system.6 ) 

Acting in a similar way, we obtain an equation for 
the ("quasi-stationary"!) electron distribution function: 

(I.+~.)F.~O. (4.2) 

The operator mp which appears here is mp(q, w) at q 
= 0 and w = O. It remains to introduce the new vertex 
part instead of the old simple point (see Fig. 16). The 
arising expression is convenient to denote by 

icqqr.(q, 00) %p (4.3) 

(q and a lap contain all the diagrams of the sum; r is a 
tensor. 

/--, . , ~. 
I-?'-\ 
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Let us now express the noise amplification factor in 
terms of the above-introduced symbols ..cp, r p, and Fp. 
According to Fig. 17, it is equal to 

1,n=2c,' Re {L: tl.-· (q, w,)qr.(q, wq ) aF.lap}. (4.4) . 
The quantities ..c, r, and mI are connected by certain 

relations, which can be readily obtained with the help of 
the diagrams representing these quantities. For exam
ple, at q » X we obtain the following expression for mIp 
(cf. Fig. 18, a): 

!Dlp =- fl ~ c,'N,q~tl.-'(q, cIJ,)qr.(q, w,)~+ c.c.}. (4.5) ..... op op 
q 

The similar expressions for mIp(q, w) and rp(q, w) 
involve more complex formations, which in turn can be 
related to even more complex ones. Such a chain may 
be useful in principle for approximating mI, ..c, and r 
in an evaluation of the nonlinear amplification factor. 
Such a calculation itself seems to be very involved and 
we shall not be concerned here with this problem. 

An attempt to go beyond the framework of the per
turbation theory in the hydrodynamic limit was made by 
Wonneberger[5]7). He took into account the changes in 
the propagator and ignored the vertex part renormaliza
tion (corrections the distribution function are insignifi
cant in the hydrodynamic limit). We observe, however, 
that in a perturbation theory calculation (see Secs. 2 
and 3) the contribution due to the vertex renormaliza
tion (see Figs. 12, band 13, b) is of the same order of 
magnitude as that of corrections to the propagator (Figs. 
12, a and 13, a)-cf., say, (2.28) and (2.27). When con
sidering the higher -order diagrams in the noise inten
sity there is also no reason to prefer processes that 
lead to a variation in the propagator to those associated 
with the vertex part renormalization. For this reason, 
Wonneberger's work cannot be regarded as consistent. 

The summand in (4.4) is (to within a factor of i) the 
response function relating the variation of p(q, w) of the 
electron distribution to a weak (and sufficiently fast! ) 
potential perturbation OU(Z, t) = OUqw exp(-iwt + iq 'r) 
acting on the electron system: 

8Fp (q, w)=Rp(q, w)8u,., 
Rp(q, w)=itl.-'(q, w)qr.(q, w)aFplap. (4.6) 

The sum over p of Rp(q, w) is the response Rqw: 

8n,.=R,w6u,w. (4.7) 
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Thus, the noise amplification factor is proportional to the 
imaginary part of the response function: 

(4.8) 

Instead of the response Rqw one can introduce the di
electric constant 

(4.9) 

Then 'Ya and ~qwq turn out to be connected by the for

mula (2.21b), which thus acquires a more universal 
character. 

In the case under consideration, the amplification 
factor 'Ya is hard to calculate but, in principle, easy to 
measure. To do so, it suffices, say, to measure the 
amplification of a weak acoustic signal induced in the 
system. As seen from (4.8), the result will coincide 
exactly to the 'Yq we are interested in. The reason for 
this coincidence is that the noise amplification is fairly 
uniform over the spectrum and the properties of the 
medium vary under the influence of a very large number 
of noise components, the influence of a particular single 
component being small compared to that of the totality 
of other components (the self-action is small compared 
to the interaction). Under these conditions, the contri
bution to 'Ya due to phonons with the same q is small com
pared to that due to all other phonons, giving rise to a 
peculiar "linearization" of the problem. 

An often used method of registration of the acoustic 
noise is to measure the acousto-electric current. The 
latter is defined as the difference between the values of 
current in the presence and in the absence of the noise. 
In our notation (see (4.2)) 

(4.10) 

Let first q »X. Then, substituting (4.5) in (4.10) and 
comparing with (4.4), we find that in the hydrodynamic 
approximation 

. .,- 1 L n Ie - --(Je~q~y, N •. 
en, (4.11 ) 

N ow let us show that this formula holds for an arbitrary 
relation between q and X. At q .$ X the expression for 
mIp becomes more complicated as the right -hand side of 
the equation depicted in Fig. 18, a gets in addition the 
Coulomb terms shown in Fig. 18, b. However, in the 
hydrodynamic limit, due to factorization, these terms 
mutually cancel one another having oppositely directed 
momenta at the Coulomb vertex. 

Eq. (4.11) means that Weinreich's relation holds true 
in the case of a developed acoustic turbulence as well. 

5. LIMITS OF APPLICABILITY OF THE KINETIC 
EQUATION FOR PHONONS, AND ANALYSIS OF THE 
INTERACTION IN A NARROW BEAM 

The nonlinear interaction picture in a noise growing 
in a wide spectrum region is not too complicated in 
principle, in so far as it is described by a closed kinetic 
equation of the form 

}'iTq-Y. nN.=O, 

where 'Y&' although being an intricate function, depends 
only on the intensities Nq', However, in the course of 
amplification, due to varIOUS reasons (say, due to the 
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presence of sharp maxima in the amplification curve, or 
under certain experimental conditions, the amplified
phonon distribution over q may become drastically non
uniform. In this case, the "self-action" (Le. the non
linear interaction between phonons with very close 
values of wave -vector q, which is unimportant in a wide 
beam) becomes tangible. The fact that the "self-action" 
occurs differently from the "interaction" has been point
ed out already in[4J. It was shown there that the coeffi
cient, at the intensity in the nonlinear correction to the 
signal amplification factor is by no means equal to the 
diagonal part W qq of the noise amplification. With the 
help of our diagram technique we can analyze this dis
similarity, namely find the processes which, playing no 
role in a wide beam, become significant on its narrow
ing. 

An example of such a process is given in Fig. 19. 
In the derivation of Eq. (2.30) we neglected such pro
cesses, since their contribution is 'Y /w times smaller 
than that of the included ones. Indeed, compared to, 
say, the diagram in Fig. 12, a, the diagram in Fig. 19 
contains, for one thing, two more interaction constants 
and one more propagator (which altogether gives 'Y), and 
for another, an additional cut between the electron ar
rows. This cut brings about the factor [s + i(wq+q' - wq 
- wq' J -1 which in a wide beam is of order l/w, whereas 
in a narrow one, when q' - q, is equal to [s + i(w2q 
- 2wqr1. If w2q = 2wq, this factor is large and compen
sates the smallness in the numerator (since s ~ 'Y). By 
this means the contribution due to such a process be
comes significant. Other diagrams of this type, whose 
contribution grows on narrowing of the beam, are dis
played in Fig. 20. The sum of these four "growing" dia
grams at q' = q is given (in the hydrodynamic limit) by 
the expression 

8nic~c~"Nqq8f"l:IqW" (2B~wq - B,., 2Wq) 

(5.1) 

where q is a resonance denominator; with allowance 
made for the renormalization it is equal to 

(5.2) 

Diagrams of this type differ from those considered be
fore in that each electron arrow here contains three 
rather than four electron-phonon interaction points. If 
we collect all the diagrams of this type (there are 18 
of them altogether, but only four do grow) made up of 
three-phonon "vertices"-the electron waves, we get a 
collision term of the Peierls type. In a wide beam all 
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these diagrams are small compared to the four -phonon 
(non-Peierls) ones. The fact of smallness of the Peierls 
terms for the nonlinear interaction in a growing noise 
in piezo -semiconductors was first established in [4 J. 
Now we see that the Peierls terms are small only in a 
wide noise beam, whereas on narrowing of the beam 
some of the Peierls terms (the indicated four diagrams) 
increase and by the order of magnitude become equal 
to the non -Peierls one. 

Let us note that if, for some reason, the four -phonon 
non -Peierls interaction is absent in the system, then 
the beam narrowing will give rise to an extremely dras
tic (of the order of w/y) change in the nonlinear inter
action (which under these circumstances would be pure
ly Peierls). In the instance of plasma this situation was 
recently discussed in an interesting work by Fisher and 
Hirshfield [ 11 J. 

The enhanced Peierls diagrams correspond to an 
interaction via the second harmonic in the nonlinear 
theory of the sound signal amplification. [6 J If the dis
persion of the sound velocity is large, so that W2q 12wq, 
then the Peierls terms do not grow as the beam gets 
narrow (and for the signal case there is no interaction 
via the second harmonic). However, even in this simpler 
case Eq. (2.30) becomes unsuitable on narrowing of the 
beam. A comparison between the non-Peierls terms in 
a signal and in a noise (for q = q') shows that they agree 
to within a factor of 2. There is no accident in the oc
curence of this factor: it reflects a profound difference 
between the statistical properties of a noise and a signal. 
The dissimilar behaviour of a coherent and incoherent 
radiation is well-known in the nonlinear opticS[12 J8): the 
n-th order nonlinear effects for an incoherent (Gaussian) 
source are n! times higher than the same effects for a 
coherent radiation.g ) Our situation is completely analo
gous in this sense. It is particularly apparent from 
diagrams for the signal amplification factor. The inter
action procedure for solving the system of equations 
for a sound signal interacting with an electron density 
(see[6 J) can be represented in a diagram form with the 
help of the above -introduced symbols. The nonlinear 
diagrams for the signal amplification will differ from 
those for the noise only in that their acoustic (phonon) 
lines are unclosed. (An example of such a graph is dis
played in Fig. 21). Closing these lines, we get the for
mer noise diagrams. The number of ways to close an 
n -th order diagram equals exactly n! 

Let us find out now which of the processes (besides 
the Peierls ones) disregarded in the derivation of (2.30) 
become important as the beam gets narrow. An exam
ple of an increasing non-Peierls diagram is given in 
Fig. 22. The four -phonon electron arrows in it are con
nected to each other by more than one phonon line. Let 
us compare this diagram with that (Fig. 23) incorporated 
in Eq. (2.30), which describes a successive interaction 
of a given phonon with two other ones (through waves of 
the electron density). The new diagram in Fig. 22 de
scribing the simultaneous phonon interaction, and the 
old one in Fig. 23 differ in the section between the elec
tron waves (which expresses the conservation of energy, 
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or frequency, of phonons). For the old diagram this 
section equals l/s, for the new (s - i.:lwtl, where .:lw 
= Wq + wq' - wq" - Wq+q' _q'" If the spectrum is wide 
(the spread of wq is 01 the order of Wq itself), then the 
ratio of the contributions of these diagrams is by the 
order of magnitude equal to s/w ~ Y /w « 1 (s ~ Y is the 
reciprocal of the evolution time of the phonon system) 
and hence only the successive interaction is essential. 
Thus, the validity criterion for Eq. (2.30) is 

(5.3) 

For .:lw ~ Y the contribution of the new diagram is of 
the same order as that of the old one, and for the self
action q = q' = q" these contributions are exactly the 
same. 

The phonon energy in our system is determined to 
within y. Thus, the criterion .:lw » y implies that the 
interaction prevails over the self -action. The self -ac
tion' which increases as the beam gets narrower, can 
produce more radical changes in the phonon system than 
the nonlinear interaction accounted for in (2.30). For 
example, the processes shown in Fig. 22 (and more 
complicated ones of the same type) are responsible for 
the change of the statistical properties of the phonon 
system in a transition from noise to signal. The latter 
question, which is little connected to the specific char
acter of a piezo-semiconductor (i.e. to the concrete 
type of the wave interaction), will be considered by us 
separately. Here we note only that inclusion of the sim
ultaneous self-action at q' = q eliminates the factorial 
factors from the expansion of the nonlinear amplifica
tion factor in powers of the intensity N q (for the first 
nonlinear correction, this is the above -mentioned factor 
of 2). Besides another disparity between the signal and 
the noise amplification factors, which is rather subtle, 
disappears at q' = q: namely, the resonance denominator 
(see (5.2)) for the growing Peierls terms contains the 
sum of the linear amplification factors Y2q + 2Yq, where
as the corresponding expression for signaI[6] involves 
the difference Y2q - 2Yq.lO) 

The authors are pleased to express their gratitude 
to Y. L. Gurevich and B. D. Lalkhtman for numerous 
discussions and valuable critical remarks. The authors 
are grateful to A. G. Aronov, O. Y. Konstantinov, and 
Y. L. Perel' for an interesting discussion. 

I)It is interesting to note that the Peierls terms correspond in the limit 
to the interaction via the second harmonic in a coherent wave, de
scribed in [6). 

2)It is more convenient for us to consider the spactially-uniform case. 
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The transition to a more realistic situation of the spactially-growing 
noise is trivial. 

3)The direction of q' need not be reversed since this would merely pro
duce the complex conjugate to the expression already derived. One 
should just take twice the real part of the latter. 

4)The diagrams should be read from future to past, i.e. from the right to 
the left; therefore, the order of the symbols in the formulae is opposite 
to that of elements in the diagrams. If the tensor J.lik is symmetrical 
(which is not true in general), then the order of q and q' is immaterial. 

S)The results coincide with that calculated in [4) by another method, if 
uik in [4) is understood as the differential conductivity and X2 is de
fined as equal to 41TU/D. 

6)The phonon system evolves slowly compared to the electron one. The 
operator I!p varies with the rate of this evolution and describes the re
sponse to a rapid perturbation of frequency w > 'Y. 

7)Wonneberger starts with an equation for the electron density in an 
acoustic field and, subsequently, averages it. The diagram technique 
obtained is similar to ours. 

8)We are grateful to V. I. Perel' who drew our attention to these works. 
9)There is no "coherent-incoherent" mysticism in this factorial; just the 

possible large intensities in a Gaussian source contribute more to the 
nonlinear effects than to its mean intensity. 

IO)This disparity reflects the difference in the interation procedures ap
plied: for the case of noise, the sum of the coefficients results, roughly 
speaking, from the integration over time of the product u~ u~, where
as for signal the difference appears in the solution of the e~uation of 
motion for U2q' which contains u~ in the right-hand side. 
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