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The general solution is considered of the problem of arbitrary order scattering, near the critical point, 
of electromagnetic waves in a medium, whose anisotropy is caused by an external field. The general 
results of the electrodynamic calculation are applied to the study of single and double scattering and 
the resultant "interference" effects. The singularities of these effects are analyzed by using the results 
of the scale transformation theory and the expressions for the correlation functions of the scalar 
order parameter of an anisotropic medium. Some possibilities of an experimental study of critical 
opalescence in the double scattering approximation are discussed. 

The construction of the generally accepted theories 
of critical opalescence (the anomalous scattering of 
light, x-rays and neutrons near phase transition points 
of first order and critical points) takes only Single 
scattering of the radiation into accounty,2) However, 
as the critical state is approached, correct description 
of the phenomenon of critical opalescence requires 
consideration of higher-order scattering effects. 

Near the liquid-vapor critical point, it is necessary 
to take into account an additional important fact con­
nected with the lowering of the symmetry (disturbance 
of isotropy) of the medium under the action of the ex­
ternal field in the experimental situation usually in­
volved. This circumstance has been considered in an 
investifiation of single scattering of electromagnetic 
waves 3) and the structure of pair correlation functions 
of the fluctuations of a scalar order parameter [4] near 
the critical point. 

In the present study, the results that were obtained 
previously have been consistently applied to the descrip­
tion of scattering effects of higher order near the criti­
cal point in an optically inhomogeneous medium ren­
dered anisotropic by the external field. 

CALCULATION OF i-FOLD SCATTERING 
The process of propagation of electromagnetic 

waves in an optically inhomogeneous medium with 
E = E(r), IJ. = 1 is described by the equation 

tiE+ ko'eE- V ('liE) =0, 

from which follows a closed system of coupled differ­
ential equations for the fields Ei of different orders 
of scattering: 

tiEo+ko'eoEo-V (VEo) =0; ( 1) 

tiE,+ko'eoE,=«I,_,- V (E,V In eo), «I,=-ko'e'E,- V ( ~o E.Ve'). (2) 

Here ko = 21T/X, E = Eo + E', Eo(r) and E'(r) are the mac­
roscopic and fluctuating parts of the dielectric permit­
tivity, i=l, 2, .... 

We assume that the scattering takes place in a plane­
parallel layer -Lz:S z:S Lz that is inhomogeneous in z, 
with normal incidence of the exciting wave Eo on the 
boundary z=-Lz . We shall also assume the inhomo­
geneity created by the external field to be macroscopic 
in the sense that its characteristic dimension Ro 
~ I V In Eol- 1 satisfies the inequality Rl» Rc , where Rc 
is the correlation radius of the density fluctuations. 
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The field of the exciting wave in the volume of the 
investigated layer can be found by the WKB method, 
the criterion of applicability of which is the condition 

I Veo I/ko«l ( 3) 

(the equivalent criterion T= (T-Tc)/Tc» 10- 3 was ob­
tained ealier [3]). The field is given by 
l' • 

Eo(z) = eo';' (z) {A exp [iko S eo'l'(z')dZ'] +B exp [ -iko S e;I'(z')dZ']} . (4) 
-~ -Lz 

To find the ith-order scattered wave, we write down 
the following integral equation, which is equivalent to (2): 

E,(r) = S G (r, r') («Ii-1 (r') - V' (E,(r') V' In eo (z'» ldr'; (5) 

here G(r, r') is the Green's function of the operator 
of the left side of (2), which, in the smooth-inhomogeneity 
approximation 1) , has the form 

GQ(r,r')=- 11 'lexp[ik,e,'I'(z')lr-r'I]. (6) 
4" r-r 

After the obvious transformations in, (5), under the 
wave-zone condition 

koe';' (z') I r-r' I ~ 1 

we get for Ei, with account of (3): 

(7) 

E,(r) =-ko' S e' (r,)Go(r, r.) tn, x [Ei-1 (r,)X D,]]dr, (8) 

and, Similarly, 
1 

H,(r) = iko [VX Ed =-ko' S e' (r,)e;" (z,)Go (r, r,) [D,xE,_, (r,) jdr" (9) 

where ni is a unit vector directed from the point of 
ith-order scattering to the point of observation. 

In what follows, it is convenient to define the Umov­
Poynting vector, which has direct experimental interest: 

<8,,)= 8~'l Re{ <[E,XH,']>+ f, (<[E,X:H;']>+<[EjXH;]» }. (10) 
j=O 

The first term in (10) represents "pure" ith-order 
scattering, and the rest the so-called "interference" 
effects. In the general case, the accuracy of calcula­
tions of the terms in (10) depends on the explicit form 
of the multipoint correlators 

g,+", (r" ... , r" r/, ... , rm') = < IT tip (r.) IT 6p (r.') ) (11) 
R=l 

(l + m:S 2i), where the angle brackets denote averaging 
over the locally equilibrium distribution function (iso­
thermal case). [5] The structure of (11) for an arbitrary 
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configuration is unknown at the present time near the 
critical point. However, the wave-zone condition (7), 
applied above in the electrodynamic calculation, allows 
us to use the asymptotic expressions obtained in a num­
ber of studies [6-10] for the correlation function of the 
Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) theory 
and the correlation function of Ursell-Mayer, which 
corresponds to the removal of one group of particles 
from another to a large distance. 

Unfortunately, the temperature criterion of the WKB 
method does not allow us to apply the results of Poly­
akov, [11] who found an explicit form of the 3-point cor­
relators on the basis of the hypothesis of conformal 
invariance of the critical fluctuations and imposed lim­
itations on the structure of the 4-point correlators at 
the critical point. The general formulas of this section 
will be used below for calculation of single and double 
scattering with their interference effects in an aniso­
tropic medium close to the critical point. 

SINGLE-SCATTERING APPROXIMATION 

We shall assume that a study of the scattering ability 
of a material in a near-critical state can be carried out 
in the Single-scattering approximation. In the case of 
pure single scattering, we obtain for (S~l)' using the re­
sults of [9,10] and assuming that the linear dimensions 
of the scattering volume are much smaller than the dis­
tance from it to the point of observation (2Lz «L, 
n{ '" n1), 

(S"O)=_C_ (!:{)' (p~)' D,(i-(D,mo)'] • 

8" 4" op T L' (12) 

x ReS g,(r" r,') e;h (z,') exp{ikoeo'I,(z,') (D, (r,-r,'» lEo (z,)Eo' ~z,') dr, dr,', 

where mo is the polarization vector of the exciting 
wave and L is the distance from the scattering volume 
to the observation point. 

Transformations in (12) similar to those used in [3] 

give the following expression for the intensity of pure 
single scattering II = n1(S~1): 

(13) 

where Io=cIAI 2/81T is the intensity of the incident light 
beam of cross section a, 

" ( oe)' a(z''')=2J,.'' Pap /BT~T(Z,,,), 

w,(z,", D" Do)=i+lI(z, ,,)(i-(D,D,)), 
6(z, ,,)=8,,')..-'I'(z, ")~T(Z c), I'(z, ,)=p,bE,(Z, ,,), 

I3T(Z, r) = [PcbK~ff(Z, r) r1 is the local value of the iso­
thermal compressibility, and no = {O, 0, e3} is the direc­
tion of the incident exciting wave. In obtaining (13), we 
did not take into account effects connected with the re­
verse wave in (4) 2) and the expression (from [4]) used 
for g2(rl, r{) was of the form 

(14) 

Here 

%eff(Z, ,,) =[b-',,-'dG(y(z, ,,))/dy)'l' 

is the inverse correlation radius of the denSity fluctua­
tions, G(y) is the scale function of the equation of state 
of Similarity theory,c12-15] and b is the coefficient in 
front of the gradient term in the expression for the fluc-
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tuation part of the free energy;[4] ')I'" 1.25 is the critical 
index of I3T( r). 

In studies of single scattering in an inhomogeneous 
medium, the experimental information should be taken 
from a layer in which the properties of the system differ 
insignificantly in the different directions. The differential 
intensity of radiation singly scattered in such a layer of 
"local isotropy" (the corresponding criteria are given 
in [3]) has the form 

dI, 2ncr a(z,,,) ( ( )') -=/0--=-:-1 1- fi l mo) . 
dz L' w,(Z,",D"D,) 

( 15) 

on the basis of (13). In the case of a homogeneous sys­
tem, 

G:-+A, E,(z,,,)-+e,, %:ff(z,,,)-+A,,'/b, 

~T-'(Z, ,,)-+p,A,,' 

and Eq. (13) becomes the well-known formula for the 
intensity of single scattering of the Ornstein-Zernike 
theory. [1,2,16] 

The second and third terms in (10), which describe 
interference effects, vanish in the model of Gaussian 
fluctuations. However, in a model that takes into ac­
count the small departure from a purely Gaussian dis­
tribution, these interference effects turn out to be dif­
ferent from zero. In particular, the use of the quasi­
Gaussian macroscopic distribution function of [17 ,18] 
shows that the interference effects of first order appear 
only in the direction of propagation of the exciting wave: 
11/2 - gl(n1 = no). A thermodynamic estimate of the zeroth 
Fourier-component of Single-point correlation function 
of the denSity fluctuations in this model gives 

g, (D,=Do) ~ (iJ'Jl/op') T (OJl/op) T -'. 

This result gives reason to doubt the advisibility of 
using the quasiclassical-fluctuation model in what fol­
lows to calculate correlation functions of odd orders, 
since interference effects of first order should be ab­
sent, being determined by the linear fluctuation, which 
is identically equal to zero. 

THE DOUBLE-SCATTERING APPROXIMATION 

We first carry out the double-scattering calculation 
in the pure scattering approximation, which is con­
nected with the first term (Sg2) in (10) for i=2. Using 
(9), (10), we get the following expression for the in­
tensity of pure double scattering 12 = (n2(Sg2») in a volume 
V whose linear dimensions are much less than the dis­
tance from it to the point of observation (Ir-r21 '" Ir-r;1 
"'L, n;"'n2): 

I, =-=-(~)' (p~)' Re Sg,(r" r"r,',r,')e;h(z,')eo'l,(z,') 
8n 4n o'p T 

x E,(z,)Eo' (z,') Ir,-r,I-' Ir,' -r,' 1-' exp{ik,[e;I,(z,) 1r-r,1 
+e;I, (z,) Ir,-r,l-e;I, (z,') Ir-r,' 1-8;1, (zt') Ir,' -r,' I]J 

X{lm,I'-(D,m,)'-(n,mo)'-(n,'m,)'+(n,mo) (n,'m,) (n,n:) 
( 16) 

+ (ii,m,) (n,D,) (D,m,) + (n,m,) (n,'D,) (D,m,)-

where n1 and n{ are unit vectors that indicate the di­
rection of the first scattering act inside the volume V 
over which the integration in (16) is carried out. 

We consider in more detail a configuration of four 
fluctuations whose contribution is dominant within the 
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framework of the assumptions made previously, namely: 
two pairs of fluctuations, with distances between the 
pairs R1 = r1- r{ and ~ = r2 - r; of the order of the cor­
relation radius Rc , are separated by a distance 
Ir2-r11'" Ir;-r{1 that satisfies the wave-zone condition 
(7). For this configuration, we obtain the asymptotic 
structure of the 4-point correlation function of the 
density fluctuations g4( r1, r2, r{, r;) by using the results 
of Lebowitz and Percus:[6J 

A 

where P is the operator of the sum of cyclic permuta-
tions of the points, F l(r) is the one-component corre­
lation function of BBGKY theory, p = N/V is the mean 
density of the system, and N is the number of parti­
cles in the volume V. 

The first term in (17), corresponding to the Gaussian 
fluctuation model, makes the basic contribution to h, 
which has the following form if we conSider only the di­
rect exciting wave in (4) and expression (14) for g2(r, r'), 
and carry out the integration in (16) over R1 and ~ in a 
volume V» Rt , 

0-[ 4n' J drt'dr,' w, (iit', mo, D,) 
1'-0- _ 

L2 Ir/-r/12 Wo(Z/,T,DI',no) 

a (zt' ;1:) a (z,', -r) e,'" (z,') 
x--------~~~~~--~~-------

1 +'/,/) (z,', -r) eo-' (z,') I e,'" (zt') Dt' -e,'" (zz')D,I' 

w, (n.', mo, D,) =1- (D,m,) '+ (ii/m,) '- (~'m,)' (;;/D,)' 
+2 (n.'m,) (ii.'D,) (D,m,). 

( 18) 

The results of calculation of the contributions of the 
remaining terms of (17) to the total intensity hare 
given in the Appendix. As the estimates show, in the 
temperature range T» 10-8 determined by the criterion 
of applicability of the WKB method,L3J the values of 
these contributions are found to be negligibly small in 
comparison with (18). 

For analysis of the experimental information ob­
tained for scattering on layers possessing local iso­
tropy, as in the Single-scattering apprOXimation, it is 
convenient to use the differential intensity dIg/ dz, for 
which we have from (18) 

dl,' = 10 4n'v J a' (z, -r) eo'" (z) w, (ii" .~" D,) dQ, 

dz L2 11 Wo (z, 'T, fill fin) Wo (Z, 't", nt, H2) , 
(19) 

where v is the volume of the layer of local isotropy. 
Here the integration over the solid angle sums over the 
directions iiI the single scatterings in the given layer 
of local isotropicity that are responsible for the pure 
double scattering that escapes to the receiver. 

In a homogeneous layer, we get the following from 
(18) for Ig in the volume V: 

8n'VL,l'e, 
1,'=1, L' a'(-r)i.(-r,m.,D"D,), 

. J WI (nh IDo, Dz) !.(-r,mo,D.,D,)= _ _ dQ. 
n wo('T, nit Do)Wo('t, n l , O2) 

Far from the critical point, when the parameter 

(20) 

1) = 0 (the Rayleigh-Einstein approximation), the intensity 

523 Sov. Phys.-JETP, Vol. 40, No.3 

of pure double scattering for natural incident light is 
described by the formula 

RE 8n'VL,e,''' 
I, (Tt)=lo 15L' ,a'(-r) (11+7 cos'Tt). (21) 

It is seen from (21) that the scattering function lItE is, 
as is to be expected, a smoother function of the scatter­
ing angle J. than the function I¥E(J.) - 1 + cos2 J.. 

With the approach to the critical pOint, in the range 
of temperatures in which we can neglect correlation ef­
fects, the intensity of double scattering (21) increases 
in proportion to i3~ - r- 21'. It must be noted that neglect 
of correlation effects results in singularities in the 
manifestation of the gravitational effect in the liquid­
vapor system-singularities which consist of a sharp 
decrease in the spatial region of the "true"critical 
state as T - 0.[19 J Outside this region, which is im­
mediately adjacent to the level with maximum denSity 
gradient, the system can be regarded as apprOXimately 
macroscopically homogeneous, and the calculation of 
double scattering can be made with sufficient accuracy 
from the formula (21), even for temperatures very close 
to critical. 

We consider the formula (20) for n2 '" Do (forward 
scattering). In this case, the integral is easily calcu­
lated and we get for I~ (apprOXimately) 

1 '( ) 16n'VL, a'(-r) "[ () 1 ()] , D,"'D. =I.--------e,· Il -r --In/) , . 
L' /)'(-r) 2 

(22) 

It is then seen that 1~(n2 '" Do) contains two singular con­
tributions proportional to i3T and In i3T. This result is 
in qualitative agreement with the conclusion of [10J, 
which considered a configuration of two pairs of points 
compressed to molecular separation distances within 
each pair (Ir1- r{1 '" Ir2- r;1 '" ao) and separated by a dis­
tance Ir1- r21 '" Ir{ -r;1 '" Rc. As is shown in [10J, the 
4-point correlation function of such a configuration for 
a homogeneous liquid near the critical point gives two 
contributions: a slowly dec reasing one, connected with 
the singular behavior of the susceptibility i3T, and a 
more rapidly decaying one, connected with the Singular 
behavior of the speCific heat cV. The Singularity of 
cV- r- a (a'" 0.12) is similar in character to the Singu­
larity of In i3T -In T. 

In the immediate neighborhood of the critical point, 
the most important configuration is that for which all 
the distances between the fluctuations turn out to be of 
the order of Rc. An estimate of the prinCipal contribu­
tion of this configuration to the expression for h evi­
dently requires the use of considerations of conformal 
invariance of the critical fluctuations, [11 J 

We now proceed to the study of second-order inter­
ference effects in (10) for i = 2. The terms determined 
by the second-order correlation function turn out to be 
negligible on the ground that they contain g2( r1, r2), in 
which the relative separation of the fluctuations I r1 - r21 
»A, in correspondence with the condition of the wave 
zone (7), since the important distances in g2( r1, r2) un­
der normal experimental conditions are I r1 - r21 '" Rc < A. 
Then, for the second-order interference terms 

(S,,) = _c_ Re{ ([E,XH,'] >+< [E,XH,'] >} 
8n (23) 

upon satisfaction of the wave-zone condition (7) between 
the points r1 and r2 at which successive scattering acts 
occur in the volume V, the principal contribution to (23) 
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is made by the configuration in which the strongly cor­
relating fluctuations are at distances Ir1- r{1 z Rc. For 
such a configuration, the use of the asymptotic expres­
sions of [6] for g3(r1, r2, r{) and Eq. (14) leads to the 
following expression for the differential intensity: 

dl'l. d I ( ) ( ) --=-,-(n,(S.,»= oB z.~ a Z,~ 
dz az 

{ alnb I alnx:ff al(a) I } x --I (a) ------- , 
iJp .=, ap aa a=' 

n' ( a8) kBTp'~T aFt (z) [1+ -'I. ( ) 1 d B(z 't)=-- p_ 80 z v, 
, L',} ap V iJp 

lea) = S (n,mo) (n,x [m:.xn,]) dQ, 
o a-1 +w, (z, 't, n" no) 

(24) 

where d is the thickness of the layer of local iso­
tropy.[3] The solid-angle integrals J(a) and &J(a)/aa 
at a = 1 sum over the directions U1 the single scatter­
ing in the volume which is responsible for the interfer­
ence contribution of second order registered by the 
receiver. 

Analysis of expression (24), like that of the corre­
sponding formula for the homogeneous case, shows that 
dh/2/dz turns out to be much less than dI2/dz, as is 
seen from the follOwing estimate for the region where 
one can neglect the correlation effects (0 « 1): 

dl"jdl, _~ 
dz dz N 

Moreover, dI3/2/ dz = ° at n2I1o = 1 and n2I1o = 0, i.e., 
second-order interference effects are absent, both in 
the direction of propagation of the incident light beam 
and in the perpendicular direction. 

DISCUSSION OF RESULTS 

The consideration that has been given to the problem 
of electromagnetic wave propagation in matter near the 
critical point reveals a strong dependence of the scat­
tering properties on the "field" variable (in the specific 
case of a gravitational field, on the height measured from 
the "critical" level with the maximum denSity gradient). 
It is at the critical level that the scattering ability of the 
material is an extremum at fixed T. Experimental inves­
tigations confirming this fact, the results of which are 
given in [19], show that, for example, at TZ 10-4 the in­
tensities of Single scattering at the levels z z ° and 
z z 1 cm differ by two orders of magnitude. A study of 
the height dependence of the scattering ability near the 
critical point, based on the use of the gravitational ef­
fect, contains valuable information (supplementing the 
now traditional studies of the temperature dependence, 
in which an attempt is usually made to eliminate the 
gravitational effect by any means) on the equation of 
state in the vicinity of the critical point, on the field 
critical indices, and so on. 

The study of light scattering in an optically inhomo­
geneous medium, as has been noted, is conveniently 
carried out in layers of local isotropy. For the geom­
etry considered here, this can be accomplished by ob­
serving the scattered radiation at an angle 1T/2 with re­
spect to the direction of the incident beam. In this case, 
for treatment of the experimental data in the approxi­
mations of single and double scattering, it is necessary 
to use Eqs. (15) and (19) for the corresponding differ­
ential cross sections, in which one should set nl' IIo = ° 
and fl2' IIo = 0, respectively. The choice of this direction 
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of observation is convenient also for the reason that 
here the contribution of the second-order interference 
effects is equal to zero (see (24)). 

Interesting experimental possibilities are inherent in 
study of the scattering ability of matter in an optically 
inhomogeneous medium in the double-scattering approxi­
mation near the critical point with the use of polarization 
effects. Thus, from Eqs. (15), at nl=mO and from (19) 
at n2 = mo, it follows that dIll / dz = 0, dI~1 / dz '" 0, while at 
nl, n21 mo and nl, n21 IIo, we have dIf7dz '" ° and dIt/dz 
"'0. The quantity dI3/2/dz is equal to zero in both cases. 
We propose to consider this question in some detail in 
the future. 

We have given a general solution of the problem of 
scattering of radiation of arbitrary order. The only ap­
proximation used in the calculation was the wave-zone 
condition (7), which selects periodic solutions of Eq. (2) 
far from the scattering center. In the temperature inter­
val determined by the WKB condition (3), this condition 
required the use of asymptotic expressions for the cor­
relation functions of the type (17). As a result, it turned 
out that the character of the Singularities is about the 
same for II, h/2 and h; it is described by the behavior 
of the isothermal compressibility. It must be noted 
that in the immediate vicinity of the critical point, 
where Rc» A, condition (7) does not impose any limi­
tations on the structure of the correlation function. 
Here formulas (8) and (9) are exact. However, their use 
requires, firstly, knowledge of the structure of the mul­
tipoint correlation functions at the critical point and, 
secondly, solution of Eq. (1) for the excitin~ wave Eo 
under the condition that the derivative &Eo/&Z -00 at 
the point z = ° as T - 0. 

APPENDIX 

The contribution of the correlation departure g4- g2g2 
from expression (17) to the intenSity h is found with the 
help of the relation 

iJg, (r" r;) a 
~--- = - g,(r" r;)-[ln b+lr,-r;lxeff (Zit 't) l. 

ap ap 

For simplicity of presentation below, the results of the 
calculation are given only in the homogeneous case. 
The contributions of the second and higher terms from 
(17) are equal to 

!!..)= kBTp'~T {( a lnb) '+~ a lnx'('t) i. 
1,0 V ap ap iJp io 

+ (iJ lnx'('t) ) '~} 
ap i o ' 

1,(') 4nV(aF,'lap)'p6D • D , 

y.;= , 
1,(3) 16nVF,'[1-(n,mo)'l 

11= kBT~Tio 

i, = f w, (n" mo, n,) [wo-' ('t, ii" no) wo-' ('t, ii" n,) 

+w;' ('t, ii" no) w;' ('t, ii" n,) 1 dQ, 

i, = S W, (ii" mo, n,) w;' ('t, ii" no) w~' ('t, ii" n,) dQ. 

(A.1) 

The integrals io, il and b are calculated in a specially 
chosen orthogonal basis. For small scattering angles 
(n2 zno) 

io =~ (6 -~ln6), i, =l:::.(6'-~6 +~ln6), 
6' 2 6' 2 4 

i, = :;, ( 6' - + 6 ) . 
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In the temperature range T» lO-s , the contributions 
(A.l) to 12 turn out to be small, as shown by the esti­
mates 

[,(!) 1[,'-'cTN-l, I;') 1[,'_-r;T{jN-l, 

[,(') 1[,'~-r;T{j-l. 

Here the maximum value of the parameter 5( T), which 
corresponds to T'" lO-s , using Pc'" 107 dyn/ cm2, 
A= 5 X 10-5 cm, and f* = 10-9 dyn [20], is of the order of 
102 _103 • 

I)ro find the exact Green's function G(r, r'), the method developed 
in [4) for the operator L = -t,. + k~Eo can be used. 

2) As a consequence of allowance for the backward wave, the single-scat­
tering cross section at the critical point diverges in the direction of a 
scattering angle of1T. [3) 
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