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The fluctuations in a plasma in the presence of a strong electric field are computed with allowance 
for the polarization of the plasma. In a high-frequency field, the difficulty in taking the polarization 
into account is due to the nonstationarity of the fluctuation process. An expression with allowance 
for the polarization of the plasma is found for the collision integral in a strong field. The 
conductivity of the plasma is computed on the basis of the obtained kinetic equation. It is shown 
that at field frequencies close to the Langmuir frequency the conductivity becomes field dependent at 
comparatively low intensities. 

The kinetic equation for a plasma in a strong electric 
field has been considered by Silin and Balescu [1J in 
perturbation-theory approximation in the interaction. In 
zero field, this equation coincides with the Landau kinetic 
equation. 

Allowance for the effects of the polarization of the 
plasma in the presence of a strong high-frequency field 
has so far not been carried out. This is due to the fact 
that the fluctuation process, which determines the colli
sion integral, is, owing to the influence of the field, non
stationary, as a result of which the problem of deriving 
the kinetic equation becomes significantly complicated. 
In a weak field, allowance for the plasma polarization 
leads, as is well known, to the Balescu-Lenard collision 
integral [2, 3J • A computation of the fluctuations in a 
plasma in the presence of a high-frequency electric field 
has been carried out by Bychenkov et al. [4 J, but their 
calculations are not quite consistent, The investigation 
of the fluctuation processes in a plasma located in a 
strong electric field is the aim of the present paper. 

In the case of high field frequencies when the fre
quency Wo is of the order of, or higher than, the 
Langmuir frequency, the problem is solved in the zeroth 
approximation in the electron-to-ion-mass ratio. We 
derive in this approximation an expression for the non
stationary spectral density of the fluctuations in the 
field, and determine the form of the collision integral 
that, in a weak field, coincides with the Balescu-Lenard 
integral. On the basis of the obtained kinetic equation, 
we compute the electrical conductivity in the strong field 
with allowance for the polarization. In a weak field, the 
expression for the equilibrium-state conductivity coin
cides with the expression obtained in [5J by Pepel' and 
Eliashberg. In the limiting case of very high-intensity 
fields, but without allowance for polarization, the results 
agree with the results obtained in [6J by Silin. It is shown 
that for W ~ w L the conductivity is field dependent even 
at comparatively weak fields when the work done by the 
field over a mean free path is comparable to the mean 
kinetic energy, 

In the zeroth approximation in the ratio me /mi (me 
and mi are the electron and ion masses respectively), 
the plasma is stable in a high-frequency field. For the 
finite mass ratio the appearance of an aperiodic insta
bility is possible in an isothermal plasma (see [7J , Sec. 
8). In a nonisothermal plasma a parametric instability 
is possible ([7], Secs. 9 and 10). An instability obtains 
with respect to perturbations of wavelength much longer 
than the Debye radius. 
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There arises in connection with the possibility of the 
appearance of an instability the following question: Is the 
manifestation of the nonlinear field dependence of the 
conductivity found in the approximation me /mi = 0 possi
ble? As noted above, the nonlinear dependence is mani
fested already at weak fields for which eEl ~ KT (l is the 
mean free path). This condition can be written in the 
form E2/nKT ~ /1 2 (J.l is the plasma parameter). The 
critical field for the aperiodic instability is given by the 
condition E2/nKT ~ /1. Thus, for J.l « 1 the nonlinearity 
appears earlier than the aperiodic instability, In a non
isothermal plasma the parametric instability sets in 
when E2/nKT ~ (me/mi)112J.l' If /1 « (me/mi)ll2, then 
the conductivity of the nonisothermal plasma begins to 
be field dependent at fields at which the plasma is still 
stable, 

The fluctuations and the collision integral in the low
frequency (wo « wL) case are also computed for an arbi
trary field. The corresponding expression for the con
ductivity is derived. The conductivity in this case begins 
to be field dependent at substantially higher fields (the 
work done by the field over a distance of the order of rD 
should be comparable to KT). 

1. THE BASIC EQUATIONS. THE SPECTRAL 
DENSITIES OF THE FLUCTUATION SOURCES 

As the basic equations let us use the system of equa
tions for the phase densities in the coordinate and mo
mentum space of the individual components of the plasma 

Na(x, t)~ ~ o(x-x,,(t)), x~(r,p), 

and the microscopic intensity EM of the electric field. 
The equation for the distribution function fa = (Na>/na 
(na is the mean concentration) of the spatially homogene
ous plasma has the form 

( a i) ) ea a -+eoE(t)-a to(p,t)~---, -<oN"oE>~Io(p,t). at p na dp 
(1.1 ) 

Here E(t) is the external electric field. For concreteness 
let us assume it has the form 

(1.2) 

It follows from (1.1) that to determine the collision 
integral we must express the correlations of the fluctua
tions 6Na and 6E in terms of the functions fa' In the first 
approximation in the plasma parameter (in the polar~za
tion approximation) the equations for the functions 6Na 
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and oE can be written in the form [8J 

(~+v,~+e.E(t).!...) (liN.-liN~ )=-e,n,liE a/" at a. ap lip 

div liE=4n 1: e, S liN, (r, p, t) dp. 

(1.3) 

(1.4) 

The Eq. (1.3) determines the induced part oNa - ON~ of 
the function oNa that is proportional to oE. The correla
tion of the fluctuations ON~ in the source satisfies the 
equation 

( a a a ) s, at +va. +e,E(t)a; (liN,6N,>x,.x',.'=O, (1.5) 

which is solved with the initial condition 

(15N,BN.>x .• , x', "j ._,. ... (6N.6N.>x, x', " =n,6 •• 6 (x-x')/.(x', t'). (1.6) 

From Eq. (1.1) for the function fa(p, t) let us go over 
to the equation for the slowly varying function 

F,(P, t) =/. (P+e. i E (t')dt', t) =/.(P-~E cos Iil,t, t). 
_m roo 

From Eq. (1.1) follows the equation for the function 
Fa(P, t): 

where 

liF. I -=J.(P(t),t)== .(P,t) at 

P(t)~P-(e.llilo)E cos Iilot. 

(1.7) 

(1.8) 

Let us represent the expression for the collision integral 
Ia in the form 

e. a S I. (P, t) = -(-)-- Re (liN.llE).,p«) dk. 
2n 'no ap 

(1.9) 

It can be seen from the expressions (1.8) and (1.9) that 
in the first approximation in the plasma parameter j.J. the 
derivative of the distribution function is of the order of 
j.J.Fa' as a result of which the fast (vibrational) contribu
tions to the functions Fa are small when j.J. « 1. The 
slowly varying part of the distribution function is the 
dominant part. It can be separated out from the distribu
tion function by averaging the latter over the period 
27Tlwo. Below, unless otherwise stated, under Fa and Ia 
we shall understand the slowly varying parts of these 
functions. 

It follows from Eqs. (1.3) and (1.4) that the spectral 
densities of the fluctuations oNa and oE can be expressed 
in terms of the spectral functions of the fluctuations oNs. 
To find the spectral function (ONaONb)S, we turn to Eq. a 
(1.5). From it follows the solution 

(MV.liNb)X.',~,.'-,=n,lj"li (p-p'-e, SE(t')dt'),6 (r-r'-V"[ 
t_, 

- ~. S (t-,-t'lE(t')dt') /.( p-e. f E(t')dt', t-,). (1.10) 
1-1: f-t 

Recognizing that according to (1.7) 

f ( p-e. f E(t') dt', t-, ) =F. (P, t-,), .-, (1.11) 

we can express the correlations (1.10) in terms of the 
slowly varying functions Fa' 

For the ideal plasma (in the zeroth approximation in 
the retardation of the function Fa [9J), we obtain from 
(1.10) and (1.11) the following expression for the spectral 
density of the source of the fluctuations oNa: 

(6N.6N,) .'~'P,p"t=n,6 •• 2Re I 6 ( p-p' -e, j E(t') dt') 
o t_T 
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X exp (-Lh+i(lil-kV) T-i~ j (t-T-t')kE(t')dt'} dTF.(P, t).(1.12) 
maj _ T 

We shall need for the determination of the collision 
integral the expressions for the simpler spectral func
tions (oEoE)s and (oNaoE)s. For E(t) of the form given 
in (1.2) we find from (1.12) that 

(6N,6E).s. p(l)=i 4ne.n. k2 Re ~Sd"teXP{-tH+i(lil-kV)' (1.13) 
" k' 0 

-ia.[sin Iilo (t-,) - sin lilotJ IF, (P, t). 

To find from this the spectral density of the fluctuations 
in the field, we must take into account the fact that 

IlE S (Iil,k)=- ~~ 1:4ne.S6N.s ("',k,p)dp. 

In the expression (1.13) we have used the notation 

2. THE SPECTRAL DENSITY OF THE 
FIELD FLUCTUATIONS 

(1.14) 

(1.15 ) 

Let us now consider the spectral densities of the fluc
tuations oNa and oE at frequencies Wo ;:: we (we is the 
Langmuir frequency for the electrons). From Eqs, (1.3) 
and (1.4) follows the integral equation for the Fourier 
component oE(k, t) of the field fluctuation: 

~ 4ne.'n, ~ r . 
liE(k, t) -i ~ -k-' -SJ exp{-L\'t-ikV,-ia,[sllllil,(t-T) (2.1) 

• 
( aF,(p, t-T) ) S 

-sin Iilot ]l6E (k, t-T) k ilP d't dP=6E (k, t), 

where V = Pima' Below, it will be more convenient to 
use in place of oE(k, t) the functions 

Bp.(k, t)=exp(-ia.sinlil,t)i(kI)E(k, t»/4n. (2.2) 

Hence 

6p.«)),k)= 1: J.(a.)i(kliE(Iil-nlilo,k»/4n. (2.3) 

From (2.1)-(2.3) follows an infinite system of alge
braic equations for the functions oPa(w, k): 

6p.(Iil,k)+4na.(Iil,k) 1: 1: J. (a.,) Ilpb (Iil-llilo, k) =6p.s (Iil,k), (2.4) 

where O!a is the polarizability (see below (2.8)). We have 
used here the notation 

(2.5) 

The system (2.4) corresponds to the system (2) of SHin's 
paper [10J. The system (2.4) for Wo ~ we can be solved, 
using perturbation theory with me Imi as the perturbation 
parameter. In the zeroth approximation, i.e., for mi 
= 00, we find from (2.4) that 

[ 6p,s (Iil+ (n-m) "'" k) 
lip.(Iil,k)= ~~Jn(a,)Jm(a,) - e(",+n"",k) 

e(Iil,k)-1 S 1 --'-'--'--- lip (Iil+ (n-m) Iilo, k) , 
e("" k) , 

(2.6) 

lipi (Iil, k) =6p~ ("" k). (2.7) 

Here 
( ) 4ne'n,s kliF,(P,t)/ilP 

e w,k =1+-- , dP 
k' ",-kV+it1 

(2.8) 

is the permittivity in the approximation mi = 00. 

From (2.6), (2.7), and (2.2) follows the solution to Eq. 
(2.1) in the approximation mi = 00: 
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- 1 
6E(k,t)= S (-) exp{-ia,[sinwo(t-,)-sinwot]J6Es (k,t-,)d-r. 

e k' , (2.9) 

Thus, we have expressed tiE(k, t) in terms of tiEs. In 
(2.9) 

( ~) =j_1_e'.'dw. 
e k.' 0 e(w,k) 

(2.10) 

From Eq. (2.9) and the expression (1.13) we find the 
spectral density of the fluctuations in the field: 

(4n)'e'{s n,F,(P) ·S- S~ 
(6EIiE)"'=--k-'- dP le(kV,k)I'+ ° d-r, d-r'dP 

x( 1) (~)' exp{;kV(-r-,') -ia,[sin (JJo(t--r) -sin wot] In,F, (P, t)} . 
E k,T e k,T' 

(2.11) 

The first term in this expression determines the con
tribution of the electrons, the second term that of the 
ions. The contribution of the ions to the spectral density 
depends explicitly on the fast time. From (1.19) we find 
the averaged (over the period) spectral density: 

(6EIlE) - (4n)'e' {JdP n,F,(P) . ~, n,} 
k"--k-'- le(kV,k)I' + .t. .. / n (a,) le(nw"k)I" 

n (2.12) 

Here we have used the fact that Fi (V) = ti (V). The ex
pression (2.12) determines in the zeroth approximation 
in me/mi the distribution of the electromagnetic fluctua
tions in the plasma in the presence of a strong high
frequency field (wo '2: we)' Only the second term, which 
determines the ionic contribution, explicitly depends on 
the field. It has a resonance character. 

3. THE COLLISION INTEGRAL FOR wo~ We 

From Eqs. (1.3) and (1.4) we find the equation for the 
Fourier component of tiNa: 

( e£ ) s (e. ) liN. k,p-~cosw,t,t =6N. k,p-~Ecoswot,t 

-e.n. f d-r exp{-d-r-ikv,;-ia,[sin wo(t--r) 

. of.(P, t--r) 
-smwot]J6E(k,t--r) . (3.1) 

<iP 

Substituting into this expression the expression (2.9), 
which is the solution to Eq. (2.1) for mi = 00, we express 
the functions tiNa(k, p, t) in terms of tiNS and tiES. Using 
the expressions (1.12) and (1.13), we canaderive from 
(3.1) and (2.9) an expression for the spectral density 
(tiNatiE)k,p,t· 

Let us substitute this expression into (1.9) and aver
age it over the period 21T/Wo. We obtain as a result an 
expression for Ie' We can represent it in the form 

1,=1 .. +I,,, (}F,!{}t=I,. (3.2) 
Here lee is the electron-electron collision integral: 

1 -2' a·S k"k~ li(kV-kV') {aF, ,aF, }' 
,,- en ap. k' le(kV k) I' ap-F,(P )-fj[YF.(P) dP dk. 

, , , (3.3) 

This expression coincides in form with the Balescu
Lenard collision integral [2, 3J • 

The electron-ion collision integral lei is determined 
by the expression 

_ 22 a ~ f k.k, 
1,,-2e, e n, uP • .:... dkJ;lln(a,)lm(a,) (3.4) 

n,m=-oo 

x ll(kV-kV') ei(n-m)." aF,(p, t) 
e(mwo,k)e'(nwo,k) ap,' 
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This expression explicitly depends on the fast time, and 
contains all the harmonics of the external-field frequency 
Woo Averaging (3.4) over the period 21T/Wo, we obtain 

I -2 " a S k.k, L" ( ) 6 (nwo-kV) iJF, 
d- eeint- -- n ae dk 

iJP. k' n le(nwo,k) I' ap, . 
(3.4') 

If we neglect the polarization in the expressions (3.3) 
and (3.4), then they coincide (in the approximation m· 
= 00) with the Landau collision integral with allowanc~ for 
the influence of the field. The collision integral I pos-
sesses the properties e 

n, S <p(P)I, dP=O for '1'=1, P, (3.5) 

which guarantee the fulfillment of the laws of conserva
tion of the particle number and the momentum of the 
plasma. 

Let us consider the energy-balance equation. For an 
ideal plasma we find from Eq. (1.1) that 

iJ ~ S p' at ~ n. 2m. /. dp=jE. (3.6) . 
Using the definition (1.7) for the function Fa' and noting 
that according to (1.8) the dominant contribution is made 
by the mean value of the function Fa over the period 
21T/Wo, we find from (3.6) the averaged energy-balance 
equation: 

a P' 
-a ~ n. S-F.dP=IE. 

t ~ 2m. 
(3.7) 

The collision integral lee does not make any contribution 
to the energy-balance equation; therefore, it follows 
from (3.7) and the kinetic equation (3.3) that 

P' aE' 
n·S-I"dP=jE",,-, 

2m. 2 
(3.8) 

where a is the electrical conductivity at the frequency 
Woo 

4. CALCULATION OF THE ELECTRICAL 
CONDUCTIVITY 

Let us substitute into (3.8) the expression (3.4) for 
the collision integral and use as the function F (P) the 
Maxwell distribution function. As a result, we ~btain the 
following expression for a: 

a(E)E' 4l'2:rt e' 00 'm .. dk 
2 (XT,)'J~' .Ee.'n.wo'm,'I'.E S 7 exp [-n'1(w.,k)]. 

IX n=-oo 0 

X SI d n'ln' (a,x) 
o x le(nwo, k) I' ' 

a,=e,kElm,mo', m,wo'/2xT,k'=1 (000, k). (4.1) 

It follows from this expression that the field can be con
sidered weak if ae « 1 in the entire k-integration do
main, i.e., if 

(4.2) 

Let us consider as an example the case when Wo = we' 
Since kmax /kmin ~ 1//1 ~ rn KT e /e 2 (where /1 is the 
plasma parameter), the condition for the field-intensity 
E to be low can be written in the form 

eElIxT«-1, l=rn//l. (4.3) 

Thus, for Wo ~ we the dependence of the conductivity on 
the field begins to be felt at fairly weak fields, at which 
the work done by the field over the mean free path I is 
comparable to KT. 

At low frequencies (wo « we) the field can be consid-
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ered to be weak (see Sec. 6) when 

(4.4) 

For weak fields (i.e., for fields satisfying the condition 
(4.3)) the expression for the conductivity assumes the 
form 

l'"2n""' ro,' e' 1 \"1 , .... S· dk exp [ -"( (ro" k) I 
G=3n~ (xT,)" m.'h £ ... /' n • . k le(ro"k)I' 

• 0 

(4.5) 

This expression coincides with the expression obtained 
by Perel' and Eliashberg in [5J, where they compute the 
conductivity for the equilibrium plasma with allowance 
for the polarization. If we neglect the polarization in the 
expression (4.5) (i.e., if we set E = 1), then the expres
sion coincides with the one obtained by Silin in [6J. For 
we »wo the polarization in (4.5) does not play any role. 

The integral is truncated at small k because of the 
exponential factor under the integral sign (kmin 
~ WO!vT)' In the opposite limiting case, when Wo « we' 
the expression (4.5) assumes the form 

Y2n ro,' e' 1 , 'm., dk 1 
G= ~~ (xl',)". m;t.E e. n. S k HrD'k'· (4.6) 

u , 

Let us consider the case of strong fields (i.e., the 
case when ae » 1). From (4.1) we find the following ex
pression: 

(4.7) 

Here we have introduced the notation: 

A(ro)=\"1·moS'dk exp[-n',(ro"k)] n'{S'J 2 ()d 
o ~ k' Ie(nroo,k)I' n Y Y 
nO, 

- 11k 
+ S [J.'(Y)--]dy+-In-}, 

i ny 1t k max 

B«(~o)= \"1'mS"
dk exp[-n',(ro"k)] n' 

~ k' le(nOlO,k) I' n 
n , 

The strong-field conductivity calculation carried out 
without allowance for the polarization in Silin's paper [6J 

leads to the same field dependence. Allowance for the 
polarization (for W < we) leads to the convergence of the 
k integrals in the expressions for A(wo) and B(wo). 

For w »wo and A « B ln (kmaxeE/mwg) the expres
sion (4.7) assumes the form 

32l' n \"1, ro, kmueE { Yn _ , } I 00 'f ( ) a= -- ene .i....J eo no -3 In --, - erf x-xe x ,x= "(. 000, k max • 
n E m,.Ol, 2 , 

n (4.8) 
Notice that under the strong-field condition, when the 

expressions (4.7) and (4.8) are valid, eErD/KTe » 1, 
and the limitations on the field are very rigid. The con
ductivity then begins to be field dependent at consider
ably weaker fields when eErD/KT « 1, but eEZ/KT e ~ 1. 
This follows from the criterion for a weak field (see 
(4.2) and (4.3)). 

5. THE COLLISION INTEGRAL FOR A STRONG 
FIELD WITH w o« we 

Let us consider the influence of a strong monochrom
atic field of the form 

E(t) =E cos (,),t (5.1) 

on the collision integral. Such a form is convenient in 
that it allows us to also consider the case of the constant 

source in powers of WoT (T < 1/vTekmin ~ rD/vTe) and 
retain the linear and quadratic terms. The equations for 
the fluctuations oNa(k, p, t) and oE(k, t) get simplified 
accordingly. For example, 

6N. (k, p, t) =6N:: (k, p, t) -e.n. j exp{ -/l'-ikV't 
, 

. () Olo',;'} ~E( ) of. (p-e.E (t),;, t-,;) +/a. t -- u k, t-,; d,. 
2 op 

(5.2) 

Here we have used the notation 

a, (t) =e.kE cos Ol,tl m.Ol.'. (5.3) 

The collision integral is determined by the spectral 
density (ONaoE)w,k,p for the frequency region 

(5.4) 

Taking this and the fact that Wo « we into account, we 
can, in the zeroth approximation, neglect in (5.2) the ex
plicit time dependence through E(t), as well as the de
pendence of the distribution functions fa on the time. We 
then arrive at the following expression for the collision 
integral: 

\"1 2e.'e,'n.n, aS, k,k; 
J.(p,t)= ~ n' op, dOldkdp k'le(Ol,k)I' , 

X fd,; f d,' cos [ (Ol-kv),;+a.(t) OlO;" ] cos [ (Ol-kv'),; 
, 0 

Ol,'",] { of. Of,} +a,(t) -- -fo---, f. ; 
2 BPi 8pJ P{T),p'(t'),t 

p,(r)=p-e.E(t)'l:, po'(,')=p'-e,E(t)'l:'. (5.5) 

The permittivity is determined by the expression 

\"1 4ne.'n. 00 [ 

e(0l,k)=1-i ~-k-' -SS exp -/l,;+i(Ol-kv),; . , 

ro ',;' ] ( of) +ia,(t) -' - k-' d,;dp. 
2 op p(,l,' 

For E(t) = 0 the expression (5.5) coincides with the 
Balescu - Lenard integral. 

(5.6) 

The collision integral (5.5) possesses the properties 

/(t)= En.S <p,(p)J,(p,t)dp=O; <p,=1,p,p'/2m,. (5.7) 

The collision integral can be substantially simplified if, 
following[9], we introduce an effective potential, taking 
into account the contribution of the averaged permittivity: 

_, (.) _ (\"1 , ) _I S dOl \"1 e.'n, 
<1e(Ol,k)I ) - ~ebn, 2n~ le(Ol,k)I' 

, . 
00 [ Ol ',;' ] 

X2 S d, S dpcos (Ol-kv),;-a.(t) + f.(p,t). (5.8) 
o 

For E(t) = 0 

(5.9) 

In the approximation (5.8), the collision integral assumes 
the form 

E 2e.'eo'n, 0 S ' SOO k,kJ [, J,(p,t)= ---- dkdp d,;--<Ie(Ol,k)I-')cos (kv-kv),; 
b n: BPi 0 k4 • 

(5.10) 

field (i.e., the Wo = 0 case). For wo« we we can expand Here 
the expression for the spectral density (1.12) of the ( ) _ (e, e,) kE cos ro,t 

aab t - --- , 
ma mb 000 
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6, THE ELECTRICAL CONDUCTIVITY We take this opportunity to express our thanks to 
L. M. Gorbunov for a discussion of the results of the 

Using the kinetic equation with the collision integral paper. 
(5.10), we obtain the following expression for the current: 

iij e'n 
-+vj=-E(t), ~--=2-:-e._'e_"_n._n.-:-(~_~) la., (6.1) 
iit [t v= ~ xT(e,na-e.n.) ma m. 

a' 
where 

1 - (k')' 
la. =-S d-r: S dkdpdp,_l_, -<le(6),k) 1_')(0) 

n 0 k',' 

xcos [ (kv-kv') -r:+aa.(t) fI),;r] fa (p, t) t.{p', t); (6.2) 

i [(p-maUa(t»l] 
fa(p,t)= (2nm"xT),I. exp 2maxT' (6.3) 

It follows from the expression (6.2) that the electric field 
is weak if 

(6.4) 

Comparing the inequalities (4.3) and (6.4), we see that at 
low frequencies (i.e., for Wo « we) the field can be con
sidered to be weak in a considerably wider range of E 
values. 

For a weak field the expression for v in the formula 
(6.1) for the conductiv!ty assumes the form 

= 4Y2n ~ln(1+r 'k' )'1.. (6.5) 
v 3 [t'l. (XT),I. D m~ 

This result coincides with the result obtained earlier 
in [9J • 
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