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We use the inverse scattering method to study a system of particles with exponential interaction (the 
Toda chain) and a set of equations describing induced scattering of plasma oscillations by ions. We 
show that a Toda chain with an arbitrary number of particles is completely integrable. We develop a 
scheme to integrate these systems and study the interaction between solitons. We indicate a class of 
completely integrable discrete systems, that is, systems which can not be stochastized. 

The problem of a possible statistical description of a 
conservative system leads to the problem of the deter­
mination of the stochastization time of that system. The 
first experimental studies in that direction (by Fermi, 
Pasta and Ulam [lJ) which had as their aim the elucida­
tion of the behavior of a chain of coupled oscillators with 
a quadratic non-linearity, 

i n= (Xn+l-x n) - (xn-xn_l ) +1/, (xnH-xn)'_I/, (xn-xn_I)' (1) 

showed already that the stochastization time of that sys­
tem turned out to be anomalously long, while the motion 
of the system (1) possesses a strikingly expressed quasi­
periodic character over a sufficiently long time. Re­
cently a similar behavior has been observed for some 
continuous systems (e,g., a system described by' the 
well-known Korteweg-de Vries (KdV) equation [2J). How­
ever, in a certain sense the situation turned out to be 
simpler in the latter case: Zakharov and Faddeev [3J 

showed that the KdV equation is a completely integrable 
Hamiltonian system in which stochastization is com­
pletely impossible, whereas in subsequent numerical 
experiments [4J it was, apparently, shown that neverthe­
less stochastization develops in the system (1), albeit 
after a very long time. 

Zakharov [5J suggested an unexpected explanation of 
this so strange behavior of the Fermi-Pasta-Ulam chain; 
his explanation was persuasively based On the hypothesis 
that the continuum limit of system (l)-the equation of 
the non-linear string 

(2) 

is completely integrable. An immediate consequence of 
the complete integrability of (2) is the heretofore unex­
plained fact that the stochastization time of the chain (1) 
bears no relation whatever to the characteristic time de­
termined by the non-linear term in (1). The stochastiza­
tion time is thus determined by the "deviation" of the 
system (1) from its continuum analogue (2), and this was 
small in typical experiments. 

However, the chain (1) demonstrates exactly the same 
strange behavior even if the initial data for it depend 
strongly on the number n and thereby do not guarantee 
that it is possible that it can be replaced by its continuum 
analog. An even more interesting behavior is shown by a 
discrete chain with exponential interactions between the 
particles, introduced by Toda [6J 

(3) 

which, up to terms ~ (t:.X)3, goes over into (1) for small 
displacements of the particles. It was noted that the sys­
tem (3) has a solution of the nature of isolated soliton 
waves which propagate without a distortion of their form. 
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Moreover, exact solutions of (3) were found [7J which 
describe collisions of solitons and it was shown that the 
solitons have practically no interaction with one another­
so that as a result of a collision the same solitons are 
formed as were present before the collision. A com­
pletely similar situation occurs in completely integrable 
continuum systems-kdV, [8,9J in the equations of a non­
linear string, [10J and in the non-linear Schrodinger 
equation, [l1J i.e., in systems which can be integrated by 
means of the inverse scattering method (see, e.g., [12J). 
In that connection the hypothesis was advanced that the 
system (3) could also be considered in the framework of 
that method and is completely integrable, and this is 
proved in the present paper. 

The fact that the Toda chain is integrable shows for 
an arbitrary chain of non-linear oscillators such as (1) 
with quadratic and cubic non-linearities that the stochas­
tization time of a chain of oscillators is determined by 
its deviation from the system (3) and can be very large 
for well-defined classes of initial conditions. 

Another physical important example of an integrable 
discrete system is the set of equations 

(4) 
This set occurs when one studies the fine structure of 
the spectra of Langmuir oscillations in a plasma. [13J 

Let us explain its source. It was shown in [14J that for 
practically any way to excite Langmuir oscillations the 
stationary spectrum of Langmuir turbulence turns out to 
be highly anisotropic-the oscillations are concentrated 
along lines ("jets") in k-space. The transfer of the en­
ergy of the Langmuir oscillations along the spectrum 
occurs due to the induced scattering of the oscillations 
by ions and is described by the kinetic equation for the 
number of plasmons: 

(5) 

where the kernel Tkk' is antisymmetric in its two argu­
ments, By virtue of the above-mentioned jet-like char­
acter of the spectrum this equation is one-dimensional. 
In a plasma with cold ions the main mechanism of stimu­
lated scattering is the excitation of ion sound and the 
kernel Tkk' takes on a c5-function shape: Tkk' 
= To(c5(k-k' +K)- c5(k-k'-K)). Equation (5) then turns 
into a set of systems like (4). The natural boundary con­
ditions for Eq, (4) are Nk - constant as k - ± 00. The set 
(4) then describes the propagation of a spectral packet of 
Langmuir oscillations on the background of thermal 
noise. Equation (4) also has a soliton-type solution. [13J 

We show below that this equation can also be studied by 
using the inverse method. It then turns out that the 
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formalisms of the inverse problems connected with the 
systems (3) and (4) are in fact the same and this justifies 
their exposition in the framework of a single paper. 
These systems are considered everywhere alongside 
one another. 

We shall enumerate the main results of the present 
paper. 

We prove the complete integrability of the system (3) 
with periodic boundary conditions, i.e., the integrability 
of the Toda chain on a ring. We indicate a very broad 
class of completely integrable systems which, in some 
sense, are generalizations of Eq. (3). We develop for the 
infinite discrete chains (3) and (4) the inverse-method 
formalism which enables us to reduce the solution of the 
Cauchy problem for these equations to the study of some 
sets of linear equations. We consider the problem of 
the interaction of solitons in the chains (3) and (4) which, 
it turns out, can be solved starting from very general 
considerations even without including the inverse-method 
equations, similar to what has been done for some con­
tinuum systems, [15, 16J 

We note, finally, that the continuum analogue of the 
Toda chain (3) is the non-linear string equation (2), On 
the other hand, the analog of the system (4) is the KdV 
equation. From the phYSical point of view this corre­
spondence is trivial. The mathematical nature of these 
analogies lies much deeper: the operators which are 
used to integrate the systems considered change in the 
continuum limit to the appropriate operators of the non­
linear string[5J and the KdV [12J equations. 

1. L-A PAIRS AND COMPLETE INTEGRABILITY 

It is well known (see, e.g., [12J) that the inverse scat­
tering method can be applied to a non-linear equation if 
it can be written in the form 

fJLlfJt=[L, A], (6) 

where L and A are a pair of linear operators which can 
somehow be constructed from the functions occurring in 
the equation considered. 

The following L-A pair of infinite matrices is con­
nected with the system (3): 

(7) 

(8) 

The fact that L given by (7) is Hermitian and Eq, (6) 
guarantee the conservation with time of the spectrum of 
the operator L, i.e., we have for all A that ~ '" 0 and all 
eigenvalues of L turn out to be integrals of motion of the 
system (3). The same is also true for the operator L 
given by (9). 

For the Toda chain (3) consisting of N particles with 
periodic boundary conditions (c n + N '" cn' v n + N '" v n) we 
shall consider the problem (11) also in the space of 
periodic functions, putting I/in+N '" l/in. The infinite ma­
trix (7) then reduces to a Hermitian N x N matrix with N 
independent eigenvalues. This matrix has the form 

" 0 0 . II. v, - iC;" IC, 

.1/. 
IC. D. - iC~'1 0 0 0 

0 . t/. " 0 0 IC. D. -ic,t 
L= (12) 

0 0 o iC~I_l VN-l - iC~' 
- iC~/1 0 0 iCfJ DN 

and its eigenvalues Ai satisfy the characteristic equation 

det II L->.I II =0, (13) 

where I is the unit matrix, 

We shall now show that all eigenvalues of L are in an 
involution, i.e., the Poisson bracket of any pair Ai> Aj 
vanishes (the eigenvalues of L "commute" with one 
another). The system (3) is Hamiltonian. Its Hamiltonian 
is 

(14) 

and v n and xn are canonically conjugate variables. The 
Poisson bracket of any pair of variables Sand T can in 
the usual manner in thos~ variables be written as: 

{S,T}=L~.E..-~E..· 
. bXn bVn bVn bXn 

(15 ) . 
In the variables cq> vn (15) becomes 

{S,T}= LCn(~~-~~)-Cn+I(~~-~~)' (16) 
n .sen {jVn 6vn {)en lien+! livn {jV n licn.+t 

We shall now evaluate the variational derivatives 
oA/ocn and oAi/ovn' To do this we use the well known 
formula of perturbation theory which determines the 
change in the eigenvalues of an operator if the latter is 
slightly changed: 

where the indices nand m run through all integers, IIA=<'" 1 ilL I"'>. 
~~r:b~~~(Xn -xn_1)' vn '" xn' and on, m is the Kronecker Here I/i is a normalized eigenfunction of L. 

(17) 
Using (l1a) 

The system (4) can be written in the form (6) by 
means of the operators 

and (17) we have 

l\>.;Ibcn = I/,iC:h (1Jln' (j) ",.-1 (j) -~n-I (j) 1Jln (j», 
1IA/1IVn=",.· (f)Ijln (j), (18) 

Lnm=iN:16n,m+t-iN:lcSn+i,m, 
Anm=-1/2 {(N.Nn_l ) '1'11 •. m+2- (NmNm- I )'I·{jn+2. m}, 

(9) 
(10) where I/i(j) is the eigenfunction of L for A '" Ai' 

as one can check by direct calculations, We note that the 
operator (9) is a particular case of the operator L (see 
(7)) and can be obtained from the latter by putting vn 
== O. This fact is the one which makes it possible to 
consider both problems at the same time. 

We shall consider the eigenvalue problem of the 
operator L given by (7): 

L",=A"" (11) 

where I/i is an infinite column of numbers: 
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We note further that for any two eigenfunctions of the 
operator L the relation 

(A,-A,)1jJ: (;)1fJ.(i) =W .(",'(j)",(i» - W.+! W (j)",(i», 

Wn (1jl' (j)",(i» =i~: (1jJn' (;)1fJn-1 (i) -"':-1 (j) "'n (i». 

holds which follows immediately from (l1a), 

(19) 

If we now evaluate {Ai, Aj} using (16), (18), and (19) 
we verify easily that 

1 N 

{A"A,}= A,-A, .~)W'+IW(i)1jl(j)) 1'-IWn(",'(i)1jl(j)) I' 
11=1 
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1 
= I.,-I.j {I W N+, (11)' (i) 11> (j) ) 1'_1 W, (.p' (i).p(j» 1'1. 

When there are periodic boundary conditions imposed 
upon the system this expression vanishes. We have thus 
shown that the Hamiltonian system (3) with N degrees of 
freedom has N integrals of motion which commute with 
one another and this means by virtue of the well known 
Liouville theorem (see, e.g., [17J) the complete integra­
bility of the system considered. 1) 

We note further that the Hamiltonian (14) can be ex­
pressed in terms of the trace of the square of the matrix 
L given by (12): 

1 1 N 
H=-TrL'=- ~1. '. 2 2L.Jn (20) 

According to the above-mentioned Liouville theorem 
one can choose the quantities Ai as the canonical actions 
of the system (3). Formula (20) expresses the Hamilton­
ian (14) in those variables. We now draw attention to the 
following circumstance: the fact that all eigenvalues of 
L given by (12) commute is in no ways connected with the 
actual form of the system (3) but follows directly from 
the form of the Poisson brackets (16). We can thus as­
sert that any system of the form 

xn=I5Ifll5v" vn=-I5Hll5xn, (21) 

is completely integrable, if the Hamiltonian H is some 
function of the eigenvalues of the matrix (12), or, what 
amounts to the same, some function of the coefficients 
of the characteristic equation (13). A particular case of 
a system of the form (21) with H given by Eq. (20) is the 
Toda chain. Stochastization is impossible for all dynam­
ical systems of this type. 

2. THE INVERSE SCATTERING PROBLEM 

Let us now turn to a study of the infinite chains (3) 
and (4). We shall first consider the detailed properties 
of the operator L given by (7) under the assumption that 
c n - 1 and vn - 0 as n - ± 00, and we shall also assume 
that the sequences c n and vn converge sufficiently rapidly 
to their limits. The operator L given by (7) has then a 
finite number of discrete eigenvalues and a continuous 
spectrum occupying the section -2 5 A 5 2 of the real 
axis. 

We note fiEst of all that if </I n is a solution of (l1a) 
with real A, </In = (-1)n</J;'i is also a solution of (l1a) with 
the same A. We note also that for any pair of solutions 
of (l1a), </Jri1 ) and </J~2) with the same A the quantity 

W(1j><'), .p") = (-1)"+'C~"(IjJ~I',p;~'.-IjJ~~IIjJ~') (22) 

is independent of the number n. If W(I/J(1), 1/J(2» = 0, the 
functions </J~), </J~2) are linearly dependent. This means, 
in particular, that the discrete spectrum of L with eigen­
functions which tend to zero as n - ± 00 is non-degener­
ate. However, the continuous spectrum of L is, generally 
speaking, twofold degenerate. 

We shall select a special class of eigenfunctions of 
the operator L-the Jost functions. Let </In(~) and qJn(~) 
be solutions of the system (l1a) for A = 2 sin ~, deter­
mined by the asymptotic behavior 

IjJn (1;) -e"', n- +00, 

cp,,(1;) _e',n, n- -00. 

(23) 

ijin (1;) = (-1) ncp: (£') (24) 

is then analytical in the region 1m ~ > O. 

The functions 'Pn(O and q;n(~) with ~ real form a 
complete set of linearly independent solutions of (l1a) so 
that 

(25) 

Evaluating W(I/J(O and /fJ(O) from (22) as n _too, we 
can check that 

lam IZ_I~(£) /'=1. 

Moreover, we see easily that 

a(£)=W(.p(£), cp(£»/2cos£. 

(26) 

(27) 

We shall now find the time-dependence of QI(O and 
f3( ~). Differentiating (11) with respect to time for fixed 
A, we get 

(L-I.) (lhplat+A.p) =0, 

i.e., ai/J lot + AI/J is also an eigenfunction of L with the 
same A as I/J. The requirement that the definition of the 
Jost function </J(O given by (23) remains the same with 
time enables us to find the vector ai/J/at + AI/! : 

a.pl Bt+ A ljJ=i cos s.p. 
Substituting into that expression </J(~) from (25) and tak­
ing the limit as n - - 00 we get 

Ba(£)lat=o, a~(£)lat=2icos s~(s), 

~(s, t)=~(£, O)e""·". 
(28) 

The points in the upper ~ -hali-plane where QI (~) = 0 
correspond by virtue of (27), (23), and (24) to the dis­
crete spectrum of the operator L. Since L is Hermitian, 
i.e., A = 2 sin ~ is real, they lie on the lines Re ~ = Y21T 
+ 21Tn and Re ~ = -Y21T + 21Tn, where n is an integer. We 
note that by virtue of the obvious periodicity of all Jost 
functions (e.g., </In(~ + 21T) = If'n(O) we can restrict our-

selves to the band2) -1T 5 Re ~ 5 1T, 1m ~ ? 0 in the upper 
half-plane. In that band the zeroes of QI (0 can lie only 
on the lines Re ~ = ± Y21T. We denote the zeroes of QI( ~) 
by !;k: !;k = ± Y21T + i 17k' 17k > O. By virtue of (27) we have 

for them3 ) 

(29) 

We can also easily find the time-dependence of the C!;: 

C,± (t) =c,±(O) e±' .hnl. (30) 

The set of quantities !;k' Ch' 0'(0, (3(0 form the 
"scattering data" and we shall show below that they de­
termine completely the matrix of the operator L given 
by (7), i.e., xn and vn' and the scattering data depend 
simply on the time: a!;/at = aO'/at = 0, while the time­
dependence of (3( 0 and C!; is given by (28) and (30). This 
fact enables us to solve the Cauchy problem for the Toda 
chain using the classical inverse method: 

L1jl=~1jl (28),(30) 

Xn (0), Vn(O)~~, C,(O), a(£), ~(S, O)---+~, C,(t), a(£), ~(S, t) (31) 
-"Vn (t), Xn (t). 

In this scheme the first and last stages are non-trivial. 
In the first stage one solves for the eigenvalues of the 
operator L, and in the last stage one solves the inverse 
spectral problem; we shall now turn to that problem. 

One can show that the Jost function </In(O is analytic in We note first of all that by virtue of the periodicity 
the upper hali-plane of the complex ~ variable, and 'Pn(~) of the Jost functions If'n(~)' 'Pn(O they can be written in 
in the lower half-plane. The function the form of Fourier series: 
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(32) 

(33) 

Howeyer, the analyticity and boundedness of 
IJIn(Oe-l~n in the upper ~ -half-plane means that the 
series (32) breaks off for m < n, i.e., we have for IJIn(~) 
the triangular representation 

'i'. (s) = E K.mei'm. (34a) 

Completely similarly we have 

<p. (s) = EA.mei,m. (34b) 

Substituting (34) into (lla) we get 

III Knn A,,-t,n-t 
Cn =---=---, 

K n - t ,n-l AnA 

_. (K •.• +! K._, .• ) _. ( A.H ,. A.,._, ) 
Vr.-L ------ -I ------

Knn Kn-t,n-l AnH,n+t Ann 

(35) 

It is now obvious that Knn and Ann are real and positive, 
and also that Ann = y/Knn, The constant y which occurs 
here can be expressed in terms of O'(iao). 

Substituting 

(36) 

and (34a) into (27), taking the limit as ~ - i oo, and using 
(35) we find that 

A •• =a(ioo)IK ••. (37) 

Dividing no'Y Eq, (25) by 0'(0, multiplying the ensuing 
equation by e-l~m, where m ~ n, and integrating the re­
sult over ~ from -7r to 7r, we get 

i 'i'.;~~;-.'m ds= L<p'(S)e-"m ds+ f.~~~) iji.(s)e-·'fflds· (38) 

we can write the integral on the left-hand side of (38) in 
the form 

S 
'i'n (s) e-ilm ,'+'" 'i'. (s) e-'Im 
-'-':"::':'---d!;+ hm S d!;, 

r at!;) .~~ _n+', a (!;) 

where r is a closed contour consisting of the section 
-7r ~ ~ ~ 7r of the real axis, the lines 1m ~ > 0, Re ~ 

(39) 

= ± Y27r, being closed at imaginary infinity. As the in­
tegrand IJIn(Oe-i~m/O'(o is analytical in the domain 
encloseq by the contour r except where O'(~) = 0, when 
IJI n (~ )e-1 ~ m/O' (~) has simple poles, this integral is equal 
to the sum of the residues. 

Because of (34a) and (37) the second integral in (39) is 

The left-hand side of (38) thus has the form 

2 ,~c,.iji.(~.)e-·t.m + 15 nm 
m"'-.l -. 

• a' (~.) An. 

If we now substitute into (38) the triangular represen­
tations (34b) and (36) and the representation for 4?n(l;k) 
which follows from (36) when ~ = I;k' we get a set of 
equations to determine the kernel Anm of the triangular 
representation (34b): 

15 nm ~ • 
A.m -~~(-1)'F.+mAn.+(-1)" ...::.." A.m,Fm,+m=O. 

ml<n 

where 
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C e- i ,.. l' A (~) 
F =-i ~-"--+- S-~-~-ri"d!; 

• "'-.l a' (~.) 2n a(s) . 
A -n 

(40) 

Putting Anm = GnmAnn, m < n, we get a set of linear 
equations for the quantities Gnm and an expression for 
Ann: 

An.'= {H (-1)nF .. + (-i)" EG.m'Fm+. r'. (42) 
m<. 

The matrix of the operator L given by (7) can be ex­
pressed in terms of the solution of the set (41) (see (35)): 

v.=i(G.+".-G •.• _,) , c.=A.'-"._,/A •• '. (43) 

The set (41) thus enables us to reconstruct the operator 
L completely from the scattering data for it, i.e., it is 
the complete set of linear equations of the inverse prob­
lem for the operator L given by (7), 

As the operator L given by (9) for the chain (4) is a 
particular case of the operator L given by (7), all results 
obtained can immediately be applied also to that case, 
One must then, however, bear in mind that as the time­
dependence of the scattering data is determined by the 
operator A which for the chain (4) is very different from 
(8), Eqs. (28) and (30) will in this case also look differ­
ent. Repeating the corresponding calculations for the 
operator (10) we get 

at!;, t)=a(!;, 0), ~(!;, t)=~(!;, O)e,,,,n,,,, 
(44) 

C,(t) =C,(O)e' ,h "', 

Moreover, as the operator (9) is substantially simpler 
than the operator L given by (7), the scattering data for 
L given by (9) must also look somewhat simpler. Indeed, 
considering the problem (lla) with vn =:0 0, we can con­
vince ourselves that all Jost functions, and at the same 
time, the quantities 0'(0, i3(~), are periodic with period 
7r. Moreover, one sees easily that 0' (-~) = 0'*( ~), 13(-0 
= i3*(~). In particular, putting I; = %7r + iT/, we see that 
if O'(s) = 0, we have also 0'(1; - 7r) = 0, i.e., 1;' = Y27r + i1J 
also corresponds to an eigenvalue of the operator L given 
by (9) and, furthermore, the corresponding quantities CI; 
given by (29) are the same in the points 1: and!; I: 
C!; = CI;" 

All this means that the quantities F n given by (40) 
which occur in the equations of the inverse problem are 
the form 

F =-2i(-1)A ~ Cme'nmA +_1-S' ~(!;) e-"Ald~ 
,. ~ a' (l;m) 2n -n a (s) ~, 

(45) 
~m=n/2+il1m. 

Equation (41) then shows that Gnm = 0, if n + m is odd: 
this means in particular that Gn n-1 = 0; this guarantees 
us that the quantities vn vanish (see (43)). Denoting 
Gn,n-2k by Mnk we get for them from (41) and (42) 

M •• + (-1) nF,(._.)+ (-1)' £ M.A·F,(._._ •• ) =0, 
/1.'>0 

(46) 

A •• '= {H(-1)nF,.+(-1)" r, M •• F,(n-A)} -'. (47) 
»0 

The solution Nk(t) of the set (4) is again given by (43): 

N.=A._"._.IA .. '. (48) 

3. SOLITON COLLISIONS 

As in the case of other systems which can be solved 
using the inverse scattering method, the set (41) can be 
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solved, if j3(l;) 0= O. Such solutions are completely de­
termined by giving the N zeroes of QI (~) and the corre­
sponding quantities C and they describe the N-soliton 
solutions of the system (3). 

We shall consider the simplest situation when QI (l;) 
has only a single zero which lies, e.g., on the line Re ~ 
= -Y27T(~ = -%7T + i1)). The condition that QI(~) be per­
iodic and Eq. (26) which in the case considered means 
la(~)12 = 1, enables us to reconstruct QI(~) for real ~: 

(_) . 1;+nI2-iTj / . 1;+nI2+iTj 
CG s =Sln SIn . 

2 2 
(49) 

The function F n determined, using (40), then has the form 

Fn =2C sh Tje'nnj'e"n. 

We look for the solution of (41) in the form 

After a simple calculation we find 

,,{=2CshTj, 

whence we get at once 
1 /( e,nn) -=i+,,{e'" 1+--. 

Afm2 e211-1 

Using now (43) and the fact that cn = exp(xn -xn-1) we 
find finally 

ch Tj (n-xo+'/,) 
xn=ln + const, 

ch Tj (n-xo-'/,) 
(50) 

sh'Tj (51) 
ch Tj (n-x,+'/,)ch Tj (n-x,-'/,) , 

1 1 
x'=2rj"lnc ' 

where Xo is the coordinate of the center of the soliton. 
If we now substitute in (51) the time-dependence of C, we 
get 

sh Tj 
x, (t) =x, (0) + - t, 

Tj 

whence it follows that (50) describes a solution of (3) 
which propagates along the Toda chain without distortion 
of its form with a velocity v = 1)-1 sinh 17, i.eo, we obtain 
a soliton. Similar calculations show that the zero of QI (~) 

on the line Re ~ = 7T/2 corresponds to a soliton moving 
in the opposite direction. 

In the more general case when QI (~ ) has N zeroes in 
the band -7T < Re ~ < 7T in the upper ~ -half-plane, of 
which N+ lie on the line Re ~ = 7T/2 and N_ on the line 
Re ~ = -7T/2, one can show that the corresponding solu­
tion of the system (3) is asymptotically, as t ~ ± 00, a set 
of solitons of which N_ have positive velocities and N + 
negative velocities, i.e., they describe N-soliton colli­
sions. One can also check that the amplitudes (and hence 
also the velocities) of the solitons occurring as t ~ + 00 
are exactly the same as the same quantities for the case 
as t ~ - 00, which is completely obvious from the point of 
view of the method considered here as these soliton 
parameters are determined by the eigenvalues of the 
operator L which are conserved in time. The whole 
effect of the soliton collisions reduces thus to a change 
in the quantities xo(t) in (51) which refer to some time, 
say, t = 00 We shall now give a simple method to calcu­
late the change in these quantities. 

To fix our ideas we shall consider the collision of two 
solitons moving in the positive direction. Such a solution 
corresponds to two zeroes of a (~) on the line Re ~ 
= -7T/2 in the points 1;1 = -7T/2 + i1)1, 1;2 = -7T/2 + i1)2' 
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We put 1)2 > 1) 1; as the velocity of the second soliton is 
larger than that of the first one, the first soliton will 
then be to the right of the second one as t - -00; as 
t ~ + 00 the arrangement is the opposite one. We shall 
consider the behavior of the eigenfunction 1Pn(1; 2) of the 
operator L in these cases. We denote the quantities xo(t) 
for the first and the second soliton by xo(1), xo(2). As 
t - - 00 we have xo(2) «xo(1). In the region n »xo(1) 
the function 1Pn(1;2) has the form 1Pn(1;2) ~ exp(iI;2n). 
When the soliton 1 has passed through, the function 
1P n (I; 2) changes by virtue of (25) into Ql1( I; 2) exp (i I; 2n), 
where, because of (49), Ql1(1;2) is 

(" ) - h Tj,-Tj, / h Tj,+Tj, al ':,2 -$ -- S --. 
2 2 

For the second soliton the function exp(i I; 2n) is the 
asymptotic form of its eigenfunction to the right of it. 
In the region n «xo(2) the function 1P nU; 2) (see (29)) is 
thus equal to 

-- Tj,-Tj, / Tj,+Tj, 
1jJn(~')=C, (Pn(~,)sh---z- sh-2-. (52 a) 

where C;; is connected with xo(2) through (51). 

Let now t tend to +00. In that case x~(1) «x(j(2)0 When 
n « xo(1) the function 1Pn( I; 2) is by virtue of (29) 

1jJn(~,) =Ct.ijin(~') (52b) 

(this refers also to the case as t ~ -00). Taking the com­
plex conjugate of (25) and solving the resulting set for 
7P (l;) we find 

n 
iji,,(1;) =a(1;);Pn (1;) -~. (1;)1jJn(1;). 

Using that relation and (52b) we get an expression for 
1P n (!;2) in the region x~(1) « n «x(j(2): 

1jJn(~,)=Ct,a,(~,) (_1) ne-It ,n. 

However, (-1)nexp(-i I; 2n) is the "left-hand" asymp­
totic form of the eigenfunction of the second soliton. We 
must thus have for n »x~(2) 

1jJn(~2) =Ct,a, (U~'n(~,)/C,+, (52c) 

where C~ is also connected with xt(2) through (51). It 
thus follows from (52c) that 

C,+=C"a,(~,) . (52d) 

Comparing Eqs. (52a) and (52b) we get 

(52e) 

whence, after eliminating the time-dependence from 
Eqs. (52d) and (52e), we get 

C,+IC,-=a,'(~,), (53) 

which, because of (51), means that 
1 sh"/,(Tj,+Tj,) 

Llx,(2)=x,+(2)-x,-(2)=-ln h"l ( ) . (54a) 
2Tj, s ,Tj,-Tj, 

Similarly we have for the slow soliton 
Llx,(1) = __ i_In sh' 'I, (Tj,+Tj,) . 

2Tj, sh' '/,(Tj,-Tj,) 
(54b) 

If, on the other hand, one of the solitons moves in the 
opposite direction (let this be the second soliton, to fix 
the ideas), it follows immediately from (53) and (51) that 

Llx,(1)=_l_ ln ch"I,(Tj,+Tj,) 
2Tj, ch' '/,(Tj,-Tj,) 

Llxo(2) = __ 1_ln ch"/,(Tj,+Tj,) 
2Tj' ch' '/,(Tj,-11') 

(55) 

Equations (54) and (55) give the complete solution of 
the problem of the collisions of solitons in the Toda 
chain. 
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We shall apply the procedure expounded here also to 
the general case of an N -solution collision. It then turns 
out that only pair collisions occur, i.e., the displacement 
of any soliton equals the sum of the displacements arising 
when this soliton collides with all the other ones separ­
ately. 

Let us now study solitons in the chain (4). Assuming, 
as before, that {3( ~) == 0 and that 0' (~) has only one pair 
of zeroes in the band -'IT ~ ~ ~ 'IT on the lines Re ~ 
= ±'IT/2 with 1m ~ = 1], we can find 0'(0: 

Gt (~) = sin (~-1t/2-il']) 
sin (~-1t/2+i1']) 

In that case we have from (45) 

F,.=2C sh 21'] (-1) he"'. 

One can easily solve the set (46) with these F: 

(56) 

If we then determine Ann from (47) and substitute it in 
(48) we get 

ch I'] (n-x,-2)ch I'] (n-x,+1) 
N.= , 

ch I'] (n-x,-1)ch I'] (n-x,) 
(57) 

1 1 
x,= 21'] Inc' (58) 

where Xo is the coordinate of the soliton center, 

Substituting in (58) the time-dependence of C from 
(44), we find 

sh21'] 
x.(t)=x,(O)---t. 

I'] 
(59) 

Hence it follows that all solitons in the chain (4) move 
in the same direction. 

The picture of the scattering of solitons in this chain 
is completely similar to that described above, i.e., only 
the coordinates of the soliton centers are changed as the 
result of collisions; that change can be found immed­
iately from Eq. (53); using (56) we get 

~x,(1)=_1_ln Sh'(I']I+TJ:2 
21']1 sh' (1']1-1']2) , 

~x.(2) = - _1_ lnsh'(I']I+I'],) '1,>1']1' 
21'], Sh'(I']I-I'],) , 

The quantities 1]1 and 1]2 are connected with the soliton 
velocities through (59). 

In conclusion the author expresses his gratitude to 
y, E. Zakharov for his interest in this work. 
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l)The existence of the necessary number of independent integrals for 
the system (3) was proved by Henon (private communication) using 
a completely different technique. 

2)We note by the way that it follows immediately from (lla), (23), and 
(25) that, e.g., Vln (±V,1T + n = ~n (±Y21T - ~), i.e., ex (±Y21T + n 
=ex*(±Y21T - ~),i3(±Y21T +~) = i3*(±V,1T - ~). 

3)We note that the quantities q- occurring in (29) are real. 
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