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The effect of an ideal vortex lattice on the motion of normal electrons is considered near the critical 
field He2 for the transition to the mixed state. It is shown that the presence of vortices leads to 
scattering of electrons such that the quasiparticle excitation of the electron branch changes into hole 
excitation and vice versa. Stationary normal electron states in a magnetic field are described in the 
Landau representation. The matrix elements of the pairing potential between stationary electron states 
are determined by perturbation-theory methods, and the probability W of the electron-hole transition 
in the mixed state near H, 2 is calculated. The obtained value of W is employed to calculate the 
changes produced in the thermal conductivity and in the thermal Hall angle on going from the 
normal to mixed state. The results of the calculations are in agreement with experimental data for 
pure niobium. 

Type-II superconductors, namely pure niobium single 
crystals, with electron mean free path I » ~ (~ is the 
coherence length), have made their appearance in recent 
years. In these superconductors, in the mixed state, the 
electrons can cover distances many times larger than 
the distances between the vortices. It is of interest to 
consider the influence of the vortex structure near the 
critical field Hc2 of the transition to the mixed state on 
the motion of the normal electrons. 

The presence of vortices leads to additional scatter­
ing of the electrons. This scattering has a peculiar 
character. The point is that when scattered by the vortex 
lattice, the quasiparticle excitation of the electron branch 
goes over to the hole branch and vice versa. Such tran­
sitions are analogous in their nature to the reflection, 
considered by Andreev [IJ , of electrons from the inter­
face between a normal metal and a purely superconduct­
ing phase. For type-II superconductors, the peculiar 
character of the electron scattering by vortices was first 
noticed by Vinen in a discussion of changes of the 
thermal conductivity in the mixed state [2J. In a recent 
article (3J dealing with the calculation of the thermal 
conductivity near Hc2' Houghton and Maid also note that 
the calculation reflects the specifics of the interaction 
of the electrons with the vortex structure. In (3J, how­
ever, the physical picture is obscured by the formalism 
of the calculation, which is carried out with the aid of 
temperature Green's functions. 

This paper constitutes an attempt to describe directly, 
by simpler methods, the scattering of electrons by a 
vortex lattice near Hc2' Using the experimental obser­
vations of vortices with the aid of the decoration tech­
nique (4J or by neutron diffraction (5 J , the vortex lattice 
can be regarded as ideal over distances comparable with 
the electron mean free path. In the calculation, the vor­
tex structure was assumed to be given. Its description 
near the critical temperature T c was first presented by 
Abrikosov [6] within the framework of the Ginzburg­
Landau theory. At the present time, there are known 
successful attempts to extend the Ginzburg- Landau 
theory to the entire temperature range T < Tc (see, 
e.g., [7J). We therefore use here Abrikosov's description 
of the vortex structure and assume that is always valid 
at T < Tc' 

The stationary state of the normal electrons in the 
magnetic field are described in the Landau representa-
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tion. Perturbation-theory methods were used to deter­
mine the matrix elements of the pairing potential between 
the stationary states of the electrons and to calculate 
the electron-hole transition probability W in the mixed 
state near Hc2' The obtained value of W was used to 
calculate the changes in the thermal conductivity and the 
thermal Hall angle on going from the normal to the mixed 
state. The results of the calculations agreed with the ex­
perimental data for pure niobium [8, 9J • 

ELECTRON-HOLE SCATTERING PROBABILITY 

The excitations in a superconductor, without allow­
ance for the spin, are described by the Bogolyubov­
Gor'kovequations 

ry1jJ • • 
ifi at = (J'e.+J'e,)1jJ 

For a two-component wave function l/J '" (u) (see, 
e.g., (1,10)). For stationary states we havX 

(ie;+~,) 1jJ,=e,1jJ,. (1) 

Here EV > ° is the excitation energy, u is the electron 
amplitude, v is the hole amplitude, the index v classifies 
the stationary states, £0 is the Hamiltonian for the metal 
in the normal state, 

. (0 ~) 
J'e,= ~. 0 

and ~ is the pairing potential. 

We shall consider henceforth a gas of free electrons 
for which the Hamiltonian £0 is given by 

. ( TO) 
J'e.= 0 -T' 

• 1 ( e)' T=- ih:V+-A -E,. 
2m c 

Here e '" -4.8 x 10-2 cgs esu is the electron charge, 
m is its mass, c is the speed of light, A is the vector 
potential of the magnetic field, and Efjs the Fermi level. 
The fundamental character of the results that follow is 
unchanged when account is taken of effects occurring in 
a real metal. As will be shown below, allowance for the 
spin likewise does not change the results significantly. 

1. In the normal state at ~ '" 0, the system of equa­
tions (1) breaks up into two independent equations des­
cribing the electronic and hole branches of the excita­
tions. In a constant magnetic field H directed along the 
z axis, in a gauge Ax. '" - Hy, Ay '" 0, and Az '" 0, we write 
down the solutions in the Landau representation in the 
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quasi-classical approximation. For electrons, the index 
includes the momentum along the field Pz = likz' the 
quantum number n1 that determines the excitation energy 

E.= (n,+ 1/,)f/(i)+p,'/2m-E" 

and the degeneracy parameter k1' which is analogous to 
the wave number. 

To simplify the notation, we introduce a parameter 
with dimension of length and a cyclotron frequency w, 
such that 2e = li/mw = cli/leIH. In addition, we intro­
duce the functions 

p, (w) = (2n,-w'),", 
w 

w,(w)= f p,(w')dw'-n,n/2. 
(2) 

o 

The wave function of the electron then takes the form 

u = cos[ w, (s,) ]exp[i(k,x+k,z)] 2n _" '::1>1-
, (2~') 'I. [2n'p, (s,) ]" ' ,\" , (3a) 

(n,!) 'j,s, n, exp (-s,'/2) 
11.= 2n(2n;')'" . ,V-2Il,~1; (4a) 

here t 1 = y/2 112 ~ - 2112 ~k1' 

For holes, the state index Jl = {k~, n" kd, the excita­
tion energy 

E,=E,-p/'/2m-- (n.+I/,)hw 

and the functions p,(w) and 4>,(w) are defined in analogy 
with (2), with the indices interchanged. Then 

= cos[w,(~,) ]exp[i(k,x+k,'z)] 2n,-s '~1' 
v, (2;')," [2rr'p, (s,) r- ' -, , (3b) 

_ (n,!)"'~zn'exp(-s,'/2) ~ '_') ~1 (4b) 
vll - 2~ (2J1~~) '1, ,2 .... n:! , 

where t, = Y /2112 ~ + 2112 ~k,. 

The functions are normalized along the x and z axes 
to (\ -functions of kz' k1' and k,. The condition n1, n, 
» 1 for applicability of the quasiclassical approximation 
is certainly satisfied for the overwhelming majority of 
the electrons in the metal in the magnetic fields of in­
terest to us. Formulas (3) and (4) then fail to describe 
the solutions only in the relatively narrow region 

12n,-~;I'i'''''1. i=1,2, 

when it is necessary to use the exact solution in terms 
of Hermite polynomials. This region of states will 
henceforth be left out, assuming that its influence on the 
final results is small. 

2. In the mixed state at H .;:;, Hc2' the pairing potential 
~ gives rise to transitions between the stationary states 
of the normal metal, i.e., transitions between the elec­
tronic and hole branches of the excitations. To find the 
transition probability, we calculate the perturbation ma­
trix element 

Obvious ly £' Jl v = £'t Jl • 

We are interested in transitions between "pure" sta­
tionary states. Let, for example, u v f. 0 and v v = 0 in the 
initial state v (,electron"), and uj..L = 0 and v Jl f. 0 in the 
final state J.L ("hole"). Then 

Jfiff,.= f v:A·u. dr. 

To determine the pairing potential we assume that ~ 
is proportional in the usual manner to the Euler param-
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eter. By starting from the form of the solution of the 
Ginzburg-Landau equations [6-11J , we can assume that in 
our gauge 

i1=C n~~ exp[ -tn'+in(qx+nnI2)], 

where 
q=n'i'3'/~, tn = (y-n;t"3"'~) 12"'s, 

n is an integer, and C is a constant such that ICI' 0: Hc2 
- H. Its connection with the experimentally determined 
magnetization will be written out below. We note that for 
H "" Hc2 we can neglect the magnetization and assume 
the average induction in the metal to coincide with the 
applied field. The introduced quantity ~ is then none 
other than the coherence length in the superconductor, 
defined by the condition 27TeHc2 = 4>0 (4)0 = ch/2lel is the 
flux quantum). 

Reversing the order of summation and integration, we 
obtain for the matrix element 

2"'G (in'n ) 76,.=-,;-~ exp -+ J"o(kl-k,-nq)o(k,-k,'), 
n~ ~ ~ 

In view of the presence of exponentially decreasing 
factors in the function ~(y) and in the functions uv and 

(5) 

v Jl in formulas (4) the infinite series for £'Jl v actually is 
replaced by a sum with a limited number of terms. It 
can be shown that in (5) the maximum number nmax 
"" (2ni)112 is of the order of the ratio of the Larmor 
radius in the field Hc2 to the coherence length ~. All 
the remaining terms of the series are vanishingly small. 
The same circumstance, incidentally, justifies the term­
by-term integration of the series. We note once more 
that in formula (5) we have discarded a relatively small 
number of terms for which the conditions that ensure the 
description of the solutions by the quasiclassical form­
ulas are violated. Calculation of these terms is cumber­
some and unjustified, since it would not change the final 
result Significantly. 

To calculate I n, we expand the integrands in powers 
of tn and make use of the fact that the main contribution 
to the integral is made by the region tn ;; 1. At the same 
time, the quasiclassical approximation conditions enable 
us to simplify the expressions. The integration yields 

J = ~(nl2)'''exp[-~'/4(1+C\')] cos [ _~_ arctga] 
n [p,(s")p,(~,,) r(a'H)'" '4(Ha') 2 ' 

where 

tn 

f ~-~ ,= [p,(w)+p,(w)]dw--z-n. 

We simplify the expressions by using the smallness 
of the excitation energy: 

We neglect here the small number of electrons with 
E 1"" tv' We put tv = llhw, and EJl = l,llW, where II and 
l, « no. To simplify the notation we introduce an angle 
I n such that 
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tg 'frn~\;n/ (2no-\;n') '''. 

Then, after expanding the functions in series we obtain 
at angles I n that are not too close to 1T/2, in accord with 
the conditions of formulas (3), . 

G [(1,+1,)' :16"~-(2 )'" exp ----]. 
nno 8nu 

~ exp (-in'nl2) cos l' , 
xl..... ( )'/' 6(k,-k,-nq)6(k,-k,), 

cos 1'i" 

l' ~ (2n,+ 1/2+1,-I,)1'i n +n, sin 21'i,,-1/, (1,-1,) n. 

(6) 

In view of the condition ll' l2 «no we shall henceforth 
put exp [- (ll + l2)2/Sno] "" 1. 

3. The probability W(t) of the transition from the ini­
tial state v within a time t is determined by the sum of 
the squares of the moduli of the amplitudes 

L IIp.(t) I' 

of all the states IJ. at the instant t under the condition 
I/! IJ.;' v(t = 0) = 0 and I/! v(t = 0) = 1 (see, e.g., (12J ). Near 

Hc2' so long as TIJt"lJ.v l «11, i.e., at 

IGI<W./liw}'/,lih, 

where T is the lifetime of the excitation (the relaxation 
time), this expression reduces to a sum of the squares 
of the matrix elements over all the final states 

W(t)~ ~ l.p.(t) I' ~ L 41:16,,1' sin'[ (e,,-~.}~l2lil . 
l..... (8,,-£.) . " 

It is clear from (6) that the transitions proceed with 
conservation of the momentum along the field p~ = pz. 
We carry out the summation in the following sequence: 
first within the Landau level over k2, and then over all 
the levels of the final states EIJ. = EV + ll1w, where l takes 
on all the integer values including zero. For the free 
electrons, the g-factor is equal to 2 and allowance for 
the spin leads only to a redefinition of l, without influenc­
ing the transition probability, which is given by the 
formula 

_~ L+~ (~ coS'1' )_Sin'(lwt/2) 
W(t)- Ii" l..... ,,' nno (J) cos tt" 1-

l=~"" 1/ 

The factor cos 1" oscillates rapidly in coherent man­
ner, and we can put in the subsequent expressions 
<cos2 y') = 1/2. 

The sum over n, where the summation limit is nmax 
» 1 can be replaced with sufficient accuracy by an in­
tegral, so that 

From this we obtain 

21GI' f1 sin'(lwtl2) ~ . 21CI' {4 sin'(lwtI2) . 
W(t)~ 3'/'n'''n'/'Ii'w' l..... l' 3 'n'''fzw(E.Lliw)'t, I!-'_- I' 

o 1=-00 ~ -

The sum of the series in this formula is expressed in 
terms of a Bernoulli polynomial [13J 

Hence 

1 i ~ cos 2nlx 
B,(x)=x'-x+ 6 =;Z l.....-I-'-' O~x~1. 

1-' 

±~ I ~ _, ., wt nwt 
l..... I sm -2- = -2-' wt~2n. 

1=-"" 

Thus, the probability W of the transition from one branch 
to the other per unit time, for excitations with energy 
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E « (nwE1 )1/2 for a sufficiently short excitation lifetime 
T :5 2/1T is equal to 

We now determine the coefficient 1 C I. If we introduce 
the dimensionless quantity C = ICI/~T' where ~T is the 
value of the gap in a zero field at the given temperature, 
then C can be easily related with the mean squared 
modulus of the order parameter <f~) = ICI2 • 3-1/\ In 
turn, <f~) is connected with the magnetization near 
Hc2 (10J: 

In this formula, K2 = K2(T) is the second Maki parameter 
and (3' = 1.16 for a triangular vortex lattice. The values 
of K2 are determined from the experimental magnetiza­
tion curves M from the known relations (10J• Substituting 
these expressions in the formula for W, we obtain ulti­
mately 

(7) 

Let us make a few remarks. Naturally, the probabili­
ties of the electron-hole and hole-electron transitions 
are the same. Further, W does not depend on the de­
generacy parameter ki or on the energy for usual 
thermal excitations. For excitations with very high 
energy, the probability W decreases exponentially be­
cause of the appearance of the factor (see formula (6)) 

exp (-e'/2IiUlE1.)' 

Finally, let us estimate the order of magnitude of W 
from the known data. For pure niobium [llJ 

2x,'1 (2x,'-1) V"'i, E1. ""'E 1""'2 x 10-" erg. 

Near T = OOK, the field is Hc2 "" 4000 Oe, and assuming 
that the effective electron mass is m* "" m, we have 
W "" 5 X 1010 sec-1 and I1w "" 5 X 10-17 erg. At absolute 
zero the gap is ~ 0"" 2 X 10-15 erg. Substituting these 
values in (7), we obtain W "" 1012 (Hc2 - H)/Hc2 [sec-I]. 
At (Hc2 - H)/Hc2 = 1% we have W "" 1010 sec. Com­
parison with the cyclotron frequency shows that even 
near H 2 the transition from one branch of excitations 
to the 5ther can occur within a time shorter than time 
of one revolution. 

EXCITATION TRAJECTORIES 

For a better insight in the electron-hole transition in 
the vortex structure, it is useful to consider localized 
states. Localization of quasiparticles and the descrip­
tion of their trajectories are effected in the usual man­
ner by formation of suitable wave packets. For example, 
by direct integration it is easy to show that a wave packet 
of pure electronic states in a constant magnetic field 

+~ 

.p(x,y)= J exp(-'/,k,'62 )u.dk, 

describes a classical circular trajectory of radius 
Rl = 2(nl + Y2)112~ with center at the origin. This follows 
from the fact that II/! (x, y) 1 reaches a maximum pre­
cisely on this circle, with Ilf! (x, y) I noticeably different 
from zero in a ring of width 15 «RI (for more details 
see [14 J). 

We now examine the states into which the components 
of the initial wave packet go over as a result of scatter­
ing by a vortex lattice in a mixed state near Hc2' Ac-
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cording to first-order perturbation theory [12J, a wave 
packet of scattered states J.l. is given by 

.p")(x, y)C4 E [J exp (- : k.'6') J'6'"V.dk,] sinl (e.-=-e,)t/:!/l] . 
II. 81-1 8 v 

After a time interval t ~ 1iw following the formation of 
the initial packet the states having an overwhelmingly 
large amplitude in the scattered packet ~ (1) (x, y) are 
those with energy EJ.l. = Ev' We therefore confine our­
selves for simplicity to the consideration of transitions 
with energy conservation. Then 

We do not consider here localization along the z axis, 
which is carried out in the known manner. 

Using the expressions for the matrix element Jt'J.l.V' 
we find for low-energy particles 

.p(l) (x, y)'" L, exp [ -in( qx+ n2n)] 

+~ exp(-k,'6'/4+ik,x) [t. f t. 1 X}, ~p,~cos 2 J p,(w)dw-l,n-Tarcsin (2n,,)'" ~ 
xcosl4l>,(~) ]dk" 

~=y2-'I';'+2'i'~k,- (2n) 'I':j!'n. 

The function Po(w) is determined from formula (2) with 
the subscript replaced. The exponential factor ensures a 
rapid decrease of the integrand function if the condition 
k10 s;: 1 is violated. 

Assuming ~ «0 « R1, we can expand all the in­
tegrands in terms of the small quantity k1~ « 1, retain­
ing only first-order terms. As a result we get 

+~ 

.p(l) (x, y)'" LEexP(i<P±) S exp{-'/,k,'6' 

+i2''';k, Ixl2''';±2p, (~.o) +p, (~.v) ] }dk,; 
~.o~ (ni2) '!'3"'n, ~.v=y/2"';- (2:rt) '!'3'!'n. 

In this formula, ~± denotes the sum of four terms corre­
sponding to four independent sets of pairs of signs in the 
exponentials, while qJ± are certain phase factors. 

The integral under the summation sign is proportional 
to 

exp {- (2;'/6') Ixl2'''~±2po(~.o) +p'(~nv) ]'}. 

Thus, I ~ (1) (x, y) I is exponentially small everywhere ex­
cept in a strip of width 0 near the circles 

Ixl2'''s±2 (2no-n'n3"'/2) '1,],+ ly/2'I's-n (2n) '''3'1.] '=2n,. 

Each such circle, specified by the number n, is the 
geometric locus of the relative maximum of I ~ (1) (x, y) I 
and the coherent change of the phase of ~(l)(X, y), i.e., it 
corresponds to the classical trajectory of the scattered 
particle. Introducing the values of the Larmor radii 
Ro = 2(no + '!2)1/2~ and R2 = 2(n2 + '!2)1I2L we can express 
the equation for the aggregate of the trajectories of the 
scattered particles in the form 

I x±2 (R,'-:rt3'I'n';') 'I,] ,+ (y-2n'I'3"'ns) '=R, '. 

The limit imposed on n by the condition 1T3 1/2n2 :::; 4n2 
ensures a real value of the radical in the first bracket. 
The coordinates (xo, Yo) of the centers of the trajectory 
satisfy the equation x~ + y~ = 4R~, i.e., they lie on a circle 
of radius 2Ro (see Fig. 1). The wave packets of the scat­
tered states overlap to a considerable degree and fill 
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FIG. I. Schematic representation of 
the trajectories of quasiparticies that go 
over into one another upon scattering 
by a vortex lattice. 

densely a broad ring around the trajectory of the initial 
packet. 

In the stationary state in a constant magnetic field, 
the electron, strictly speaking, has no definite momentum 
in a plane perpendicular to the field. Nonetheless, in the 
quasiclassical approximation, as is well known, it is 
possible to introduce a momentum p, which is a suffi­
ciently good quantum number and whose time variation, 
according to the usual classical equations, describes the 
motion of the particle. The Larmor radius R is connec­
ted with the component P.L perpendicular to the field by 
the relation R = cp .Lile I H. The wave-packet geometry 
described above corresponds to a quasiparticle scatter~ 
ing process in which the quasiparticle momentum is 
practically conserved. The longitudinal component is 
conserved rigorously, and the perpendicular momentum 
component of an excitation with energy E changes by an 
amount oP.L = lelHc-1lR1 - R21 :::::< 2E/vf' where vf is the 
Fermi velocity of the particle, so that opip :::::< 2dpvf 
:::::< dEf « 1. A transition from one branch of excitations 
to another with conservation of the momentum p means a 
change in the sign of the velocity vector v. After being 
scattered by the vortex lattice, the quasiparticle moves 
along a tangent to the initial trajectory in the opposite 
direction. The situation is perfectly analogous to reflec­
tion of electrons from the boundary between a pure 
superconducting phase and a normal phase [1J. The dif­
ference is that in the mixed state this transition takes 
place on any section of the trajectory at any point inside 
the metal, and the transition probability depends strongly 
on the value of the magnetic field. 

It is curious that the change of P.L always occurs along 
the direction of motion of the quasiparticle. This means 
that the vortex lattice does not have a definite momen­
tum. Indeed, the vortex lattice is described in fact by 
the same Ginzburg-Landau equations as the electron in 
the magnetic field. In the limit of small quantum num­
bers, there is no definite momentum in this case. 

TRANSPORT PHENOMENA IN MIXED STATES 

To consider transport phenomena, it is convenient to 
use a quasiclassical representation in which the excita­
tions are described by an energy E and a quasimomentum 
p. It is also convenient to introduce the quantity 
E = (p - Pf) . Vf ' whe're Pf is the Fermi momentum and 
Vf is the veloclty of the~excitations on the Fermj surface. 
For electrons we have E = E > 0 and for holes E = - E 

< O. In addition, we can neglect henceforth the difference 
between p and Pf (Ip - Pfl «p) and assume that the ex­
citation has a momentum situated on the Fermi surface. 
The electron distribution function f(p), in the usual 
analysis, when the occupation of the energy states begins 
with the bottom of the band, is connected with the distri-
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bution function of the quasiparticle excitations n(p) by 
the relation [lJ : 

f(p,e)={n(p), e>O. 
1-n(-p), e<O 

This circumstance is illustrated in Fig. 2, which shows 
the deviations from the equilibrium function no 
= [exp(E/kBT) + 1]-1 (kB is the Boltzmann constant) in a 
constant electric field E and at a constant temperature 
gradient VT. 

Let us see now how the electron-hole transitions 
affect the distribution function. In the language of quasi­
particle excitations, scattering by a vortex lattice causes 
the vanishing of an electron in the state {p, E} and the 
appearance of a hole in the state {p, -f}, i.e., in the 
language of the occupation numbers from the bottom of 
the band-condensation of two electrons from the states 
{p, E} and {-p, -E} in a state with zero momentum on 
the Fermi level (pairing). In the collision integral I, it 
is necessary to add to the term describing the ordinary 
scattering another term 

I vort= J [(i-f.·) (i-f.)-f.·f.]Q(p, p')dp'. 

According to the results of the preceding section, the 
transition probability Q(P, p') is given by 

Q(p, p')=W(p)6(p+p')1\(e+e'J. 

Then 

Ivort=W(p)[1-f(p, e)-f(-p, -e)]. 

Naturally, for an equilibrium function fo that does not 
depend on the direction p we have fo(-f) = 1 - fo(E') and 
Ivort = O. If we introduce in the usual manner an incre­
ment g to the equilibrium distribution function in accord­
ance with the equation f = fo - gafo/aE and introduce the 
relaxation time T, then the collision integral is replaced 
in the kinetic equation at H ~ Hc2 by the term 

l=g/,+W[g(p, €)+g(-p, -E)]. (8) 

2. In the mixed state, it is meaningful to speak of the 
electric conductivity of the normal electrons in a plane 
perpendicular to the magnetic field, if the role of the 
superconducting component is tak~n into account by in­
troduCing the concentration xn = B/Hc2 of the normal 
phase (13 is the average magnetic induction), in analogy 
with the intermediate state of a type-I superconductor. 
The conductivity (] of the normal electrons, i.e., the 
charge transported by the quasi static excitations, is 
calculated with the aid of the kinetic equation. 

The usual solution of the kinetic equation in a constant 
electric and magnetic field g = ev fffT, where t! is a cer­
tain constant vector (see, e.g., [15J ), is valid also at 
H -;;;; Hc2' since the reversal of the sign of the velocity v 
leads to g(p, E) = -g(-p, E) and the term in the square 
brackets in (8) vanishes. This means that on going over 
to the mixed state near the critical field, the conductivity 
in a direction perpendicular to the magnetic field re­
mains constant, as does the Hall angle. With further de­
crease of the field, the conductivity increases, namely 
a ex: l/xn. These statements agree with the experimental 
data [16, 17J. We note that we have in mind the conductiv­
ity of an ideal metal free of defects. In the existing 
superconductor samples, owing to the presence of vortex 
pinning, the conductivity of the normal electrons is de­
termined by measuring the so-called resistance Pflow to 
the vortex flow. 
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FIG. 2. Comparison of the electron distribution functions f(p) in the 
case of occupation from the bottom of the band and of the quasiparticle­
excitation distribution function n(p) for the cases of the constant electric 
field E (a) and of a constant temperature gradient vT (b). The dashed 
curved arrows show the states connected with scattering by the vortex 
lattice. 

Thus, in first-order approximation, the components 
of the electric conductivity tensor of the normal elec­
trons remain unchanged at H ~ Hc2' At the same time, 
the thermal conductivity is greatly altered on going to 
the mixed state in pure type-II superconductors [2,8J. 

The superconducting electrons make no contribution to 
the heat transport, and in addition, in the temperature 
region of interest to us, the contribution of the phonons 
to the heat transport in metals near Hc2 is very 
small [18J, so that we can confine ourselves to electronic 
excitations. The abrupt decrease of the thermal conduc­
tivity at constant electric conductivity confirms the 
unique character of the scattering of electrons by a vor­
tex lattice. This can be easily visualized with the aid of 
Fig. 2. Transitions from one branch of excitations to 
another, caused by the vortex lattice, occur at E = const, 
i.e., at Ip - Pfl = const, and are shown by the curved 
arrows in Fig. 2. It is clear that electron-hole transi­
tions do not affect the charge transport, since they do 
not change the excess of the quasiparticles moving in 
the corresponding directions. To the contrary, transi­
tions of this kind radically decrease the heat transport, 
since they decrease the excess of quasiparticles moving 
against the temperature gradient. 

The solution of the kinetic equation for the case of a 
constant temperature gradient at H ;:; Hc2 can be sought 
in the form 

g=-i'(kBT)-'v!T,' 

cris a certain constant vector), which is perfectly 
analogous to the form of the solution in the normal state. 
The proposed form of the solution means that g(-p, -E) 
= g(p, f), since v and E reverse sign simultaneously. 

According to (8), the collision integral is placed by 
the expression g 17', where 

1/T'=lIT+2W. (9) 

The solution of the kinetic equation of H -;:; Hc2 can be 
obtained here from the solution for the normal metal, 
with T replaced by T'. Since W, according to (7), depends 
on E 1 = Ef - P~ 12m, it is necessary to use a solution in 
a form in which the dependence of the relaxation time on 
Pz is admitted. To the contrary, T is regarded as con­
stant. 

Omitting the well known calculations [15J, we obtain 
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for the relative change in the components of the thermal 
conductivity tensor of a metal with spherical Fermi sur­
face 

K" 3 J '['. , -=- -smOcos OdO. 
Kn 2 0 T 

Here Kn is the thermal conductivity of the normal metal 
without a magnetic field, e is the angle between Hand 
the vector p, and V'T lies in the plane y '" O. 

We simplify the expressions by assuming that (WT)2 
« 1. This condition is satisfied in certain experi­
ments[8,9,19J. Neglecting (WT,)2« 1 in the denominator 
of the integrands and recognizing that 

W=Wo(E.L/EI) -'''=Wo/sin 0, 

where 

(10) 

we obtain for the relative changes of the thermal conduc­
tivity along the field K II , for the transverse thermal con­
ductivity K.1' and for the tangent of the thermal Hall 
angle O!H the following formulas: 

K n,'. 28 '8 
II 3 J sm cos -= de 

Kn 0 sine+2Wo'[ , 

K.L 3 J sin'e 
K: = 2 0 sin 0+2Wo"t dO, 

n,2 sin' e de n,' sin' e de -. 
tgaH= w'[ [J--][J ] 

o (sin 8+2W,r)' 0 ain O+2W,r 

(11) 

The integrals in (11) can be calculated in elementary 
fashion. We do not write out the integrated functions, but 
present their plots in Figs. 3 and 4. Figure 3a shows 
plots of the function (1 + 2W oTr\ which describes the 
change in the thermal conductivity and of tan O!H at 
H :s:: Hc2' if the dependence of W on Pz is neglected. This 
dependence is quite weak, and the approximate descrip­
tion is quite close to the exact one for a spherical Fermi 
surface; for the same reason the plot for (tan O!H)/WT 
and K.1 /Kn near Hc2 practically coincide. 

3. We can carry out the comparison with experiment 
by using data on the thermal effects in pure niobium in 
the mixed state. The Fermi surface of niobium is far 
from spherical, and we must therefore use certain 
averaged quantities. The denominator of (10) contains in 
the case of an isotropic metal, the combination nWEf 
'" lelnvi/2c. We use the average value of the Fermi 
velocity vf '" 6.2 X 107 cm/sec, obtained by calculating the 
band structure of niobium [20J, which agrees with the ex­
perimental data on the de Haas-van Alphen effect [21J. 
The ratio ~T/~o can be calculated by the BCS theory, 
and the experimental value of the gap at 0° can be taken 
from the data of[22J, namely ~o '" 1.83 kBTc '" 2.33 
x 10-15 erg, which agrees with the direct measurements 
on the tunnel effect [23J. The values of the Maki param­
eter K2 were determined from measurements of the mag­
netization in [22, 24J • 

Detailed data on the change of K.1 /Kn at H ::; Hc2 
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FIG. 3. Change of the thermal conductivity of a pure superconductor 
on going to the mixed state, 2WoT - (HC2 -H)/Hc2 . Solid curves-calcu­
lation by formula (II), dashed-the function (I + 2WoTrl. The experi­
mental points were obtained for niobium: O-data of (8) at T = S.S4°K, 
""-data of (8) at T'" 1.98°K, O-data of (19) at T '" 4.7SoK. 

FIG. 4. Change of the thermal 
Hall angle in a pure superconductor 
on going to the mixed state: 2WOT 
- (HC2 -H)/Hc2 . Solid curve-calcu­
lation by formula (II). Experimental 
points-data for niobium obtained 
in (9): O-at T'" 3°K, O-at T 
= SOSoK. 
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were obtained in [8J on samples with resistance ratio 
R(3000K)/R(4°K) ~ 700. We use the data given in[8J for 
two temperatures, 1.98 and 5.54°K. The values 
K2(1.98°K) '" 1.8 and K2(5.54°K) '" 1.45 are taken from [24J, 
where the magnetization of niobium samples of quality 
close to the samples of [8J was measured. We substitute 
in (11) the value T '" Z/Vf '" 3.2 x 10-12 sec, where 1 = 2 
X 10-4 cm was estimated in[8J from the thermal conduc­
tivity of samples in the normal state. Using the indicated 
values of the parameters, we can compare the experi­
mental data on the dependence of K.1 /Kn on H at H:s:: Hc2 
with the results of the calculation in Fig. 3b. At 
T '" 5.54°K the agreement is satisfactory, in spite of the 
rough approximations employed. For T '" 1.98°K, the 
agreement is much worse. It is possible that the de­
pendence of the pairing potential on Hc2 - H in these 
measurements does not agree with the theoretical one, 
It is known [22, 24J, for example, that the value of the 
parameter K2 depends strongly on the purity of the sam­
ple at low temperatures. 

It is interesting to compare the change of the thermal 
conductivity on going to the next state for samples with 
different mean free paths. The experimental results 
of [19J of the measurement of the thermal conductivity of 
niobium samples with resistance ratio 6500 are shown in 
Fig. 3b for K 2 '" 1.76 from [22J and T '" 2.2 X 10-11 sec. 
The value of T was chosen for best agreement with the 
experimental data [19J with the calculated plot, since it 
could not be determined from the experimental data on 
the thermal conductivity. The ratio of the relaxation 
times for the samples from [8,19J is ~ 7 and conforms 
only approximately to their purity as determined from 
the resistance ratio 6500/700 ~ 9. This discrepancy can 
be attributed to the inaccuracy of the measurements of 
R(4°K), which is determined by extrapolation. Deviations 
from the Wiedemann-Franz law are also significant, and 
cause the values of T obtained from the thermal and 
electric measurements to disagree. 

In [8J are given data on the ratio K II /K.1 in the mixed 
state. At H ~ Hc2' the ratio KII /K.1 is close to unity, in 
agreement with the results of the calculations. A more 
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serious comparison would be meaningless, since it is 
obvious that this ratio depends strongly on the anisotropy 
of the Fermi surface. Moreover, K II /K 1 can depend on 
the temperature, if electrons from small sections of the 
Fermi surface with large effective mass take part in the 
thermal conductivity, For such electrons, which travel 
along the field and make the principal contribution to K II , 
the probability of scattering at high temperatures by the 
vortex lattice can be greatly weakened by the factor 
exp(-E2/nwEf) and this leads to an increase of the 
ratio KII /K 1 at H ~ Hc2' This was precisely the situa­
tion observed in experiment [8J . 

It should be noted that the theory of the thermal con­
ductivity of pure superconductors in the mixed state, 
developed by Haughton and Maki [3J, yields qualitatively 
the same results as our calculations. Only the ratio 
KII/Kl, calculated in[31, differs too much from unity at 
H ~ Hc2' No quantitative comparison with experiment 
was made in [3j • 

We proceed now to the experimental results on the 
thermal Hall angle. In [9J they observed the Righi-Leduc 
effect in niobium samples with resistance ratio 
R(3000K)/R(4°K) R; 4000. For the samples used there, 
the value T = 1.7 X 10-11 sec can be determined from the 
measured value WT = 0.31 in the normal state at 
T = 5.5°K in the field Hc2' if one assumes as a result of 
averaging of the band-structure calculation [20J that 
m*/m = 2.0. According to [22J, it can be assumed that 
K2(5.5°K) = 1.58 and K2(3 G K) = 2.24. The experimental 
data on the thermal Hall angles are plotted in Fig. 4, 
using the indicated values in accordance with formula 
(11). Unfortunately, notice should be taken of the paucity 
of experimental data near Hc2' Nonetheless, the agree­
ment between calculation and experiment is satisfactory, 

We note in conclusion that in dirty superconductors at 
~ ~ the role of the scattering by the vortex lattice de­

creases. Accordingly, the changes of the thermal con­
ductivity and of the Hall angle on going to the next state 
differ from the case of pure niobium, The thermal­
conductivity coefficient for alloys changes much less 
than for pure niobium [8J, and the Hall angle can even 
increase when the alloy goes over to the mixed state [25J • 
At the same time, all the data on the thermal effects in 
the mixed state near Hc2 in pure niobium are in satis­
factory agreement with formulas (10) and (11), and by 
the same token confirm the assumption concerning the 
character of the scattering of the electrons by the vortex 
lattice. 
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