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The surface impedance Z and transmission coefficient Tfor E and H waves passing through a thin 
metallic plate are calculated for the case of specular reflection of the electrons by the metal 
boundary. The resonant dependence of Z and T at the near-resonance frequencies, 
W;:::W n =1Tn v kid, n = 1,2,3, ... , where v k are the extreme values of the electron-velocity projections 
on the normal to the plate surface and d is the plate thickness, is analyzed. The shape of the 
resonance curves is sensitive to the geometry of the Fermi surface. The difference in the passage of 
E and H waves through the plate are discussed. 

The size effect in a constant magnetic field[l} is 
widely used at the present to determine the diameters 
of the Fermi surfaces of metals. Theoretical formulas 
that describe the electrodynamic properties of metallic 
plates have as a rule been derived under the assump
tion that the static magnetic field is strong, so that it 
is impossible to go to the limit of a zero magnetic field. 
On the other hand, the periodic motion of the electrons 
between the two boundaries of the plates leads (as 
shown in[2]) to a unique resonance effect. Since this ef
fect should be observed at relatively high frequencies 
W » II (II '" 1/ T is the collision frequency and T is the 
electron mean free path time), it is necessary to use 
the equations of electrodynamics to calculate this ef
fect (the dispersion of the dielectric constant of a 
metallic plate was calculated in[2]). The frequency of 
the periodic motion is determined by the projection Vz 
of the electron velocity v '" dE:! dp (E '" E( p) is the energy 
of an electron with quasimomentum p) on the normal 
to the surface of the plate, and is different for different 
electrons. It is therefore necessary to use a kinetic ap
proach in the calculations. The dependence of the reso
nant frequency on the electron momentum, of course, 
smears out the effect, and after integration with respect 
to the momenta we are left only with the resonant terms 
that correspond to the extremal frequency!) (in analogy 
with cyclotron resonance for metals with an arbitrary 
electron dispersion law (see[3])). 

We emphasize that the nature of the considered ef
fect is not connected with quantization of the z-projec
tion of the electron momentum, so that the effect is not 
as sensitive to temperature as effects due to spatial 
quantization [4]. 

The interaction of electrons with the electromag
netic field depends Significantly on the configuration of 
the wave near the plate boundary. We have therefore 
considered two cases: incidence of an E or H wave on 
the plate and their passage through it[5]. The calcula
tion is carried out under the following assumptions: 
1) the temperature is low, so that dfF IdE'" -6 (E 
- EF) (fF is the Fermi distribution function and EF is 
the Fermi energy); 2) the electron reflection from the 
film boundaries is specular; 3) Fermi-liquid effects are 
neglected; 4) as already mentioned, WT » 1; 5) l » d, d 
is the plate thickness, l '" vFT is the mean free path; 
6) d « Cjw '" Ao, c is the speed of light and AO is the 
wavelength in vacuum. 
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1. PASSAGE OF H WAVE THROUGH A PLATE 

In this section we investigate the reaction, on the 
field, of an electromagnetic wave whose vector E lies 
in the plane of the plate. The z axis of the employed 
coordinate system is normal to the plate surface and x 
is directed along the vector E. We assume that the 
polarization of the electric field of the incident wave 
coincides with one of the principal axes of the conduc
ti vity tensor of the metal, so that the anisotropy does 
not intermix the different components of the electric 
field in the metae). If we seek the increment to the 
Fermi distribution function in the form 

air ). I I,(x,v,t)=-Tef(z,v r'·, 

then the kinetic equation for f( z, v) takes the form 

-iw'I+D,!1- eVxEx(z) =0, (1.1) 
az 

where w* == W + ijT, Ex(z, t) '" Ex(z)e- iwt . In the case 
of specular reflection of the electrons from the surface, 
the distribution-function component that is antisym
metrical with respect to Vz 

I,(z, v) ""/, [j(z, D" Dx) -/(z, -D" vx) I 
vanishes identically on the film boundaries. 

Using (1.1), we can find a connection between 
fa (z, v) and the analogously-introduced symmetrical 
component fs( z, v): 

f,(z,v)=2. al.(z, v) , (1.2) 
IW az 

and an equation for fs ( z,' v) 

( ')'f+ ,a'i. .' E 0 (13) W • D, --;;;:: - !W eDx ,= , • 

the boundary condition for which, as follows from (1.2), 
is 

al'l _ al. I - 0 
Tz l=o-Tz t:zd- • 

Expanding fs( z, v), Ex( z), and the x-component of the 
current jx( z) in a Fourier cosine series 

1 ~ tin 
i'(z)=--:;,-i.o+ .l.....i .. cosT z, 

0-1 

(1.4) 

1 ,.) ~ ,.) tin 
1.(z,v)=Z/o (v)+ .l.....fn (v)cosT z, 

1I=t 
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and using (1.3), we obtain 

j.n=an(w)Ex", anew) =a,I.(w), 

( J ds ) -, J ds v ' 
In(w)= --;;-vx' v 1-(nn~,/w'd)" (1.5) 

W1,' , 8ne' J ds , 
a, ... 4nw" w, "" (2nh)' -;-vx; 

The integration is carried out over the Fermi surface. 
For a quadratic isotropic dispersion law w~:o 417nez/m* 
is the square of the plasma frequency of the metal (m* 
is the effective mass and n :0 %1TPF/(217ll)3 is the elec
tron density). The Fourier cosine transformation of the 
Maxwell equations yields an equation that connects Exn 
with the magnetic field intensity Hy( z) on the plate 
boundary: 

2iw [ 4niw (nn )'] -;;d[H.(d) (-1)"-H.(0)]+ ~a,,(w)- d E.n=O. (1.6) 

With the aid of Eq. (1.6) and the expansion (1.4), 
making use of the usual boundary conditions for the 
electromagnetic field on the metal boundaries, we obtain 
the impedance Z(O) and the wave transmission coef
ficient 7: 

= E.(O) = (1+S,)S,-S,' fT"" E.(d) = 2S, 
Z(O)- Hy(O) 1+S,' E!"c (1+S,) (1+Z(O)) 

w· I'J' d - 1 w ( d)' ] -, 
S,=-i--' -2i-.-~-[1+- -- I (17) w ciA, ,,'I., ~ n' w' nnll, n , • 

n~' 

. w' Il.' . d ~ (-1)" [ w ( d)' ]-' s,=-'---2'-"-~--2- 1+----;- -- In , 
w di., n A, ~ n w nnll, 

n~' 

where 00 == c/ Wo and E}fc is the electric field intensity 
of the wave incident from the vacuum on the metal. It 
will be shown below that lSI \ « 1, \ Sz\ « 1 at 
d « O~/AO. Therefore 

Z(O) ""s" fT""2S,. (1.8) 

At W ~ vF / d (see below), the impedance and the trans
mission coefficients are of the following order of mag
nitude 

d (Il . 15,' IZ(O)I=lfTl--~) if 15,>'d>-, 
A. d A, 

(1.9) 

IZ(O)I-~ (~)'I', IfTl-~(~)'I' if d>!l,. (1.10) 
A, d A, d 

Let us return to formula (1.5) for the conductivity. 
The denominator in the integrand of the expression for 
In( w) in (1.5) vanishes at I Vz I :0 wd/17n (as T - 00). 
This condition corresponds to resonant interaction of 
the electrons with the electric field 3) and specifies a 
"narrow strip" on the Fermi surface of the metal. The 
number of the resonantly interacting electrons (length 
and width) of the strip varies with the frequency wand 
with the geometry of the Fermi surface, and in some 
cases quite abruptly. In particular, this occurs when 
the connectivity of the strip changes, namely at the 
saddle point (Fig. 1). 

Since the spectrum of the velocities Vz in the metal 
is bounded, a resonant interaction of the electrons with 
the n-th mode of the field either appears or disappears 
when the frequency goes to the value Wn :0 17nvz extr /d 
(depending on the type of the extremum of vz). It is 
precisely these cases which call for a special analysis, 
since In(w) can have near the corresponding frequen
cies Singularities analogous to those of Migdal and 
Kohn (see[7]). 
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FIG. I. Three investigated phases of 
the evolution of the strip Vz = wd/1Tn on 
going through the "saddle" point. 
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FIG. 2. Extremal strips on Fermi surfaces with "nicks" and "dents": 
a-between two "strips" Vz = 0 (dashed) there must be present a belt 
for which Vz is maximal; b-"dent." The maximum of Vz is reached at 
the point A on the belt A'. Between A' and A there is certain to be a 
belt on which Vz is minimal, and this minimum can be different from 
zero. 

1. If the x-component of the electron velocity Vx 
does not vanish at the point on the Fermi surface 
where Vz is maxima14), then at frequencies close to 
Wn = nvzmax/d we obtain 

1,,(w)=D,ln (w·/w,,-1). (1.11) 

2. On going through the "saddle" point (Fig. 1) we 
have 

In(w)=-iD,ln \w'/w,,-1), 

where Wn = 17nvzO/d (vzO is the velocity Vz at the 
"saddle" point). 

(1.12) 

3. If the extremum of Vz is reached on a whole line, 
then at frequencies close to Wn :0 17nvz extr /d, we ob
tain 

(1.13 ) 

The values of the dimensionless real constants Di are 
given in Appendix; throughout we have ln z == in I z \ 
:0 i arg z, with 0::; arg z < 217. In (1.13) we have y = 1 
if Vz has a maximum (possibly a local one) on the line 
and y = -i if Vz has a local minimum (vz min ;t! 0). 
Extremal strips are present on Fermi surfaces with 
necks and with "dents" (Fig. 2). Thus, at the frequen
cies w = Wn the "dimensionless conductivity" I n( w) 
has the Singularities J n ( Wn ) - 00 as T - 00, and this 
is reflected in the behavior of the impedance and of the 
transmission coefficient near the frequencies w :0 Wn. 
It follows from (1.7) and (1.8) that the Singularities be
come manifest not in the dependence of the impedance 
and of the transmission coefficient on the frequency, 
but in their derivatives with respect to frequency, We 
have the following in particular cases: 

1) a maximum of Vz at a point-"end" point: 

(1.14) 

2) a "saddle" point: 

(1.15 ) 
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3) an extremal strip: 

dZ(O) i{jo' w' -'1, 

~~ -- '(wnD,dAo (-;,:-1) , 

dfT 'ndZ(O) nn 
"du;"~2\-1)~, wn=T V""" 

(1.16 ) 

Since the electron free path time T is finite, the 
singularities of the derivatives (1.14)-(1.16) are 
smeared out, and to separate them from the background 
dependence of dZ(O)/dw and d.J/dw on the frequency, 
obtained by differentiating (1.10), it is necessary to 
satisfy certain conditions, namely: WT » (d/ 00 )4/3 for 
impedance singularities and WT » (d/ 00 )2/3 for singu
larities of the transmission coefficient in formulas (1.14) 
and (1.15) and respectively WT» (d/O o )8/3, WT 

» (d/ ~o )4h in formulas (1.16) for the impedance and the 
transmission coefficient. At d« 00 formulas (1.15) and 
(1.16) are not valid; the singularities are then much 
weaker than in the case described here. 

2. PASSAGE OF AN E WAVE THROUGH A PLATE 

An E wave propagating along a waveguide contains 
in addition to the component Ez also a field component 
normal to the propagation direction. We designate it 
Ex. The coordinate axes are chosen the same as in the 
preceding section (in particular, the axes x, y, and z 
coincide with the principal directions of the conductivity 
tensor). In the E wave, all the components of the elec
tromagnetic field depend at least on two variables; we 
assume them to be z and x. 

The fact that the part of the electron distribution 
function that is antisymmetrical in Vz vanishes makes 
it possible to use, as in Sec. 1, a Fourier expansion for 
the solution of the kinetic equation. After transforma
tions we obtain (k = 1Tm/L, m = 1, 2, 3, ... , L is the 
wa veguide width) 

,,~sin kx efl" sin nan z ), i. = cos kx (+ ixo + t i.n cos :n z ) . 
J!"",l 

(2.1 ) 

where 

( S ds ) -. S ds 1 
In(w)= -v-v1 -;-v,' 1-(nnv,/w'd)' ' 

(2.2) 

( as,) -. as , 2 (nnv.lw'd) , 
Gn(w)= S-v-v. S -;-v. [1-(nnv,/w'd)']' ' 

Taking the Fourier transforms of Maxwell's equa
tions in accordance with the expansions (2.1) and taking 
into account the boundary conditions for the electric 
field intensity, we get for d » ~~/Ao 

where 

Z(O)= E.(O) ",S" fT~E«d) ",2S" (2.3) 
Hy(O) E!nc 

1 n n S,=-ao+' (-1) an, 
2 """"'" 

w· 60 2 

a()=-i---, 
w dA, 

7/",,1 

(2.4) 

d w d' k'd' Gn') 1 -. 
an =-2i--- 1+- -- /,,----- ~ 

(nn)'Ao { w· ( nn{j,) ( n'n' In ) 
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In a derivation of an( w) we took into account the in
equality Ao» d. Formulas (2.3) and (2.4) go over, as 
k - 0, into expressions (1.7) and (1.8) for the impedance 
and for the transmission coefficient of the H wave. 

In order of magnitude, the impedance and the trans
mission coefficient of the E wave coincide with the 
corresponding expressions for the H wave (see formu
las (1.9) and (1.10 ». At the frequencies W = Wn (wn 
= 1Tnvzcr/d, n = 1,2,3, ... , Vzcr is the value of the 
velocity Vz at the singular point or on the extremal 
strip), the impedance and the transmission coefficient 
have Singularities. If the H wave has a singularity at 
the frequency w = Wn, the E wave has a similar singu
larity (see (2.4) and (1.7». 

In the case of a spherical Fermi surface (singular 
"end" point Vz = vF, Vx = 0), the impedance and the 
transmission coefficient of the H wave have singulari
ties at the frequencies Wn = 1TnvF I d (n = 1, 2, 3 ••. ), 
with 

dZ(O) 8 A 1 {j '{ (w· )}-. ~=-3-ii (kAo)'(nn-;i-) (w'-w.)ln' w. -1 • 

dfT dZ(O) (2.5) 
_=2(-1)'-_ 
dw dw 

at 
d>{jo, 

1 {jo 
w"t~-- kd~-

(kd)' ' d ' I w:~. I ~ 1. 

However, observation of this speCific Singularity of the 
E wave is possible under much more stringent condi
tions than the observation of singularities that are com
mon to the Hand E waves (see the inequalities written 
out above with the condition for the applicability of 
formulas (1.14)-(1.16». 

CONCLUSION 

An examination of the passage of E and H waves 
through a thin metallic plate (d « l) show that the sur
face impedance and the transmission coefficient have 
resonant Singularities at frequencies satisfying the con
dition W = 1Tnvk/d, n = 1,2, 3, ... , where vk are the 
extremal values of the projection of the electron 
velocity on the normal to the plate of the values of this 
projection at the "saddle" point. To each critical value 
vk there corresponds its ·own series of Singularities 
(angles 1,2, 3, ... ). The shapes of the resonant curves 
are sensiti ve to the geometry of the Fermi surface. 
The singularities of the E and H waves coincide, ex
cept when the velocity component Vx vanishes at the 
critical point (the x axis lies in the plane of the plate 
and is directed along the electric field), then the H 
wave has no singularities, whereas the E wave does 
have them. 

The resonance Singularities are most Significant at 
a plate thickness equal to the plasma wavelength 00 
= c/ Woo The described resonance is the classical high
frequency size effect, which is not connected with the 
dimensional quantization of the electron motion. 

To observe the resonant effect it is necessary to use 
perfect single crystal plates with a mean free path much 
larger than the sample thickness. Any diffuseness (even 
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partial) of the reflection of the electrons from the sur
face of the plate plays the same role as a finite charac
ter of the relaxation time, and leads to additional 
smearing of the singularities. The entire aggregate of 
requirements and limitations is apparently best satis
fied by semimetals and by degenerate semiconductors 
in which, in particular, specular reflection of the elec
trons from the sample boundaries is possible. 

We take the opportunity to thank N. B. Brandt and 
I. M. Lifshitz for useful discussions. 

APPENDIX 

A complicated Fermi surface can have several "end" 
and "saddle" points on several extremal strips. Each 
of the singular points is characterized by its own criti
cal value of the velocity component vz. If the Fermi 
surface has symmetry properties, this can lead to 
equality of the critical velocities vz, of the singular 
pOints, or else of the belts. If such an equality does 
take place, then the corresponding D must be summed 
over those end and saddle pOints and extremal strips 
for which the values of the critical velocities coincide. 
The constants Di are given by 

D = (I..'!:!... ') -I nv.'sine I I 
t v~ V,mtJ3: , 

v Kv'lR 
(A.l) 

D -(I ds ') -'nv.-sine I I ,- -VIC V,o, 
v Kv'llRI 

(A.2) 

( ds ) -I .[ de )' 'n v" e 
D,= I-v.' Iv".,,1 ~dcp t+(-] x sm ,(A.3) 

v (r) dcp Kv'llFI 

Here ( e, cp) are the angle variables in velocity space, 
defined in such a way that Vz / v = cos e and K = K( fI, 
cp) is the average Gaussian curvature of the Fermi sur
face 

All the quantities in (A. 1) and (A.2) are taken directly 
at the singular points. The integration in (A.3) is over 
the strip (vz = Vz extr). 
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nOr to the frequencies corresponding to "saddle" points on the Fermi 
surface (see below). 

2)This means, in particular, that iz = 0 U is the current density). 
3)According to Landau [6), the electrons that interact resonantly are 

those for which k . v = w. Here kz = rrnl d and kx = ky = O. The reso
nance condition can be given a simple mechanical meaning: 2d/vz 
= nT, where T is the period of the oscillations of the electromagnetic 
field (w = 2rr/T). When it returns to the plate boundary, the electron 
finds the phase of the field unchanged. 

4)This holds true for a spherical Fermi surface, where Vz = 0 at Vz = Vf. 
However, even for an ellipsoid that is rotated through a certain angle 
relative to the z axis we have Vx *" 0 at Vz = Vz max' Of course, the 
Fermi surface should then consist of not one ellipsoid, but of several 
of them, such that the condition uxz = 0, assumed in the derivation of 
formulas (1.5)-( 1.7), is satisfied. We emphasize that the condition Vx 
*" 0 at Vz = Vz max, which is necessary for the validity of formula (1.11), 
does not contradict the condition uxz = 0 if the axes x and z are rea· 
sonably chosen (normal to the plate and to the polarization of E wave). 
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