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The tunnel current passing through a dielectric layer containing impurity centers with energy levels 
in the forbidden band is calculated. It is shown that the quasistationary electron states arising at 
such centers lead to an appreciable increase in the tunnel current. The volt-ampere characteristics of 
metal-dielectric-metal and semiconductor-dielectric-metal systems are investigated and the existence of 
a current peak is demonstrated. Tunneling through an amorphous dielectric is also considered. 

The simplest theories of tunneling in solid tunneling 
structures consider a layer of dielectric between two 
conductors as an ideal crystal, neglecting the role of 
impurities and structure defects. The effects of impuri
ties on tunneling have been taken into account in a num
ber of studies. In the paper of Schmidlin, [lJ the role of 
the impurities was reduced to an increase in the tunnel 
factor due to local lowe rings of the barrier brought 
about by the fluctuation potential of the impurities. 
Kane[2] considered a doped p-n junction and showed that 
the tunnel current can increase (in comparison with the 
case in which impurities are absent) as a result of tran
sitions between the tails of the density of states near the 
edges of the bands. Parker and Mead [3) showed that im
purity states in the Schottky barrier can considerably 
ease the tunneling of the electrons. Parker and Mead 
started out from the fact that under stationary conditions, 
the number of transitions from the semiconductor to the 
impurity, NSi' is equal to the number of transitions from 
the impurity to the metal Nim' The numbers Nsi and Nim 
are proportional to 

f,(1-f,)exP(-2SPdZ) and (1-tm)f,exP(-2SPdZ), 
o ., 

respectively, where 0, d are the turning points, zi the 
coordinate of the impurity, p the momentum of the elec
tron, and fs' fi and fm the occupation numbers. It then 
follows that the probability of a two-step semiconductor
impurity-metal transition is greater than the possibility 
of direct tunneling by a factor 

" d 

[C,exp( -2 Jpdz )+C2exp( -2 JPdZ)]-' 
o - - at 

(C1 and C2 are constants that do not contain exponentially 
small quantities). 

However, this kinetic treatment does not give an ex
haustive description of the phenomenon and is unjustified 
at a number of points. The basic result of the kinetic 
method is that the probability of a two-step semiconduc
tor-impurity-metal transition is expressed in terms of 
the probability of the single-step transitions Nsi and 
Nim. Calculation of the quantities Nsi' Nim themselves 
requires, of course, a quantum-mechanical treatment. 
We emphasize that the problem is a three-dimensional 
one, since the total potential energy of the electron is 
equal to the sum of the one-dimensional potential of the 
barrier and the potentials of the impurity atoms located 
in it (a simplified one-dimensional model of resonance 
tunneling was considered in[4,5)). Moreover, applicabil
ity of the method of[3J requires satisfaction of the usual 
conditions for kinetic consideration, which allow us to 
neglect interference effects in calculation of the proba-
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bility of a two-step transition. Such conditions can be 
realized in principle if tunneling is accompanied by 
some inelastic process (electron-phonon interaction, 
excitation of impurity atoms, surface states and so on) 
that rather quickly destroys the phase correlation of the 
wave functions before and after the interaction with the 
impurity. In that paper, however, only elastic tunneling 
is considered, i.e., a situation of the type of elastic 
resonance scattering, Finally, the kinetic-equation me
thod does not take level broadening due to tunneling into 
account. In particular, it remains unclear whether the 
result refers to the value of the transition probability at 
the maximum or to the transition probability averaged 
over the energy. 

In the present paper, a quantum-mechanical theory of 
resonance tunneling through a barrier containing ran
domly distributed impurities is developed. The basic 
difficulty lies in finding the wave function and the tunnel 
level width for the three-dimensional problem, which 
does not allow separation of the variables (in contrast, 
for example, to the problem of a hydrogen atom in a 
homogeneous electric field). This difficulty can be over
come if we make the natural assumption that the size of 
the bound state on the impurity is much smaller than the 
barrier width. 

Moreover, tunneling through an amorphous dielectric 
is considered. It should be kept in mind that real tunnel 
dielectric films are frequently amorphous or polycrys
talline. The role of the forbidden band in such materials 
is taken by a range of energies with relatively low level 
density, in which all the states are localized. [6J It can 
be expected that the localized states in amorphous di
electrics play the same role in tunneling as impurity 
states do in crystalline dielectrics. 

1. THE WAVE FUNCTION IN THE RESONANCE 
APPROXIMATION 

Tunneling of an electron with an energy E close to 
some level Eo of the impurity atom is considered. It is 
assumed that the radius of the impurity potential and the 
size of the bound state on the impurity are much less 
than the barrier width. We shall assume the wave func
tions of the bound state of the electron on the impurity, 
cp (r), to be known, as well as the Green's function of the 
electron at the potential barrier without the impurity, 
g(rr'). We introduce the impurity scattering operator T, 
which satisfies the equation 

(1) 

(U(r) is the impurity potential, U = U(r)o(r - r')). Then 
the wave function can be expressed in terms of T and 
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the wave function in the absence of impurities, <J! 0 : 

1jl=¢o+ifl\lo. (2) 

The operator for scattering by the impurity in the 
barrier, T, is conveniently expressed in terms of the 
impurity scattering operator in the unbounded dielectric 
To, which satisfies the equation 

(3) 

where go is the Green's operator of the unbounded dielec
tric. Finding 11 = To(l + goTofl from (3) and substituting 
it in (1), we get 

(4) 

Next, we find To in the resonance approximation. The 
Green's function of the electron in the field of the impur
ity in an unbounded dielectric is approximately equal to 

G ( ')- <p(r)<p(r') (5) 
Err - E-Eo ' 

Expression (5) is valid if E - Eo is much less than the 
separation of energy levels of the impurity atom. The 
impurity scattering operator To is expressed in terms 
of G by the obvious relation 

To=go -I (G-go) go-I. 

In the resonance approximation we have 

T,(rr')= S go-'(rr,)<p(rl)dr, S go-' (r'r,)<p(r,)dr,(E-Eo)-' 

U(r)<p(r) U(r')<p(r') 

E-Eo 

(6) 

inasmuch as cp(r) satisfies the equation [gol - V(r)]cp(r) 
= O. 

It is seen from (5) that To has a multiplicative struc
ture in the sense of the dependence on r and r'. This 
allows us to solve Eq. (4) easily. We seek f in the form 

T (rr') =<p (r) U (r) <p(r') U (r') t. 

Then 

t= [IE-Eo-.SU(r)<p(r)[g-i01U(r')<p(r')drdr'] _to (7) 

The last term in the brackets describes the shift in the 
impurity level due to the barrier field, and the damping 
r due to transitions to the continuous spectrum. The 
level shift, which is unimportant for us, can be included 
in the value of E()o The desired expression for the wave 
function follows from Eq. (2): 

Ijl(r)-Ijlo (r) = (E-Eo-ir/2) -, S g(rrl) U(r,)<p(r,) dr, S U(r,) <p(r,) Ijl,(r,)dr" 

(8) 

r=2 Im S U(r)<p(r) (g-g.) U(r')<p(r')dr dr'. (8a) 

Formula (8) refers to the case in which there is a single 
impurity. If we denote its coordinate by r., then it is 
convenient to measure the arguments frorb the point rj 
in Eq. (8), i.e., to replace Vcr), cp(r) by V(r - r.), 
cp(r - r j ). If there are N impurities in the barrier and 

they are located at sufficiently large distances from one 
another, so that the electron interacts with each of them 
independently (the criterion will be indicated below), 
then the right side of (8) is represented by the sum over 
the locations of the impurities. 

2. CALCULATION OF LEVEL DAMPING 

Vp to now we have made no model assumptions as to 
the shape of the potential barrier. For calculation of r 
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and <J! from Eqs. (8), (8a), we need to know the specific 
form of the Green's function g(r . r'). It is comparatively 
simple to calculate g(r' r') for a rectangular barrier. 

However, we shall be interested in the situation in 
which the electric field F which creates the current is 
sufficiently large that it itself affects the shape of the 
barrier. We shall therefore assume the potential bar
rier to be an arbitrary function of the coordinate and 
also that the conditions are quasiclassical. As is seen 
from Eq. (8a), to find r, we must know the difference 
g - go at distances Ir - r'J of the order of the character
istic dimension of V or cp, i.e., much smaller than the 
barrier width. Then g ~ go in the first quasiclassical 
approximation. The corrections that make a contribution 
to the damping are of the order of e-pd, while the quasi
classical approximation cannot take into account terms 
of order (pdrt, where d is the barrier thickness. The 
latter exceed e-pd in value but do not make a contribu
tion to the damping. Consequently, account of the terms 
of order e-pd would exceed the accuracy of the method. 

In order to avoid this difficulty, we consider another 
method of calculation of r, based on the approximation 
solution of the Schrodinger equation. We shall seek the 
solution of the equation 

AIjl+2(E-V(z) -U(r) )1jl=O 

(here V(z) is the barrier potential) in the form of cp(r) 
at distances a ~ Ir - rj 1 ~ d and in the form 

v(r)exp(- jpdZ) 

in the region a ~ Iz - Zj 1 ~ d, where vcr) is a slowly 
changing function of z, and a is the characteristic radius 
of the impurity potential Vcr). 

For vcr) we obtain the equation 
iJv 

-2p(z)a;-+ d,v=O, 

p'(z)=2[V(z)-V(zo)+EoJ. h=m=i. 
(9) 

The Fourier transform with respect to x, y of the solu
tion of Eq. (9) is of the form 

2 J: d I 

v(z,q)=exp [-; S p(:')]' (10) 

where Eo > 0 is the binding energy of the electron on the 
impurity; the impurity coordinate is ro(O, 0, zo). In the 
region a ~ Ir - rol ~ d, the solution of (9) should be 
identical with the asymptotic expression for the normal
ized function of the bounci state 

<p(r-ro)""Alr-rol-1 exp [-1'2Eolr-roI1. (11) 

It is easy to understand from (11) which region of 
space turns out to be important for tunneling; this is the 
interior of a cylindrical tube with dimension along the 
z axis of the order of d and a diameter of the order of 
(d/Ko)ll2. Expanding Ir - rol in (11) inside this region 
and calculating the Fourier component in x, y, we can 
establish its identity with the solution (10) if we set p(z) 
= ~ in it and choose Zo as the lower limit of the in
tegral. This makes it possible to match the two solutions. 
In contrast to the one-dimensional problems, the match
ing here takes place in a three-dimensional region (in 
some part of the tunneling tube). Outside this tube, i.e., 
at x2 + y2 »d /Ko, the constructed solution becomes 
inapplicable, since the second derivatives with respect 
to x, y contained in it will be comparable with the omit
ted second derivative with respect to z. However, as is 
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clear from what has been said, it suffices in the calcula
tion of r to know the ~ function only inside the tunneling 
tube. 

After the solution has been found in the region Iz - zol 
» a, the problem reduces to a one-dimensional one 
(for each Fourier component of the function), since at 
these distances only the barrier field V(z) is significant, 
The further calculations do not present any difficulty and 
are completely analogous to what was said in Sec, 50 
of [7J. Finding the current densities j+, j_ outside the 
barrier for particles which travel in the positive and 
negative directions of the z axis, respectively, we calcu
late r by means of the continuity equation from the rela
tion 

where the integrals are taken over planes that are 
normal to the z axis, in the region of large absolute 
values of (z = zo) outside the barrier. We finally obtain 

1'2nA' "dz -I " 

f ~ ~ [(f-) exp ( -2 S PdZ) 
'lEo 0 p(z) 0 

ddt If 

+(f pi:) rexP (-2SPdZ)] 
z~ ~ 

(12) 

where 0, d are the turning points, 

Considering r as a function of Zo, it is seen from (12) 
that if the barrier is sufficiently wide (,lEad »1), then 
r (zo) has a sharp minimum at some Zo = zm inside the 
barrier. For a symmetric barrier, it is clear that zm 
= d/2. Thus the narrowest resonance and the one with 
the highest amplitude appears in the wave function and, 
as will be shown below, in the tunnel current, due to the 
impurities which lie near the plane Z = zm. The integral 

S dz/p{z), 

which enters into (12), is equal in order of magnitude to 
the cross section of the tunneling tube d /..fE;. 

We shall now make clear the criteria for independence 
of the interaction of the individual impurity atoms with 
the tunneling electron. First of all, it is necessary to 
require that there be no more than a single impurity 
atom inside the tunneling tube. This leads to the inequal
ity nd2Eol/2 < 1, where n is the impurity density. Next, 
we estimate the role of the effects of concentration 
broadening of the impurity level. Fluctuating approaches 
of two, three and more centers lead to a smearing of the 
level Eo in the impurity band. In the low-density limit 
(n < E~/2), it suffices to take paired approaches of im
purity atoms into account. It is essential that the over
whelming majority of configurations correspond to non
resonant interaction of the impurities because of the 
presence of a strong electric field in the barrier. The 
detuning is equal to F' R, where F is the electric field 
and R the vector connecting the two impurity atoms. For 
the case of nonresonant interaction of two short-range 
centers, the level shift BE is equal in order of magni
tude to 

E. exp{-21'2EoR) 
6E- FR R' 

If this shift exceeds the tunnel width r, then reson
ance tunneling comes about through collectivized states 
in the impurity band, and not through the level Eo of the 
isolated atom. We can neglect the contribution of such 
transitions to the total tunnel current if the fraction of 

108 SOy. Phys.-JETP, Vol. 40, No.1 

atoms leading to shifts liE ;C r is small. USing (12), we 
obtain the estimate 

f min-yEo d-I exp (-Y2Eod) , 

Le., the distances R 'S d/2 are dangerous. Consequently, 
upon satisfaction of the inequality nd3 < 1 (which is 
stricter than nd2E(jl/2 < 1) we can neglect the effects of 

. impurity interactions. 

3. TUNNEL CURRENT AND VOLT-AMPERE 
CHARACTERISTIC 

For calculation of the current, we choose ~ 0 in (8) in 
the form 

l/Jo=2yp_/p.(z)eikpcos [J'Pk(Z')dz'+n/4] at z<O, 

p.'=2[E-V{z) ]-k', p_=p.(z .... -oo), 

which corresponds to a single particle in a unit volume 
in a plane wave incident on the barrier with tangential 
momentum k. The Green's function, one argument of 

. which corresponds to the region near the impurity and 
the other to the region z > d, is equal to 

g(rr l )={2n)-' Sg(q;z,zl)eiOPd'q, 

1 d z • 

g(q;z,zl)~ exp [- Slp,ldZ'+iSP,dz'-~], (13) 
2Yp,(z)p,(zl) '. •. 4 

p'= (r-r.) '- (Z-Zl)'. 

The total current consists of two parts, corresponding to 
the two terms in Eq. (8): the direct tunneling current jo, 
which is associated with </Jo, and the resonance current, 
which is proportional to [(E - Eo)2 + r 2/4]-1. The inter
ference term need not be taken into account, since it 
vanishes after averaging over the positions of the im
purities. 

The partial resonance current is equal to 

. Ck)=(?n)-'S np_ IS.8.I' (- S· ) 
1res - p'(zo) (E-Eo)'+f'/4 exp 2 p. dz 

o 

.. d d d 
xexp ( -k' S-Cz) -q' S _(Z) )d'qdzo. 

o po Z %0 po Z 

(14) 

Here 

The last exponential factor in (14) appears on expan
sion of Pk' Pq in powers of k2, q2. As is seen from (14), 
the characteristic k2, q2 are of the order of Po/d, i.e., 
later terms of the order of (padr1 < 1 in the expansion 
of the exponent can be neglected. The integral over Zo in 
(14) corresponds to summation over the impurities. By 
comparing the partial currents, we can easily establish 
that the resonance current exceeds the direct tunneling 
current at IE - Eol ~ r if 

d • 
'::'>exp (-2 S PodZ). 
po 0 

However, it makes sense to compare not the partial 
but the total currents, with account of the energy distri
bution of the electrons. The total current I is equal to 

I ~ .E;(k) (f(E.) - I(E.-eV,)], (15) 

Ve is the applied potential difference. The results here 
depend significantly on the parameters of the tunnel 
structure and the impurity atoms. The level separation 
between Eo and the edge E of the conduction band of the 
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dielectric is a constant that depends weakly on the field 
in the barrier. Therefore, Eo depends on the location of 
the impurity: 

Eo(zo) =e+eV(zo). 

The potential V(z) is determined by the difference in the 
potentials between the electrons and the charge on the 
impurities located inside the barrier: 

L'l. V=-4nqn+4ne<1jJ'(r) >. 
Here q is the charge of the impurity in the initial state 
(q = e in the case of a donor, q = 0 for an acceptor), the 
brackets ( ... ) denote averaging over the location of the 
impurities and summation over the energies. 

Thus the determination of V(z) reduces to solution of 
a self-consistent problem, inasmuch as Ij!(r) depends 
weakly on V(z). In this paper we shall assume the in
equality end2 « Ve to be satisfied, which guarantees 
homogeneity of the field in the barrier (for d = 30 A, 
Ve = 3v, we should have n « 2 x 1020 cm -3). 

We now investigate the form of the volt-ampere char
acteristics in several typical cases. (It is impossible to 
go any further with Eq. (14) in its general form, since 
the quantities Sk' Sq are determined by the specific form 
of the impurity potentiaL However, it is seen that in 
finding the total current, integration of (14) over E leads 
to the appearance of the quantity r(zo) in the denomina
tor. This factor is exponentially small in the parameter 
pod and determines the region of predominance of the 
resonance current over the direct tunneling current.) 

We now consider a metal-dielectric-metal system 
in which the impurity level is everywhere higher than 
the Fermi level in the absence of an applied field (see 
Fig. 1). If a difference in potentials Ve at which elec
trons make the transition from metal I to metal II is 
applied, then for Ve < V1 = D. - E - Vo and T = 0, the 
resonance component of the tunnel current is lacking. 
For Ve > V 1, the impurity level falls below the Fermi 
surface of metal I. A resonance current arises due to 
impurities located near z = d. The value of the reson
ance current, summed over the energies of the elec
trons, is proportional to Dnd;l>~r(zl)' where 

D=exp (-21 pdz). 
o 

L'l.-e 
z,=d---. 

V.+Vo 

If Zm < Z1 < d, then 
< , d 

r(z,)~ (S dz/p(z) ) - exp (-2S pdz). 
.1 'I 

and the current is determined chiefly by the quantity 

" 41'2 d(L'l.'''-e''') 
exp (-2SPdz)=ex p [- 3(V,+Vo} ]. 

o 

With increasing Ve, the point Z1 is shifted to the left and 
the current increases exponentially until Z1 reaches zm' 
where r has a minimum. For still larger Ve (0 < Z1 

FIG. 1 
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's 

V=O 

FIG. 2 

< zm) the resonance current is determined by impuri
ties which lie close to the plane Z = zm' and the energy 
of the resonating electrons is shifted to the bottom of the 
conduction band of metal I. A region of comparatively 
slow change of the resonant component of the current 
corresponds to this voltage range on the volt-ampere 
characteristic. Finally, for Ve + Vo > 2(D. - E + EF1) all 
the electrons of metal I depart from resonance with im
purities lying near zm' The resonance current then falls 
off exponentially. The total direct tunneling current will 
be smaller than the resonance current if the inequality 

d 

_n_>exp (- SPdz) 
PoEF. 0 

is satisfied. Thus the total current 10 + Ires will have a 
maximum as a function of Ve' For the parameters of the 
tunnel structure used above, the field intensity in the 
dielectric in the region of the maximum will be of the 
order of 106_107 V/cm. 

The results that have been obtained are valid in the 
range of temperatures kT « (Ve + Vo);l>od. Here, the 
characteristic size of the function f[Eo(zo)] in terms of 
Zo is much less than the characteristic size of r(zo). In 
the opposite limiting case, the distribution function can 
be taken out from under the integral over Zo at the point 
zm' Then, the following estimate is valid for the cur
rent: 

( V.+V,) -
l~f L'l.-e+-d-Zm YD. 

In this case, the principal part of the dependence of the 
current on the voltage is contained in the distribution 
function. 

Finally, we consider the metal-dielectric-n-semi
conductor structure. Its difference from the preceding 
case lies in the fact that the field penetrates into the 
semiconductor, creating a strong bending of its bands. 
Let. the picture shown in Fig. 2 obtain in the case without 
an external field. The Schottky barrier in the semicon
ductor has a height ~ 1 eV. In the vicinity of the Schottky 
barrier, the field is screened by charged impurities. 
The potential curve is described by the expression 

2ne ( L)' <p=-N, z+ . 
x 

-L<z<O. 

<p=O. z<-L, 

where K is the dielectric constant of the semiconductor 
and Ni the concentration of charged impurities; Lis 
determined by the potential CPs at the surface of the 
semiconductor: L = (KCPs/21TeNi)112. For the character
istic values Ni ~ 1017 cm-3, we have L ;:;:: 4 X 10-5 cm. 
For electrons with energies of the order of kT, such a 
barrier is practically impenetrable. This means that the 
current will be carried chiefly by electrons with ener
gies close to the surface potential. The latter conclusion 
remains correct even upon the application of a potential 
difference, up to the point of enriching bending of the 
bands. Let the initial position of the impurity level in the 
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dielectric lie above the edge of the conduction band of 
the semiconductor and higher than the Fermi surface in 
the metal. Then the resonance component of the current 
will be small so long as the bending of the band corre
sponds to repulsion of electrons from the surface. The 
beginning of the resonance current takes place at the 
enriching bending of the band. 

For the sake of argument, we shall assume that the 
electronic 'conductivity of the semiconductor is suppor
ted by donors that possess a shallow level: Ed ~ kT n' 
where Tn is a temperature of the order of room tem
perature. Then the bending of the band at which the 
resonance current begins is much greater than kT n' 
since /j »kT n (see Fig. 2). Therefore, in the near
surface region, the electrons are degenerate and the 
surface potential CPs is connected with the electric field 
intensity in the dielectric, Fi' by the following relation, 
which is obtained from a solution of the one-dimensional 
Thomas-Fermi equation: 

( 15n ) ,/, x'/' 
ecp.= ~ _'_F/'s 

321'2 x'/' 

(the numerical coefficient f::; 1.017). 

(16) 

Thus the applied potential difference Ve is expressed 
in terms of Fi by the formula 

V.=V,+F,d+<p.=Vo+F, (d+ :~:.~~ ), (17) 

i.e., the difference from the situation with the metal 
consists in the renormalized thickness of the barrier 
(d - deff), which is weakly dependent on CPs: 

(18) 

The volt-ampere characteristic in this case has a maxi
mum with a width of the order of cp s' 

4. TUNNELING THROUGH AN AMORPHOUS 
DIELECTRIC 

We shall start out from the model described in [4J , 
according to which the energy spectrum of an amorphous 
system is characterized by a certain threshold energy 
Ec ' below which all the levels correspond to localized 
states. Above Ec' the level density is relatively high and 
the states are localized, so that Ec is in a sense analog
ous to the edge of an allowed band. We shall consider 
the resonance tunneling through levels with energy 
E < Ec' Inasmuch as the density of states II(E) is small 
in the range of energies of interest to us, then the fluc
tuation lowerings of the random potential U(r) (the 
"traps") in which the required energy level E is real
ized, can be regarded as widely-spaced impurity cen
ters. We shall neglect the effect of the potential U(r) 
outside the radius of the given fluctuation. We can then 
use the results obtained above for calculation of the cur
rent. 

The resonance partial current of electrons with en
ergy E through a trap located at the point Zl is essen
tially proportional to 

D 
j E- -;--:::--::--C---c-7:--:~~~-

[E-Eo(z,) l'+P(E. z,)/4 ' 

where Eo(z) = E - Fz. Multiplying jE by II(E), i.e., by the 
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number of traps in a unit energy range near E in a unit 
volume, and integrating over E and Zl, we obtain the 
total density of the resonance current for a given en
ergy E: 

S SdV~+h)~ I E = j-v(e)dedz-2nD . 
o f(E,z) 

(19) 

This result is easily verified by averaging the current 
jE with the functional distribution U(r), for.ex~p~j in 
tne Zittartz-Langer model[8J and that of LifshItz. [ We 
consider the weak-field limit F - O. In this limit, IE 
takes the form 

2nD v(E) 
I E..,-----. 

po f(E,zm) 

Inasmuch as the states fill the "forbidden band" con
tinuously, the resonance current (even at T = 0) is pres
ent at all energies, in contrast to the case of a crystal
line dielectric. The competition between the resonance 
current and the direct tunneling current is determined 
by the ratio II(E)/r(E, zm)' Both quantities II and r fall 
off exponentially as E moves into the forbidden band, but 
in prinCiple the situation in which the resonance current 
prevails is also possible here. 

Finally, if we do not neglect the electric field in the 
barrier, we obtain the following estimates: the charac
teristic size of r as a function of z has the order of l/Po, 
and the characteristic size of II(E) in terms of energy 
will be denoted by w. Then if Po »F/w, we have 

2nD v(E+Fzm) 
IE'" . 

po f(E, Zm) 

In the case of transitions from the metal, the current 
must be integrated over the region of transitions that are 
energy allowed. Assuming that r depends weakly on E 
in comparison with II(E) (po/d »w »FtPo), we obtain 
the result that in the range of voltages V « Ec - EF 
~ p~, the current is 

2nD 1 EHV 

I -~ f(E F , Zm) I v (E+FZm)dE. (20) 

Thus, by measuring the volt-ampere characteristic, 
we can determine the density of states in the amorphous 
dielectric. 

The authors are grateful to E. G. Batyev for helpful 
comments. 
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