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We investigate the self-consistent distribution of an electromagnetic of an electromagnetic field and 
plasma in a time-independent diffusionless discharge with 'cold' molecules and 'hot' electrons. The 
condition that the problem is time independent is taken to be that the electron ionization and 
attachment frequencies are equal and this determines the amplitude of the electric field E in the 
region occupied by the discharge: IE I = Eb' where Eb is the so-called breakdown field for the given 
type of gas, pressure, and field frequency. The determination of the structure of the discharge and 
the wave field producing it is thus reduced to finding the plasma density distribution n (r) for which 
the solution of the Maxwell equations with given extraneous sources has the property IEI=const=E b 

for n > 0 and IE I < E b outside this region. The solution is constructed on the basis of the scalar 
Helmholtz equation for the electric field. The resulting set of equations for the field phase and 
density is solved for three simple (symmetric) discharge configurations produced by plane, 
cylindrical, and converging spherical waves. 

Despite the recently increased interest in the high­
frequency discharge[1-4], its electrodynamic structure 
has so far been investigated mainly under thermody­
namic equilibrium or quasiequilibrium. At the same 
time, the nonequilibrium discharge containing hot elec­
trons (T e ~ 104 OK) and cold heavy particles 
(T m ~ 3000 K) can be produced in a relatively broad 
range of parameters (at least as the first stage of the 
postbreakdown state), but has not been extensively in­
vestigated. Some structural calculations for such dis­
charges have been reported in the geometric-optics 
approximation for the special case of a weakly absorb­
ing and non refracting plasma. [5,6] 

In this paper we consider some simple selfconsistent 
distributions of the wave field and plasma in a time­
independent nonequilibrium discharge excited under 
diffusionless conditions when the leading mechanism 
responsible for electron losses is attachment to neutral 
molecules. [7] This discharge situation is characteristic 
for electronegative gases when the diffusion length for 
attachment La = (D/va)1I2 is small in comparison with 
the characteristic linear size L of the discharge region 
(va is the attachment frequency and D is the diffusion 
coefficient for electrons). For example, for air in the 
case of ambipolar diffusion the inequality La « L is 
satisfied in this particular pressure range, i.e., 
p(Torr)>> 1/2L(cm). 

The condition that the discharge is time-independent 
is that the ionization frequency (by electron impact) 
Vi is equal to the attachmentfrequency !la . ll The dif­
ference !Ii -va may be looked upon as a known function 
of the amplitude of the electric field E (see for ex­
ample, [5]), which passes through zero when'the ampli­
tude is equal to Eb, the so-called breakdown value. 
The field Eb is a constant for a given type of gas, given 
pressure, and given field frequency w, so that the 
equation Vi = va in fact determines the amplitude of the 
electric field under time-independent conditions 
J E I = const = Eb' Therefore, the determination of the 
structure of the high-frequency discharge in this case 
reduces to the solution of a particular electrodynamic 
problem which can be stated as follows: given the 
sources of radiation, it is required to find the distrib­
ution N(r) of the electron concentration in space [i.e., 
the distribution of the complex permittivity E (r)] for 
which 
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111'1 =const=Eb for N>O, lEI <Eb for N=O. 

We shall consider some of the Simplest solutions of 
this problem 2) for the case where the electric field am­
plitude is described by the scalar Helmholtz equation 
with variable wave number: 

I'1E+k'e (r)E=O, (1) 

where k = w/c is the wave number in vacuum, 
E = 1-n -inli, n is the electron concentration referred 
to the critical point (n = N/Nc )' Ii = v/w, and v is the 
effective electron collision frequency. 

If we write the complex field amplitude in the form 
E = lEI ei<;O we find from (1) that the phase and concen­
tration in the discharge region (I EJ = const) are the so­
lutions of the following equations: 

('i7cp)2=k'(1-n), 

1'1Cf!=6k'n. 

(2a) 
(2b) 

These equations can be readily rewritten in the form of 
a single equation for the phase: 

I'1cp+o(Vcp)'=6k2• (2c) 

As can be seen, the equation which the phase satis­
fies in the geometric-optics approximation becomes 
exact in the discharge region. It follows from (2a) that 
the electron concentration in the discharge cannot ex­
ceed the critical value: n s 1 l this is, of course, valid 
only for these particular discharge conditions within 
the single-scalar description provided by (1)]. Outside 
the discharge region the fields are described by (1) with 
E = 1, and should be related to the internal field by the 
condition of continuity for the tangential components on 
the boundary, the position of which is not, of course, 
known in advance and is determined in the final analysis 
[together with the structure of n (r)] by the distribution 
and strength of the external sources. 

We shall now construct the solution of (2) for plane 
layered, cylindrically symmetric, and spherically sym­
metric distributions of nand cp, thus obtaining the an­
swer to the question whether the initial equation (1) can 
be looked upon as exact only for TE waves in plane 
layered structures and waves with electric field E = Ez 
parallel to the z axis of the cylindrical set of coordi­
nates. In so far as spherical waves and cylindrical 
waves with azimuthal electric field E = Ecp are con-
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cerned, the use of (1) in these cases signifies transfor­
mation to the approximate scalar model which appears 
to be adequate in some regions of space for the vector 
problems which we are considering when the wavelength 
is short. 

For the above three problems (plane, cylindrical, 
and spherical) we can eliminate the phase from (2) and 
obtain a single nonlinear equation for the concentration: 

~~[ra(l-n)''']=Mn. 
rQ. dr (3) 

In this expression, r is the distance to the plane, axis, 
or center, and the coefficient a is respectively equal 
to 0, 1, 2; the choice of the positive sign in front of 
the root corresponds to the propagation of the wave in 
the direction of decreasing r. 

Solving the resulting equation for 0 .:s n .:s 1 for each 
of the three cases we obtain: 

a) for the plane parallel discharge (a = 0, r -x) 

n=ch-'Ilkx, (4a) 

where x is the Cartesian coordinate, 

b) for a discharge in a converging symmetric cylin­
drical wave (0' = 1) 

n=l-It' (Ilkr) /1,' (Ilkr) , (4b) 

where 10, II are the modified Bessel functions, and 

c) for a discharge in a converging symmetric spher­
ical wave (a = 2) 

n=i-(cth Mr-i/llkr)'. (4c) 

In all three cases the concentration decreases mono­
tonically from the critical value (n = 1) at r = 0 down 
to zero for r = 00 with the same characteristic linear 
fall parameter L = l/ko = c/ll. When r « L we have 

n=i-[Mr/(a+l) ]' 

and when r» L 
n=alllkr, a=l, 2: n=4e-20'", a=O. 

It is readily verified that the characteristic scale for 
the discharge satisfies the above condition that the dif­
fusion lengths are small (for air), 2~L» 1. In point of 
fact, since in air 11 <=::j (3-5) X 109p, [7 we find from the 
expression L = c/ll that 2pL <=::j 12-20. 

The above solutions can be generalized to the case of 
oblique incidence of waves on a surface of equal values 
of n. Thus, for plane waves with phase given by 
qJ = 1/J(x) + ky sine (x, yare the cartesian coordinates 
and e is the angle of incidence), the solution (4a) 
becomes 

n(x) =cos' e I ch'(llkxcos El), (5) 

i.e., the maximum relative concentration of electrons 
falls to n(O) = cos 2e and the characteristic scale of the 
discharge L = 1/k6 cose increases. 

We now have the important problem as to whether 
the above distributions can be matched to a region 
which is not occupied by the discharge over a finite 
distance. It is clear that, if there is no diffusion, this 
matching can be achieved by cutting off the above struc­
tures at any r = ro [n(r) == 0 for r> ro] and joining the 
fields on the boundary. Since inside the discharge 
(r < ro) we have lEI = Eb = const, and the phase is given 
by (2a), the requirement that the field E and its deriva­
tive with respect to r are continuous at r = ro leads to 
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the following boundary conditions for the modulus and 
phase in the external region: 

lEI =Eb, dIEI/dr=O, dq!/dr=k(l-n(ro»"'. (6) 

When r > ro the field is a superposition of incident 
(converging) and reflected (diverging) waves, the resul­
tant amplitude of which is an oscillating function of r 
but does not exceed the breakdown value Eb anywhere, 
including the maxima. For spherical and cylindrical 
waves the absolute maximum of the amplitude Eb is 
reached on the boundary, and the subsequent maxima 
(for r > ro) are smaller. For plane waves, the maxima 
are equal (IElm = Eb) and are repeated with a period 
of one-half of the wavelength. 

The boundary conditions (6) enable us to relate 
the coordinate of the boundary (ro) and the amplitude 
or intensity of the incident wave, and to determine the 
fraction of the power Q absorbed by the discharge. In 
particular, when kro» 1 and if the incident wave is 
written in the form 

we have 

2A 

r~/'[ 1+ (1-n(r,l )"'] 

4(1-n(ro»'" 
Eb, Q= [1+(1-n(r,»"']' 

(7) 

As the incident-wave amplitude increases, the region 
occupied by the discharge expands and the concentration 
n (ro) on the boundary decreases while the fraction of 
absorbed power approaches 100%. We note that time­
independent plane-layered solutions (a = 0) exist only 
when plane waves are incident on the discharge on both 
sides and their amplitudes Eo satisfy the conditions 
Eb 2: Eo 2: Eb/2. 

We have thus considered the Simplest possible dis­
charge configurations in the field of converging electro­
magnetic waves whose sources are located in the ex­
traneous region (where the field is less than the break­
down value). The symmetric structures which we have 
found can probably be regarded as models of a 'cold' 
diffusionless discharge excited in the wave trough of a 
symmetric mode of a cavity resonator, or in the focal 
region of a highly convergent wave beam generated by 
a short focal length lens or mirror. 

The time spent by the discharge in the above nonequi­
librium state (Te» Tm) is characterized by the time 
T necessary for transferring the energy from electrons 
to neutral particles. Without going into the details of 
the very complicated processes involved in the redis­
tribution of energy between the various degrees of 
freedom of a gas, we shall confine our attention to the 
approximate estimate of T, regarded as the relaxation 
time for excitation in a cold gas containing hot electrons. 
The approximate formula is 

't=1/crNv,-10'IN,. 

The excitation cross section a and the mean electron 
velocity ve can be assigned the values a ~ 10-17 cm2 
and ve ~ 108 cm/sec (for lEI <=::j Eb), which are typical 
for discharge temperatures. The electron concentration 
N is replaced by the maximum critical value for the 
given discharge Nc = m(w 2 + 1I 2 )/41Te 2 • For frequencies 
w ~ 2 x 101°_6 X 101o sec-I (and 11« w) we have 
Ne ~ 1011_10 12 cm-3 and T ~ 10-2_10-3 sec. The cooling 
of the gas by thermal conduction and free convection is 
characterized by long times for the above discharge 
scale L = c/ll. Hence the heating of the gas in these 
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examples can be neglected only for microwave pulse 
lengths less than the above figures of 10-2_10-3 sec. 

The authors are indebted to A. V. Gaponov and A. 
G. Litvak for useful discussions and suggestions. 

OWe shall not consider the important problem of discharge stability 
because it is essential first to investigate the possible time-independent 
states. 

2)The problem which we have formulated can be classified as a strongly­
nonlinear one with a given level of nonlinear restriction on the ampli­
tude (lEI';; Eb). 
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