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The luminescence decay law for isolated molecules is investigated. It is shown that luminescence 
decay is described by an exponential law only in certain cases: 1) the adiabatic-level spectrum of the 
molecule in the excitation-energy region is quasicontinuous (i.e., in the case of polyatomic molecules 
or of broad-band excitation); 2) the adiabatic-level spectrum is discrete and nondense, when only one 
eigenstate of the total Hamiltonian of the molecule gets excited (i.e., in the case of molecules with 
few atoms or of a quasimonochromatic excitation field). In the remaining cases the excited states do 
not decay according to an exponential law. Special attention is given to the description of quantum 
beats in the luminescence decay law. The dependence of the observed excited-state decay law on the 
duration and spectral composition of the exciting electromagnetic-field pulse is discussed. It is shown 
that quantum beats can be observed only when the pulse duration of the exciting source is shorter 
than the oscillation period. The importance for spectroscopy inside radiative lines of the investigation 
of the fine characteristics of the luminescence decay law is stressed. 

1. INTRODUCTION 

Molecular luminescence is the most direct and in
formation-yielding method of investigating the structure 
and decay modes of electronically excited molecules. 
These data, in their present form, can be obtained in 
the study of the luminescence of isolated molecules, 
which explains the large number of experimental in
vestigations that have been carried out on this prob
lem(1-4]. The investigation of the characteristics of 
luminescence is also important in itself, in view of the 
use of molecules as the working medium of lasers. 

The theoretical methods of describing the temporal 
characteristics of molecular luminescence amounted, 
until recently, only to the use of the standard expres
sions of formal kinetics, whic h allowed us to obtain 
these characteristics in a highly averaged form. The 
use of short exciting pulses and of detecting equipment 
with a high time resolution[S] allows us to investigate 
the finer features of molecular luminescence, features 
which cannot be described in the framework of claSSical 
kinetics and have to be quantum-mechanically treated to 
be '-1nderstood. To such characteristics pertain first and 
foremost quantum beats in the luminescence decay law, 
which yield, as in the case of atomic luminescence[6,7], 
a wealth of information about the energy levels of mole
cules. This problem has been investigated with the aid 
of Simplified models in several recent papers[8,1l]. 

The use of models in these papers is due to the ex
treme complexity of the system of energy levels of 
molecules. In molecular systems, in the Born-Oppen
heimer approximation, we can, as is well known, dis
tinguish three types of degrees of freedom: electronic, 
vibrational, and rotational. The combination of these 
three types of states leads to an energy spectrum that, 
even in the case of molecules composed of a few atoms, 
is incomparably richer than atomic spectra. The prob
lem is further complicated by the fact that there are 
located in the region of electronic-excitation energies 
in molecules energy levels belonging to different elec
tron states, and the application of the adiabatic approx
imation in this energy region is not only unjustified, but 
also leads to the loss of important features of the be
havior of the system (e.g., the nonradiative transi
tions[8]). This impels us, in describing molecular 

962 Sov. Phys.·JETP, Vol. 39, No.6, December 1974 

luminescence, to take into account in the Hamiltonian of 
the system the nonadiabatic operator. This leads to the 
mixing of the functions of the adiabatic approximation, 
which is entirely analogous to the level-anticrossing 
effect in atomic spectroscopy. In spite of the indicated 
difficulties, as will be shown below, we can derive and 
analyze the expressions necessary for the description 
of the time dependence of luminescence decay without 
recourse to excessive schematization of the energy 
spectrum of the system. 

There is another reason that makes a more careful 
investigation of molecular luminescence necessary. 
Until very recently, not much attention was paid to the 
analysis of the preparation of the initial excited state. 
It was usually assumed without proof that a molecule 
falls, on excitation, into an adiabatic state. It was not 
until very recently that Rhodes, Henry, and Kasha (12,13] 
and Jortner et al.[9,'4] showed that this is, in fact, the 
case if the spectrum of the exciting field is continuous 
and sufficiently broad. When the excitation is effected 
by an electromagnetic field with a narrow spectral dis
tribution, the characteristics of the luminescence will 
depend on the properties of this distribution[1S, 16J. Be
low we consider the problem, as applied to the case of 
isolated molecules, of the preparation of excited states 
and the dependence of the characteristics of the lumines
cence on the conditions under which the excitation takes 
place. 

The theoretical investigation of the law of decay of 
electronically excited molecules (the luminescence de
cay law) is also of interest in view of the fact that mole
cules are an example of quantum systems with nonexpo
nential laws of decay of the excited states. 

We shall consider the case of a single isolated mole
cule that during its lifetime in the excited state does not 
undergo collisions. We shall consider only one-photon 
transitions, assuming that they are the most probable. 

2. THE HAMILTONIAN AND THE GREEN FUNCTIONS 
OF THE SYSTEM 

The Hamiltonian H of the molecule and the radiation 
field can be represented as the sum of the Hamiltonian 
H, of the molecule, the Hamiltonian H2 of the radiation 
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field, and their interaction operator W. The Hamiltonian 
of the molecule can, in its turn, be represented as the 
sum of the Hamiltonian H~ of the adiabatic approxima
tion and the nonadiabatic operator V. Usually, in the 
case of L-S coupling, the operator V also includes the 
spin-orbit interaction operator. We therefore have 

H=H,+V+W, H,=H,o+H,. (1) 

The explicit forms of the operators are well known, and 
have been thoroughly described (see, for example,Cl7-lSl). 
The operator V acts only on the (electronic, vibrational, 
and spin) wave functions of the molecule and the opera
tor W depends on the coordinates of the electrons of 
the molecule and the coordinates of the field. 

The eigenfunctions \ nf) of the Hamiltonian H~ have 
the form of a product of the electronic (and spin) wave 
function \ n) and the vibrational wave function \ f) 1). 

The indices nand f denote the corresponding sets of 
quantum numbers. The function \ n) determines the 
given electronic state (term ) of the molecule. 

The eigenvalue spectrum Enf for fixed n and small 
values of f has a low density, and the level spacing 
(~100 cm-l ) significantly exceeds the radiation widths 
of the levels (<<1 cm- l ). As the value of f increases, 
the spectrum-even for few-atom molecules-very 
rapidly becomes dense, becoming, for polyatomic mole
cules, quasicontinuous at energies of the order of the 
electron-excitation energyCB,lll. Thus, a typical situa
tion is one in which the low-density region of the spec
trum of some electronically excited term i contains a 
much denser vibrational-level spectrum below the en
ergy level of the f term. 

Usually, the optical dipole transition from the ground 
state \ 00 ) is allowed when it is to a state of the term 
i, but forbidden (or has a low probability) either by 
multiplicity or on account of the Franck-Condon princi
ple when it is to a state of the other terms located in 
the same energy region. The dipole transitions from 
the state \ 00) to the states I ig) usually have a high 
probability when the values of g are not high, Le., in 
the relatively sparse region of the spectrum of the 
term L In view of this, we shall consider only one 
level of the term i and denote its energy and wave func
tion by Ei and Ii). The state Ii) is often coupled by 
a relatively strong nonadiabatic interaction to the vi
brationallevels of some other term. We shall consider 
only the states of this term. Let us denote their func
tions and energies by I f) and Ef. This limitation on 
the model has a purely formal character, since the func
tions If) can be taken to be nonadiabatic functions con
structed from the functions of all the terms, with the 
exception of the term L No additional restrictions will 
be imposed in the general treatment on the spectrum of 
the system and the matrix elements of the operators V 
and W. The model that considers one level of the i 
term is used extensively at present[B-14l, since it em
braces many important features of the problem. The 
possibility of extending it and the effects that such an 
extension gives rise to are discussed at the end of the 
paper. 

The eigenfunctions I k, ea ) of the operator H2 
describe the field's one-photon states with momentum 
k and polarization ea' The eigenstates of the operator 
H2 form a continuous spectrum that is degenerate with 
respect to the polarization values and the directions of 
the vector k. The spectrum of the Hamiltonian Ho is 
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Diagrammatic representation of the spectrum of the Hamiltonian Ho. 

shown in the figure. The eigenfunctions I nfkea ) of the 
Hamiltonian Ho have the form of products of the func
tions I nf) and I keG)' These functions are not eigen
functions of the operator H, but they can be used as 
basis functions for the construction of the eigenfunc
tions. For this purpose it is necessary to compute the 
matrix elements of the operators V and Wand to 
diagonalize the Hamiltonian H. 

Using the properties of the operators, we have 

<nfke.1 VI n'!'k'e.' >=6 •• ,6 •• , V n', n'" (1-6 on ,). 

<nfke.IWln'!'k'e.,>=Wn"n'dlkl,e.) andk'=O, (2) 
<nfke.1 Wi n'f'k'e.,>=W",. n'd Ik' L e.') and k=O. 

Furthermore, for the above-described model we have 

The diagonalization of the Hamiltonian H is ex
tremely complicated, and can be accomplished only for 
very simplified models C8,9l. Remembering, however, 
that the ground state I 00) of the systein is separated 
from the excited states by a wide energy gap whose 
magnitude is considerably greater than the matrix ele
ments of the operators V and W, we can assume that 
the state 100) of the Hamiltonian Ho and the ground 
state 'lfo of the Hamiltonian H coincide to a high degree 
of accuracyC8,SJ. 

The matrix elements. of the dipole transitions from 
the ground state of the Hamiltonian Ho to the excited 
states have the form 

<n/ke. I-p 100>=p"., "lio, "" pi, 00*0, Pi, 00",0, (3) 

where p is the momentum operator of the electrons of 
the molecule. The k,. 0 states of the Hamiltonian Ho 
will be denoted be low by \ k (E), the k == 0 states by 
.yo, Ii), and If). All these functions are assumed to be 
orthonormal. 

Let us introduce the Green functions: 

1 
G'=-ll-' z- 0 

1 1 
G=--= , 

z-H z-f1o-V-W 

Iqro><qr,1 li)(il 
Go = +--

z-Eo z-E, 

1: 1/><11 1:S Ik,(E'»<k.(E') 1 , + --+, dE. 
z-E, z-E' 

I • 

(4) 

where z == E + io for the retarded Green functions G+ 
and z == E - io for the advanced functions G-. (We shall 
not indicate the explicit E dependence of the Green 
functions. ) 

Let us introduce the operator 

P=Ii><il+ 1:11></1 
1 

of projection onto the eigenfunctions of the Hamiltonian 
H ~ and let us define the reduced Green functions: 

G,=PGP, G,=(1-P)GP, (5 ) 
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Using the Dyson equation G = Go + Go (V + W) G and the 
completeness condition for the basis functions, we can 
derive the expressions[19,2oJ 

G,=g,+g,RG" G,=g,RG" 

where go = PGo, g 1 = (1 - P) Go, and the operator R is 
determined by the expression 

(6) 

R=V+W+(V+W)/;",R. (7 ) 

As will be seen below, we only need to know the 
matrix element < i I G Ii) = < i I G11 i). From the first 
expression in (6) we obtain the system of equations 

G,,(E-E,-R..}- ER"G,,=1, , 

/' .. , 
(8 ) 

where we have introduced the notation: Gii = ( i I G Ii) , 
Gfi = < fiG Ii), etc., and E should be taken to stand for 
E + iO. 

Let us proceed to the computation of the matrix ele
ments of the operator R. Taking (2) into account, we 
have 

R,,=<i! V!f)=v" R,,=v/. 

For the matrix element Rii we can write: 

R,,= ~I (ilwlk.(E'»(k.(E')IWli) dE'=I p(E')IW,(E')I' dE' (9) 
~ E-E'+i6 E-E'+i6' 

where p( E') is the density of the states I k,..d E'». 
Evaluating the integral in (9), we obtain 

R .. =d(E)-inp(E)! Wee) I', (10) 

where d( E) is the real part of the integral (9) and 
leads, owing to radiative decay, to a shift of the level i. 
We shall neglect it. The second term in (10) depends 
weakly on E[lsJ, and can be taken to be equal to its 
value at E = Ei. This is half the radiation width r of 
the level i. Thus, Rii = -ir/2. In view of the large 
value of Eo - Ei in comparison with the matrix ele
ments of the operators V and W, we neglect the terms 
that the function oVo gives rise to. 

The determinant of the system (8) has the form 

E+'/,il'v, '" 
v,' E - A, 

D (E) = v; E - A, (11 ) 

v.\ E-A", 

Here and below the energies are measured from the 
energy of the level i and ~n = En - Ei. The matrix 
element Gii is equal to the ratio of the determinant 
D dE) obtained from (11) by deleting the first column 
and the first row (see (8)) to the determinant D(E). 

In deriving (11), we have assumed that the states 
If) have zero radiation width and, therefore, Rff' = O. 
In real systems, the widths of these states are smaller 
than r by several orders of magnitude. Allowance for 
these widths in (11) is important for times much longer 
than the lifetime of the state Ii). For certain cases 
(not considered here) it is necessary and leads to the 
appearance in the diagonal and off-diagonal terms in 
(11) of small imaginary corrections rff' [21,22J. 
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3. THE POLES OF THE FUNCTION Gjj FOR SOME 
PARTICULAR CASES 

The poles of the function Gii determine the energies 
of the quasistationary states and their widths[19J. 
Knowledge of the locations of the poles is necessary for 
the description of the time evolution of the excited 
states. Let us consider a few phYSically different cases. 

A. The statistical limit. This is the case when the 
levels of the term f form a dense spectrum, ~n and 
vn are smooth functions of n, ~n - ~n-l ~ liN, and 
vn - vn-l ~ liN. Such a model is justified for poly
atomic molecules and is used (in a simplified form) in 
a number of papers[B,22J. Let us consider the locations 
of the poles of Gii in the limit as N - ao. Expanding 
the determinant (11), and dividing the numerator and 
denominator in the expression for Gii by D 1, we obtain 

( r N Iv I' )-' 
G,,= E+i Z - E E-'A. - (12) .-. 

We obtain for the determination of the poles the equa
tion 

(13) 

which has N + 1 roots. N roots of this equation for 
real ~n lie between ~n and ~n+l, and one root lies 
outside the spectrum of the levels fn [23J (for the case 
of complex ~n, see[24J). 

We shall seek the roots of the first type. Let us set 
En = ~n + xn, xn being ~I/N. (We denote the poles by 
the same symbols En used to denote the eigenvalues of 
the Hamiltonian H~, since this does not lead to any 
confusion). We have 

r EN Iv.·I' 
A.+x.+i-= 

2 A.-A.·+x. 
~+ ~ Iv.·I' . (14) 

x. ~ (n-n')dMdn+x. 
n;'_l n· ... n 

At large values of N the dominant contribution to this 
sum is made by the terms in the region n ~ n'. Accord
ing to the original assumption of the model, vn and 
dt.ldn are slowly varying functions of n. Replacing 
them in the vicinity of n by constants, we obtain for 
(14) the expression 

r Iv.I' ( 1 ~ 1) Iv.I' 
An+i-=-- -+2t...~-,-, =n--ctg(nt..n). 

2 en An 11_1 An -k 8 n 
(15 ) 

Here we have introduced the notation An = xn/ En and 
have extended the sum over k to infinity, in view of the 
fact that the dominant contribution to it is made by the 
terms with small k = n - n'. Furthermore, we have 
neglected xn on the left-hand side of (15), since 
xn ~ N-1 • 

From (15) we obtain 
_ en (A.+irl2)8. 0 (~) 

x .. --arcctg I I' + N' 
n n Vn 

(16) 

The Singular root Eo of Eq. (13) for N - 00 is, in the 
case of real ~n, determined by the equation 

E,+.i.!:..= IN Iv(n)I' dn. 
2 I E,-A(n) 

(17) 

In this formula we have replaced the sum over n by an 
integral in accordance with the Euler-Maclaurin for
mula. Since either Eo > max~(n) or Eo < mint.(n), the 
integration can be carried out along the real axis. 

B. The quasi-resonance case. Let us now consider 
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the interesting case when one level of the term f is 
located near the level i, the other levels of the f term 
being separated from the level i by a wid,e (in the 
sense indicated below) energy gap. The poles of GU 
can then be determined, using perturbation theory[25 1. 
The poles in the zeroth approximation are determined 
with allowance for only the interaction of the level i 
with the nearest level of the term f (the interaction 
matrix element v and the difference I::. between the 
level energies). Then from (11) we find 

E,'=I/dL1-if/2+[ (L1-ifl2) '+4 1 ul 'l"'} =a-ib, (18) 

E,'=IHL1-if/2- [(L1-if/2)'+41 ul')"'} =c-id, (19) 

E,,'=L1n, 3";;n,,;;N+1. (20) 

The influence of the interaction of the level i with 
the remaining N - 1 levels of the term f on the loca
tions of the poles of Gii is determined with the aid of 
perturbation theory["51• We obtain up to second order 
the expressions 

lvi' ~ Iv I' 
E,=E,' + lvi' +(a+id)' '7 E"~L1" ' (21) 

, ivl' IV"I' 
E,=E, + ~--, (22) 

Ivl'+(c+ib)' ~ E,'-L1" 

E - +Iv vi' { 1 + 1 } 
"-L1,, " (L1,,-E,') [Ivl'+(a+id)'] (L1n-E,') [Ivl'+(c+ib)'] 

(23) 

It can be seen from (21)-(23) that the condition of 
applicability of these formulas is the usual requirement 
that I E~ - I::. n 1 » I Vn I and I Eg - I::. n I » I Vn I, or, if 
I v I and I I::. I are small compared to I I::.n I, that 1 I::.n I 
» I Vn I. In the particular case when r = 0, (23) as
sumes the form 

~ I vi' )-' 
E" = L1n+lv"I' IL1" +-- , 

L1-L1" 
(24) 

C. The Fermi resonance. For reasons that will be
come clear below, it is of interest to consider the case 
of Fermi resonance, when two of the f-term levels are 
quasi-degenerate (1::.1 = I::. +E and 1::.2 = I::. - E with ar
bitrary 1::., VI, and V2), while the condition I I::.n I » I vn I 
is satisfied for the remaining levels. Let us again use 
perturbation theory to find the poles of GU. Setting 
E = 0 and vn = 0 for n;c 1, 2, we find in the zeroth 
approximation that 

E~,2 = +(L1-if12 ±[ (L1-iI'I2)'+4lv,I'+4lv,I']",), 

(25 ) 

The positions of the poles of Gii can then be deter
mined up to second-order perturbation theory, using 
standard formulas[ 25 1. The results of the computations 
are, however, rather unwieldy, and we shall not give 
them here. Let us only note that for II::.I » I vII, I v21, 
and E, the real parts of the roots E 1, E 2, and E 3 are 
respectively equal to I::. ± E and ~O, while the imaginary 
parts are equal to 

Iv,I' f 
-i~2' 

Iv,l' f r 
-i--'- and -i-

L1' 2 2 ' 

D. The nondense intermediate case. This is the 
case when I vn I > Il::. n - I::.n -11 and r« I I::.n - I::.n-11, 
and can be realized in molecules composed of a few 
(~5) atoms when there is sufficiently strong nonadia
batic coupling between the terms. Bixon and Jortner[8] 
found for the case when vn = const = v and I::. n = nE that 

E "" ne - i_f [1 + ('::"'-)'] -, 
" 2nN N ' 

(26) 

where N = 1T I v 12/ E. 
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In the general case, it follows from Eq. (11) that 
11m Enl::; r/2, since 

I:ImE,,=- ~ 
" 

and all the poles of Gii lie in the lower half_plane[l91. 
'This seemingly trivial result is of great importance for 
the understanding of the luminescence properties of 
molecules (see below). 

4. PREPARATION OF THE EXCITED STATES AND 
THEIR EVOLUTION 

Let the system at the initial moment of time (t = 0) 
be in the state +0, and let an electromagnetic radiation 
of electric-field intensity 6"(t') begin to act on the sys
tem at this instant. ,If the time of action of the field is 
equal to 7, then for the wave function of the excited 
state we can write, correct to first order in the inter
action of the molecule with the exciting field, the ex-
pression[2°1: '. 

'1'(t)=_1_J dEriBI je,xl'<W(t')dt' G+pl'1',>. (27) 
2n , 

where p is the momentum operator for the electrons of 
the molecule. Taking into account the selection rules (3), 
we have 

, 
'¥(t)=-? J dEe-iEI J eiEl'<W(t')dt'G+Ii>, (28) 

_1( 0 

where Pi = < i 1 P I +0). We assume, for simplicity, that 
the polarization of the exciting field and the dipole mo
ment of the transition have the same direction. The 
probability amplitude for finding the system in a given 
state after the emission of a photon is equal to 

, 
(k.(Ek ) 1'1' (I) >= ~.!Y'-';' J dE e-iE'(k.(Ek ) IG+li> J <W(t')e'E" dt', 

~n 0 

where A' is the normalization factor, which is equal to 
< +(7)1 >11(7». 

It has previously(15] been shown that 

.!Y'=n-'",p,' J ImG,,/(E)dE, 

where I( E) is the spectral distribution function of the 
field intensity. 

Taking the second expression in (6) into account, we 
obtain for the photon-emission probability the expres
sion 

W = !'l..!Y'-'JJ dE dE' [-'(E-E')t] W.(E)W;(E')G,'+G,,-k. 4n' exp' (E-E,,+ifj) (E'-Eh-ifJ) 

(29 ) 

x J f exp[i(Et' -E't") ]8(t')<W(t")dt' dt". 

To find the total emission probability, we must inte
grate Wkfl over Ek and sum over fl. Introducing the 
denSity Pk( E) of the states I kJ..L( E», neglecting the de
pendence of Wk(E) and Pk(E) on the energy (Le., tak
ing their values at E = Ei), and introduCing the notation 
r = 21TPk I Wk 12, we obtain after integrating (29) over Ek 
the expression 

W(t) = K : IS dE dE' exp[-i(E-E')t]G,,+G,,-(E'-E+i1l)-1 

(30) 

x J J exp[i(Et' -E't") ]<W (t')<W (t") dt' dt", 
, , 

where K is a constant. 

The quantity W( t) should be averaged over the states 

G. G. Konoplev et al. 965 



of the exciting field, i.e.,the product 6"(t')6"(t") should 
be replaced by the correlation function of the field 
41(t', t"), which, for stationary fields, depends only on 
the difference t' - t". Then for the rate of change of 
the emission probability-a quantity which yields the 
luminescence decay law-we have 

gJ(t)= :~ =K~ JJdEdE'exp[-i(E-E')tIG;;+G,,- (31) 

.. 
x f f exp[i(Et' -E' (') lID (I' -t") dt' dt". 

o 0 

If the width of the spectral distribution of the exciting 
field exceeds the width of the state 1 i), then the func
tion 41(t' - t n ) can be replaced by a delta function. We 
then have from (31) the expression 

r ' • gJ(t)=K-fdt'lfG,/exP[-iE(t-t')ldEI. (32) 
't 0 

The E integral can be evaluated with the aid of the 
theory of residues, closing the contour of integration 
for t - t' ~ 0 in the lower half-plane. If the poles of the 
function Gii are located at the points En - i Yn (Yn 
> 0), then we obtain2) 

r ~. exp[(y .. +i~,,'hl-1 
!J'(t)=K-~A.A"'exp[-(y,,'+i~ •• ,)tl , 

't , Yn"+!~nn' 
",n (33) 

where we have introduced the notation Ynn' = Yn + Yn' 
and ilI. nn ' = En - En'. 

The formula (33) gets Simplified if the irradiation 
time is short (Le., if T «ilI.ith', T «Y;~'); 

gJ(t) = Kr.E A.A.,' exp[ - (y,,'+i~ •• ') tl. (34) .. ' 
It can be seen from (34) that ,~(t) attenuates in time, 
oscillating with frequencies equal to the difference be
tween the real parts of the poles of Gii, which are equal 
in order of magnitude to the difference between the 
energies of the levelS i and f. If some of the poles of 
Gii are degenerate, then instead of the oscillating fac
tors in the terms of the sum (34) that correspond to 
these poles, there appear power factors. In the pres
ence of a pole of order n, the factor with the highest 

2(n-1 ) power is t . 

The beats in the luminescence decay law can be 
divided into the following three types; high-frequency 
beats, when ilI.nn'» Ynn ', low-frequency beats, when 
ilI.nn ' « Ynn', and beats with intermediate frequencies, 
when ilI.nn' ~ )Inn'. The experimental observation of the 
high-frequency beats requires the use of high-time
resolution equipment. The observation of the low-fre
quency oscillations is difficult, in view of the fact that 
the oscillating factor corresponding to a gi ven excited 
state of the molecule varies little during the lifetime of 
the molecule in that state. The beats most accessible 
for experimental investigation are those with the inter
mediate frequencies ilI.nn' ~ )Inn'. 

Let us proceed to discuss the luminescence decay 
law for excitation by short pulses in the particular 
cases considered in Sec. 3. 

A. The statistical limit. In this case the expression 
forJ'( t) can be represented in the form 
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(35) 

Let us, for definiteness, assume that Re Eo < ill. 1. Taking, 
moreover, into account the fact that the difference be
tween the energies of the ground state and the state 1 i ) 
significantly exceeds the width of the level i, we have 
set the lower limit of the range of integration equal to 
- 00; ilI.N - 00, since the spectrum is not bounded from 
above. The integrand has one pole Eo in the region 
- 00 < Re < ill. 1, and the first integral in (35) is equal to 

( Iv(n)I')-1 
1 + f dn ' r'E.' , Eo-~(n) . 

In the interval ill. 1 - ill. N the integrand has very many 
close poles, and the evaluation of the second integral in 
(35) with the aid of the theory of residues is difficult. 
Calculating, as in (15), the sum over n, we obtain 

AN r I (E) l' nE -I l' 
!J'(t)=Kr ICoe-iE~+ fe-iEI[E+i--n-v--ctg--] dE 

2 e(E) e(E) 

" (36) 

The integral in (36) can be represented in the form 

'N r (E) 1 S e-a'[E+i-+i~r ' 
• 2_ 

(37) 

x {1+y(E) [Hctg e~ 1I[E+i~ - Y(:) ctg e~;) ]}dE, 

where )I(E) = 21T1 v(EW/E(E). The second term in (37) 
is a rapidly oscillating function with an oscillation 
period ~ II E( E = 0). At times t « 1/ E( E), the second 
term in (37) can be replaced by its mean value, which 
when evaluated over the period of oscillation of the 
cotangent turns out to be equal to zero. Then 

". r (E) -I ., 

!J'(t)=IC,e-iE"+Je-'E'[E+i2+i~] dEl. (38) 
A, 

Since the poles of the Green function are located in 
the lower haU-plane, 3'( t) is a decreasing function of 
the time. If ill. 1 - -00 and Y(E) = const, then we arrive 
at the Bixon-Jortner model[8]. In the limit ill. 1 - - 00, 

the first term in (38) is, as can be shown, using a pro
cedure similar to the one used in[26], exponentially 
small. Then for ,J'(t) we have 

!J' (t) =rr(NY)'. (39) 

Notice that this result is valid for times t « E-t, and, 
consequently, the energy spectrum of polyatomic mole
cules can be considered to be continuous only for these 
times. It is also clear that the quantum yield for these 
times is less than unity[lS,I6]. 

B. The quasi-resonance case. Neglecting in this 
case terms of order 1 vn 12/ ill. 2, we obtain 

Kr 
9'(1) = {IE,-~ I' exp (-21m E,I) +IE,-~ I' cxp( -21m E,I) 

IE,-E,I' 
-2 (a2+~') exp[ -!m(E.+E 2)t]cos(wt+b) I; 

a=Re (EI·~t'>.) (E2~~)' ~=Im (E,'~~) (E,~t'>.). 
b=arccosa(a2+~')-I. w=He (E.-E,), 

(40) 

and EI and E2 are given by the formulas (21) and (22). 

It is evident from (40) that the decay law for the 
state 1 i) is characterized by three terms, two of whic h 
decay exponentially and the third oscillates in time 
while decaying exponentially. The beat frequency w 
may become small upon the variation of the parameters 
ill. and v and the beats can then be experimentally ob
served. 'Because of the decreasing exponential function 
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in front of the cosine, these beats will appear at times 
of the order of r- '. At times t» r- I the function 9'(t) 
will be determined by the poles En with n> 2. Since 
the difference Re (En - En') » r, the be:~.ts given by 
these terms (not given in (40) for the sake of simplify
ing the expression for "P'(t)) ,will be high-frequency 
beats, and it will be difficult to observe them. The 
decay law in this time region cannot be even approxi
mately described by an exponential function. Lumines
cence decay with two exponential functions has been 
experimentally observed[2-4], and, moreover, beats 
have been observed by Busch et al.[3] (see, however,[4]), 

C. The Fermi resonance. In this case retaining as 
in (40), the terms that contribute to 9'(t) ~t small a~d 
intermediate times, we have 

:J'(t)~ Kf 1_1_[ (E,-~)'-e' riE" (E,-~)'-e' riEl'] 
E,-E, , E,-E 3 E,-E, 

(E3-~) '-e' 'I' + e-!E3 t 

(E,-E,) (E 3-E,) , 

where E " E2, and E3 can, as was noted in Sec. 3, be 
found with the aid of perturbation theory. It follows 
from (41) that ,9'(t) will contain the term 

-exp [-1m (E.+E,)t] cos (oo't+6') , oo'~Re (E.-E,), 

which, for I A I » I v, I, I v21, assumes quite a simple 
form: 

1m (E.+E,) "" 
f Iv.I'+lv,I' 
2 ~' 

oo'~2e. 

Thus, at times 
2 ~' , 
r Iv,I'+lv,I' 

(41) 

in view of the smallness of E, the oscillations can be 
experimentally observed. The discussion in the pre
ceding section on the contribution of the poles En with 
n > 2 applies also in the Fermi-resonance case. 

D. As was pointed out at the end of Sec. 3, 1m En < r 
and consequently in any model, with the exception of the 
statistical limit, the observable luminescence-decay 
time will be greater than the inverse radiation width of 
the state Ii), For the case when vn = const = v > E, An 
= nE, and r« E, Bixon and Jortner [8] found that 

ImEn- ~ [1+(~)'r', N=nlvl'/e. 

The increase of the lifetime of the excited states of 
triatomic molecules has been experimentally ob
served[27]. 

Let us now discuss the dependence of the excited
state decay law on the conditions of excitation. It can be 
seen from (33) that in the case of broad-band excitation 
the luminescence decay law will depend on the irradia
tion time (see apropos of this also(i3,28]). The various 
terms in (33) depend on T differently. The diagonal 
elements for fixed t increase monotonically (Ann = 0) 
while the off-diagonal elements are modulated by the ' 
oscillating factor exp (iAnn'T). This should lead to the 
decrease of the contribution of the off-diagonal elements 
(as compared to the contribution of the diagonal ele
ments) as T increases and to some decrease in the 
beat amplitude. It should also be borne in mind that 
what is experimentally observed is the luminescence 
from many excited molecules. The phases of the oscil
lating terms in the decay law for the individual mole
cules are uniformly distributed over an interval of T 

and for T ;:, An~' the beats will average out and vanis'h. 
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The most optimum conditions for beat observation are 
therefore attained when exciting sources with long 
pulses are used and when the beat period is short. 

In narrow-band excitation, when the line width of the 
, radiation source is less than Ann', individual nonadia
batic states will be excited. It was shown in[15] that the 
probability of finding the system in an excited state is 
equal to 

W (t) = Kl J 1m GJ (E) e-,et dE I' (42) 

If the spectral energy distribution function of the excit
ing field I( E) is different from zero only in the region 
of some pole En - iYn of the function Gii, then the de
cay law will have an exponential character, and the de
cay constant will be·equal to Yn < r. In excitation by a 
source of band width less than In, the lifetime of the 
system will be determined by the band width[15]. Notice 
that a narrow-band excitation can be realized only for 
irradiation times very much exceeding the reciprocal of 
the exciting-line width. It follows from this that the ob
servation of the beats under these conditions is difficult. 

The excitation of those individual nonadiabatic levels 
of few-atom molecules that have large Ann' values is 
possible, and has already been carried out[27], using 
ordinary (not laser) light sources. It was shown that the 
luminescence-decay time is indeed very much greater 
than the lifetime (for a radiative transition) of the state 
Ii), i.e., that Yi « r. Similar experiments can, appar
ently, be performed in the case of polyatomic molecules 
only with laser light sources; they would be highly de
sirable if they could be done. 

5. THE ROLE OF THE ROTATIONAL STATES 

The entire analysis carried out above is based on a 
model in which it is assumed that the rotational quantum 
numbers do not change in the nonadiabatic-transition 
process and that only one electronic vibrational-rota
tional state of the term i is excited. We can, in princi
pIe, derive, with allowance for an arbitrary number of 
the states of the i term and without limitations on the 
matrix elements of the operators V and W, an expres
sion of the type (11). Qualitatively, the results do not 
change. There arises in the expression for \.lI(t) in this 
case a sum over the states Ii), which leads to the ap
pearance in the expression for .9'(t) of additional oscil
lating terms with frequency of oscillation of the order 
of the energy spacing between the levels of the term L 
In the case when the vibrational-rotational level spacing 
is large compared to the radiation width of the levels 
(small molecules), the beats will be high-frequency 
beats and difficult to observe experimentally. In the 
case when the indicated oscillations are of intermediate 
frequency the beats also manifest themselves in an ex
perimentally determined decay law. If the rotational 
states are degenerate and the molecule has a dipole 
(magnetic) moment, then the degeneracy can be removed 
in an electric (magnetic) field. This will lead to a 
change in the function .9'(t), Le., to the dependence of 
the luminescence decay law on the external field. The 
latter pertains, of course, to the vibrational levels as 
well if their locations change in the external field. Ex
periments of this kind will, possibly, allow the measure
ment of the dipole (magnetic) moments of molecules in 
the excited state. 

The foregOing analysis shows that isolated molecules 
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can have diverse excited-state decay laws. The expo
nentiallaw can be observed only in certain cases, which 
are indicated above. The investigation of the beats in 
the luminescence decay law for molecules allows us in 
principle, to determine the locations of those levels ~f 
the molecules whose spacings are less than their radia
tion widths (spectroscopy within a radiative-decay line). 
The determination of the locations of the levels by other 
means is difficult in this case. 

Notice that quantum beats in the luminescence decay 
law are also possible for molecules in the condensed 
phase[291• These beats decay in a period of time that 
depends on the vibrational-relaxation time of the mole
cule. The experimental investigation of them will allow 
the determination of the relaxation times of the highly
excited vibrational states of the molecule. 

J)The functions If) should, generally speaking, be taken to be vibrational
rotational functions (see Sec. 5). 

2)In deriving this expression, we used the fact that the width of the level i 
(the interval in which Gii is different from zero) is considerably less 
than Eo -Ei' and we took the lower limit of the integration to be equal 
to -00. If the lower limit of the range of integration is finite, then there 
appears in (33) a term that decreases with time according to a power 
law [19]. 
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