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It is shown that the electron velocity distribution can be determined by inverting the incoherent 
Thomson scattering function and spectrum. Formulas are given for low-temperature and relativistic 
plasmas. 

1. The inversion of the spectrum of laser radiation 
scattered incoherently by low-temperature plasma can 
be used to determine the electron velocity distribu­
tionY-3] However, the dependence of the cross section 
for photon-electron scattering on the velocity of the 
electron must be taken into account in the case of high­
temperature plasma.[4,S] One must distinguish between 
two cases: in the first, the space-time region W, in 
which the radiation is formed, is greater than the scat­
tering volume and the duration of the 1ight pulses and, 
in the second, it is smaller. The quantity W is of the 
order of the period and wavelength of the wave whose 
frequency is the smaller of the two frequencies W2 and 
I W2 - wll, where W 1 and W2 are the frequencies of the 
incident and scattered radiations, respectively. The 
relativistic case, when the space-time region W is less 
than or of the order of the scattering volume is con­
sidered in(4,6]. This analysis presupposes the use of 
very small scattering volumes or very short laser 
pulses. This condition is not usually satisfied in prac­
tice (see [7,8]). 

The present paper is devoted to the determination of 
the relativistic distribution function for pulses of arbi­
trary length and large scattering VOlumes, which is 
based on the inversion of the spectrum or the Thomson 
scattering function.(S,9] The results are general and 
can be used for low-temperature plasmas. 

2. We shall suppose that the electron velocity distri­
bution is isotropic, the scattering is incoherent, the 
incident wave is plane, and its plane of polarization is 
perpendicular to the plane of scattering. If we then take 
into account the light-scattering cross section of an 
electron as a function of its velocity v, using our 
earlier results,[S] we find that 

o(w 0)= r,'w' S' f(v) (1-v')dv (1) 
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In these expressions, a( w, (1) is the light scattering 
cross section in plasma with an electron distribution 
function f( v), v is the dimensionless velocity of the 
electrons in units of the velocity of light c, e is the 
scattering angle, and ro the classical electron radius. 

Multiplying both sides of the integral equation (1) by 
4 sin (Y2 e)/r~w2 and differentiating with respect to w, 
we obtain the velocity distribution function in terms of 
known scattered spectrum a( w) at given e: 

where 
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(3) 

The result given by Eq. (3) is valid for arbitrary V. If 
the electron velocities are low, or the scattering angle 
fj is small (but collective processes can still be 
neglected), then ~W = W - 1 « 1. Substituting W = 1 
+ ~W in (3), and neglecting terms of the order of ~W2, 
we obtain 

f( v)=f( ~IU )=-4r-'sin~~w(1+~w)_d_[ O(~IU) ], 
2(1+~w)sjn(e/2) '2 dl'lw (i+l'lw)' 

(4) 

When the temperature is not too high, corrections of the 
order of v become unimportant and (4) can be rewritten 
in the form 

( ~IU) _" 0 do (I'lw) 
f(v)=1 =-4ro sm-~w---. 

2~W~ 2 ~w 
(5) 

We note that the form of the resultant distribution func­
tion is very dependent on the relativistic corrections. 

3. The distribution function f( v) can also be found 
from a known scattering function a( e) determined at a 
fixed frequency w -= 1. Analytic inversion of (1) is im­
possible, but the second iteration suffices for the de­
termination of f( v) to within v2 • 

Differentiating (1) with respect to e, we obtain 

doo(O) sinO S' f(v) (i-v')vdv 
I(v)= -u(v) ---;W----4- u (v) (1-v'cos'(0/2»,/ ' 

p(w,d) 

where v = p(w, e) and 

o v (1-v' cos' (0/2» 'f, de 
4ro-'w-'sin 2 0(0)=so,(0), i-v' dv =su(v). 

For the first approximation to f( v) we take 

( ) doo(O) v(1-v'cos'(0/2»'f, dO do,(O) 
I, v)= -u(v ---;w-= i-v' 'dv dO . 

The second iteration after substitution for f l( v) into 
the right-hand side of (6) yields 
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In deriving (8), we have integrated (6) by parts, using 
the condition lio( 0) = O. The integral in (8) differs from 
the integral 

2 So (O')v'2~dO' 
o dO' 

(9 ) 

by an amount less than the corrections to f( v) or order 
v2 , since it is readily seen that for the Maxwellian dis­
tribution function the difference between the integrals 
in (8) and (9) is of the order of v 3• 

Thus, the second approximation leads to the follow­
ing expression for f( v): 

sinO { v'oo(O) 
f2(v)=f,(v)+-4- u (v) i-v'cos'(8/2) 

o d ' 
2 S 00 (0') v" d~' dO' }. (10) . 
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FIG. I FIG. 2 

FIG. I. Scattering function u(l1) for nonrelativistic distribution func­
tions: (1) f(T); (2) f(T) + 0.2 f(O.ST); (3) f(T) + 0.2 f(2T). The scatter­
ing functions are normalized at 11 = rr. 

FIG. 2. Electron-velocity distributions of the form f(v, T) = Av2 

exp( -mv2/2T) as functions of x = v(2T/m)ll2, normalized at the maxi­
mum: I - f(T), 2 - f(T) + 0.2 f(O.ST), 3 - f(T) + 0.2 f(2T). 

We note that the first approximation to (7) is subject 
to an error of the order of v2 , and the third iteration to 
an error of the order of v 5 • Hence, to determine the 
distribution function to within v, we have from (7) 

/,( v)=_v~..'£a,(O) = 1-2Ulc~8+",' duo(G) 
dv de UlsinO de' V=p(Ul,e). (11) 

If we take Aw = w - 1, then at the minimum scattering 
angle 8min 

L'1Ul 
-::-.,--;-::---::::-c:- ~ 1, 
2 sin (8m ,,,/2) 

and we have the simplified result 

( L'1Ul) 8 d [G ] I, (v) =/. 2 sin (012) =8r, _2 tg 2 de sin 2 a (L'1Ul, 8) . 
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(12 ) 

Figure 1 shows the scattering function calculated 
from (1) and (2) for low temperatures T and different 
distribution functions (Fig. 2). Inversion of the curves 
gi yen in Fig. 1 in accordance with (11), naturally leads 
to the given functions in Fig. 2. The accuracy with 
which the distribution function can be determined from 
the scattering function is no worse than the accuracy 
achieved by spectrum inversion. 
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