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A relativistic model Langrangiall which formally describes charge-charge interaction to any order of 
approximation in vic is obtained for an optically thin plasma in which the action of the radiated 
fields on the charges is negligible owing to the rapid emission of the fields. 

1. The complete description of a system of interact
ing charges usually requires the introduction of inde
pendent generalized coordinates for the electromagnetic 
field. If, however, the velocities of all the particles are 
lOW, then the system can be described up to terms of 
order (v/c)2 by the Darwin Lagrangian [1] : 

LD=- '\1 m,c'Y 1_~.2 _ ~ '\1 '\1 ~(1 _ ~ _ (n .. ~,) (n .. ~.) ] (1) 
~ 2~~ r.. 2 2 

i i=F1t. 

where rik = q - rk, nik = rikl rik, and tli = vd c. Such 
a Lagrangian has been used in a number of papers [2-8] 

to construct thermodynamic and kinetic theories of 
weakly relativistic plasmas devoid of radiation fields. 
Such conditions obtain in, for example, thermonuclear 
installations if the walls of the chambers are not spec
ular. 

In astrophysics, however, a number of papers have 
been published which theoretically investigate optically 
thin bunches of an ultrarelativistic plasma in which the 
interaction of the charges with their own radiated fields 
is also negligible owing to the rapid emission of the 
fields. As an example, we can cite BisnovatYI-Kogan, 
Zel'dovich, and Syunyaev's paper[9], in which the 
authors consider the production of electron-positron 
pairs in particle-particle collisions and their annihila
tion in a relativistic Maxwellian plasma that is not in 
thermodynamic equilibrium with the radiation, which is 
assumed to escape freely from the plasma. 

We consider below a relativistic model Lagrangian 
that is formally suitable for describing a system of 
interacting charges to any order of approximation in 
vic under conditions when the radiation can be neglected 
(a realistic limitation being the condition e ~ mc 2 ). 

2. The required Lagrangian can be obtained in the 
following way. The complete Lagrangian of a system of 
charges and field is, as is well known[10], given by 

L=- I:m,c'Y1-~2;- .Ee,(<p-~'A)+_1-S (E'-H2)dV. (2) 
; , 8n 

The last integral, which corresponds to the Lagrangian 
function for the field, can, with the aid of the expres-
sions 

be transformed into the form 

~ S {.-HrotA-E{ V<p+~ aA)} dV= __ l-S div(<pE+ [AHj) dV 
8n \ c at 8n 

1 d S 1 S 1 (3)* --- (AE)dV+- (p<p--jA)dV. 
8ncdt 2 c 

The first integral with the divergence can be trans
formed into an integral over an infinitely remote sur
face. It describes the system's radiation, which we 
shall neglect, assuming it to be of low intensity. It is 
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known from quantum electrodynamics that in first-order 
perturbation theory the interaction between charges is 
described by a diagram corresponding to elastic parti
cle-particle scattering in which the initial and final 
energies of the particles are equal. In this approxima
tion, therefore, the energy of the system is conserved. 
Radiation (bremsstrahlung) emission occurs only in 
second-order perturbation theory. The cross section 
for bremsstrahlung emission is at least e2/tic = 1/137 
times smaller than the elastic-interaction cross sec
tions, and it is precisely to within this degree of accu
racy that we shall neglect the radiation, discarding the 
first integral on the right-hand side of the formula (3). 

The second term with the total time derivative can 
simply be dropped in the Lagrangian function, while the 
last integral in (3) is equal to one -half the second sum 
in (2), which sum describes the interaction of the 
charges with the field. 

Thus, from (2) we find that approximately 

L=- I:m,c'l'l-~2i-+ .Ee, [.E<p.(r"t)-~, .EA,(r"t) l (4) 
1 Ip¢d k+i 

Using the Coulomb gauge (div A = 0), we obtain from 
the Maxwell equations the equations for the potentials: 

(5 ) 

If the field is produced by a system of point charges, 
then the scalar potential is equal to 

S dV' , '\1' e. 
<p(r"t)= RP(r ,t)= ~ -;::;:' 

• 
and retardation is neglected. The right-hand side of the 
equation for A then turns out to be equal to 

_ ~ A 
6ik={5ilt.+niknih., r 11t.=rj-rh (t), nif~.=rik/rih. 

If we seek the solution to Eq. (6) in the form of an 
expansion: 

then for A <ll) we obtain the system of equations 

~A(n)=(a~ )'A(n-O 

(6 ) 

(7) 

where T = ct, the operator A acts on the variable ri. 
and rk = rk(t) is assumed to be a function of the time. 

The solution to this system of equations are: 

(a) 'n , Ir,-r.(t) 12n+1 
A(n'= a~ 6· .Ee.~.--''-,-:-:'''':'''::-:--

• • (2n+2)!' (8) 

where 6 = OA q - Vri Vr/. 

Introducing the notation R = ri - rk(t), we can write 
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· fJ ] O·~,IRI2n+'= (2n+1) [~, (2n+1)R'n-'+R fJ't R'n-' , 

and therefore for A we find 
- , fJ'J.. A= L.A,n)= L. e.(~J,.+r"a;)' 

n=O A 

where 

Since we wish to obtain a Lagrangian not containing 
particle accelerations, the T = ct derivatives of I RI 
= I ri - rk(t)1 should be computed, discarding all the 
time derivatives of the function rk(t) higher than the 
first, We then find 

(9 ) 

( fJ ),nR'n_'_ (2n-1!1)'[ I" 
~ - n~" 
fJ't r .. 

(10 ) 

while for the quantity A and its first derivative, we have 

1 '6 (2n-1!I)' [n"~AI'n 1 
~.= 2r •• ,fr (n+1) (2n)! = r .. (1+x~A) , 

(11) 

fJ'J.. fJ [ '{( )'+(1 0) '}'hl-' _ 1 n.~, ~fJ = -fJ r •• + r .. ~, -~A r.. -, (1+ ') A' 
't' 't' rill. 'Xu 'XHt; 

where K~ = {I - [niki3kn'/ 2. 

Thus, the vector potential (9) can be written in the 
form 

(12 ) 

and then for the Lagrangian (4) we find 

L=-.E m,c'l'1-~;-~ L..E ~[1-~ 
; 2 ,... r.. (1 +x .. ) 

_ (n .. ~;) (n .. ~,) ] 
x,,'(1+x,,') 

(13 ) 

Notice that the Lagrangian (13) could have been obtained 
in another way by first writing down the Lagrangian of 
one particle in the field of the other charges as they 
move in a prescribed manner: to wit, rectilinearly. 

As is well known, no radiation is emitted in such a 
motion. If the individual Lagrangian obtained in this way 
is generalized in the usual manner for the entire sys
tem of charges, then we again arrive at the expression 
(13 ). 

3. From the model Lagrangian (13) follows the law 
of conservation of energy: 

(14) 
+ (n,~,) (n'~A) (1+ ._ A')] 

x" (1 +x .) x.. X.A • 
ill lit 

However, it would be difficult to derive in explicit form 
the Hamiltonian expressed in terms of the generalized 
momenta. 

The free energy of the system described by the 
model Lagrangian (13) turns out to be equal to: F = Fid 
+ AFD + AFR, where Fid is the free energy of the ideal 
gas, AFD = -Ve/121Td 3 is the standard Debye correc
tion (d-~=!:Ct41TIlae~/e),while AFR= KIAFDI takes 
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into account all the relativistic corrections due to the 
interaction. 

The factor K is expressible in terms of a fairly un
wieldy combination of Macdonald's functions 
K,,2(ma c2/ e) and, for example, in the weakly relativ
istic limit when lie = mec2/ e » 1, it is equal to 

(15 ) 

where z = ~ ei/ee I is the ion charge. In this case AFR 
is (VTe/C) times smaller than AFD, which coincides 
with the results obtained by us earlier(3) with the aid of 
the Darwin Lagrangian. 

The model Lagrangian (13) can also be applied to the 
case when e ~ mc 2 and, although it cannot be used to 
investigate an ultrarelativistic system, we nevertheless 
formally have for K for the ultrarelativistic case 
(II « 1) the expression 

2·5'" V'I, 
x"" (1----+ .) Ixl~1 v' (1 +Z)'/. . 2'1'·5'1. .... • (16 ) 

so that here the relativistic correction turns out to be 
negative and greater than the Debye correction. 

In conclusion, let us note that although the considered 
Lagrangian formally does not contain the limitation 
v « c, it nevertheless cannot be used in the ultrarela
tivistic case, since when e » mc 2 the cross section for 
bremsstrahlung emission 

<cr~~~' > ""8a:ro' In (kT/mc') 

can exceed the cross section for Coulomb scattering of 
the particles 

and the neglect of the radiation is then inadmissible. 
(Here (l = Y'37, ro = e 2/mc 2, and A is the Coulomb 
logarithm. ) 

*[AHI =A X H. 
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