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Nonlinear processes that occur in a plasma situated in a constant homogeneous electric field are 
considered on the basis of the asymptotic theory of the anomalous resistance. It is shown that in 
sufficiently strong field the nonlinear effects determine the time of the transition of the system into 
the asymptotic regime. 

1. INTRODUCTION 

It was established earlier [1 J that if a collisionless 
plasma is placed in a homogeneous constant electric 
field E, then the appearance of anomalous (collision
less) resistance should cause, in final analysis, all the 
quantities characterizing the plasma to change with 
time in a universal manner. The corresponding solution 
of the problem was called "asymptotic." It can be ob
tained on the basis of quasilinear equations, inasmuch 
as in the asymptotic regime, as shown in[lJ, the oscilla
tion energy increases in proportion to the time t, while 
the kinetic energy of the particles increases much more 
rapidly, in proportion to e. As a result, the increments 
of all the possible nonlinear processes must decrease 
with time and at t larger than a certain value to they 
become small in comparison with the linear increments 
of the interaction of the oscillations with the electrons 
and ions (which are constant in the asymptotic regime). 

The estimated time to is not obvious beforehand, 
since in addition to the quantity (1/ wpetl with the 
dimension of time (the reciprocal of the electron plasma 
frequency) the system has also a small parameter 
J.J. = m/M, which is the ratio of the electron and ion 
masses. To determine to it is therefore necessary to 
know the probabilities of the different nonlinear proces
ses that occur in the system. At large t, when the wave 
energy is already small in comparison with the particle 
energy, the principal role is obviously played by the 
nonlinearities that have the lowest order in the oscilla
tion energy. These are three-wave processes and non
linear Landau damping of the waves by the plasma 
particles. 

Let us examine them in detail in the one-dimensional 
case, for which an exact asymptotic solution is known. 
We present for future use the particle distribution func
tions and the spectrum and energy of the oscillations for 
this case[lJ: 

t", (v, t) = ( e~~) g". (u); 

g,=[2fl"'U/(U+fl') JH (u-1) , 

g.=6(u)+ 2fl"'(1-u) , 
U+~t2 

From the dispersion relation 

dQ,q)=1 ___ 1 __ J:.+ 2fl'I, -~=o 
(Q-q)' Q' Qq' q(Q-q) , 

Q=ro/rop " q=eEtk/mrop" 

it follows that there are two oscillation modes: 
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Q.='i2{q-1-[ (q-·1)'+4fl'l.qJ"'}, 
Q,,!,,,fl'l.q/ (1+q), 
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(1 ) 

(2 ) 

Q _ { fl'I'q/(1-q), 1-q»fl'\ 
,- q-1+fl'I'q/(q-1), q-1»fl'\ 

Q,=q+1-fl'I'q/(q+1) . 

In the asymptotic regime, only modes 2 and 3 are ex
cited. Their spectral denSity is 

W(k, t) =eE't'w(q)/8n'm, 

(3 ) 

W(q)=~(1-~) (~+fl')I~_dQI. (4) qfl q q q dq 

2. THREE·WAVE PROCESSES 

With such a distribution, out of all the possible three
wave processes satisfying the conservation laws 

Q(q) =Q(q')+Q(q-q'), 

we need consider only those in which at least two out of 
the three waves belong to modes 2 and 3 (since we are 
interested only in induced processes). It is easy to 
verify that there are only two such processes; 

a) decay of wave 2 into waves 3 and 1: 

Q,(q') =Q,(q) +Q. (q'-q), (5 ) 

b) decay of wave 3 into 2 and 4: 

Q,(q) =Q,(q') +Q.(q-q'). (6 ) 

It follows from the conditions (5) and (3) that the process 
(a) is possible at ~3 < q < 2. We confine ourselves to the 
region q - 1 » J.J.l/ 4, since smaller q corres pond to a 
very narrow part of the spectrum. Then q' "'" 2. 

Greatest interest attaches to the nonlinear increment 
for the mode 3, which covers practically the entire 
phase-velocity interval where there are oscillations. To 
find it, we use the kinetic equation for the waves[2,3J, 
expressed in the form 

aN,(') = 8n'mro p , J N,(3)N:~) IV",.I' 
at eE't' (ae/aQ),(ae/aQ),.(aelaQ), .. 

x 6 (Q,-Q,.-Q,_q')dq', N,=w.(ae/aro).. 
(7 ) 

The main contribution to the matrix element 
V qq , = f duiJ(g,-fl'gi)/iJU 

, (Q-qu) (Q'-q'u) (Q"-q"u) 

is made by electrons, and this element is approxi
mately equal to 3 [Y2 + (q - 0-2]. From (7), using the 
dispersion relation (2) and knowing the energy of the 
oscillations (4), we easily obtain the nonlinear increment 

1 aN (3' -'I. 

10= 2N(3) -it-= (~8t ) [1/,+ (q-1)-'],. (8 ) 
, 

The second of the possible decays, (b), was con
sidered earlier[4J. It occurs at q > 2. Calculations 
show that the matrix elements for both processes coin-
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cide and therefore formula (8) is valid in the entire , V4 . 
wavenumber interval q - 1 »J.I. • How 1S the asymp-
totic solution (1)- (4) altered by the nonlinear wave in
teraction? Instead of the condition Ye + Yi'" 0 (where 
Ye, i are the electronic and ionic linear increments) 
we now must write 

(9 ) 

As a result, the particle distribution functions fe ,i will 
differ from (1). The difference remains small when 
y «Y . Recognizing that for mode 3 the linear incre-
n e 5/2 • . t ment is Ye ~ J.I. wpe, we fwd that th1s occurs a 

t » J.I.- 3/ wpe. 

Nonlinear excitation of modes 1 and 4, where there 
are no oscillations in the asymptotic regime, leads to 
the appearance of particles in the velocity regions 
u < 0 and u > 1. It is important that these are oscilla
tions with positive energy, for only in this case can the 
condition (9) be satisfied for them. Indeed, the regions 
u < 0 and u > 1 the electrons and ions are lost through 
quasilinear diffusion. Therefore afe ,if av > 0 at u < 0 
and afe i/av < 0 at u> 1. Then )'e and Yi are of the 
same si'gn and are negative only for waves with positive 
energy. The sign of the energy of mode-3 oscillations 
(their energy is negative) is of no fundamental signifi
cancel) inasmuch as the linear increment of any wave 
can be ~ither positive or negative in the interval 
O<u<1. 

3. NONLINEAR DAMPING 

We proceed to consider the nonlinear interaction of 
the oscillations via the plasma particles-the nonlinear 
Landau damping. It is described by the following equa
tion[3l: 

aN, ~ N. J N •. k" [ W~') (k, k') af, + w;o (k, k') af,] dk'dv, 
at m av M av 

W~') (k,k')= 16,,:e' (j(w"-k"v) (~) -I (~)-II 1 , 
m aw, aw h' (w.-kv) 

4"e' J dva(f,-fJ.'f,)/av I' 
mk"e(k",ill") (w-kv) (w'-k'v) (w"-k"v) 

W ,'i) (k, k') = 16,,:e' {j (w" -k" v) (~) -I (!!..) -II fJ. , 
m aw h aw" (oh-kv) 

(10) 

-+. 4"e' J dv a (f.-fJ.·/,)lav I' 
mk"e(k", ,"") (w-kv) (w'-k'v) (w"-k"v) 

(k ) =1 4:JtB. I S dv 8 (f.+fJ.f.)l8v 
e , w + mk w-kv . 

At large t, the nonlinear damping of the oscillations 
at the resonant frequencies is small in comparison with 
the linear damping, and the principal contribution in (10) 
is that of the nonresonant particles --the electron and ion 
cores. Their interaction with the oscillations depends 
essentially on the particle velocity distribution in the 
cores, which is not determined in the asymptotic solu
tion (it is simply a /i-function). The final widths of the 
cores are the result of two processes: adiabatic 
quasilinear diffusion of the particle[2j and nonlinear 
wa ve damping. The first causes the scatter of the parti
cle energy inside the cores to increase in proportion to 
the wave energy, i.e., in proportion to t. 2) 

As will be shown below, nonlinear damping turns out 
to be more effective in this sense. The distribution func
tions fe ,i of the core particles then satisfy the equa
tions[3J 
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!!.:.=~~J N.N.,(k")'W;')dkdk'~, (11) 
at 2m' av av 

!..!:...=_l_~JN'N.-(k")'W:')dkdk'~' (12) 
at 2M' av av 

It is convenient to investigate (11) in a reference 
frame that moves with the electronic core. In this 
frame 

fJ."'q, 
Q,(q,)=-1+--. 

q3-1 

The nonlinear resonance condition 

Q(g) -Q(g') =(g-g'}mv/eEt 

can be satisfied for core electrons with mv/ eEt 
« 1 if: 

a) one wave belongs to mode 2 and the other to mode 
3, with q2'" 1; 

b) both waves belong to mode 3, with 

g, g'»1, gg'=-fJ.'''eEt/mv (v<O). 

The probability w~e) (k, k') that the electron will ab
sorb a plasmon k and emit k' depends, in turn, on fe, 
as seen from (10). This greatly complicates the deter
mination of the exact solution of Eq. (11). We shall 
therefore confine ourselves henceforth to only an esti
mate of the width of the electronic core, characterizing 
this width by a certain effective temperature Te. In the 
calculation of W(e) it must be recognized that the phase 
velocity of the waves is large in comparison with the 
velocity of the core electrons that make the main con
tribution to the integral with respect to the velocities. 

In the zeroth approximation, the principal terms 
cancel out and, retaining the small thermal corrections 
we obtain 

e'T ( g"mv ) / ( ae) (ae) W'" ~ • (jl Q" ___ (g+g')' ~ _ . 
mW:",E't' eEt aQ q aQ " 

In case (a) we then obtain for the electron diffusion 
coefficient 

the estimate 

Dn") =_i_SN.N.'(k")'W'·)dkdk' 
2m2 

D~') -fJ.-'I'~S (q+q')',(g-q')'/\ (Q,,_q"mv) dqdq' 
mWp,t q eEt. (13) 

_3 T. 3 

- fJ. -m-w-
p
,,-t2 qmnr, 

where qmax is the maximum value of the wave number 
of the oscillations of mode 3. It must exist, because the 
phase velocity of the waves tends to zero as q - 00 and 
ultimately falls in the region of the velocities of the 
electronic core, where there are no oscillations be
cause of the strong damping. 

To estimate qmax, we formulate the problem 
rigorously. The equation (11) must be solved with the 
following boundary conditions: afe/av = 0 as v - +"" 
and, at v = Vo = -eEt/mqmax its solution must match 
the asymptotic solution 

( ) _ 2fJ.'I'mn (D") at. ) _ 2fJ.'I'n 
ie Vo --. --, n - ---, 

eEt av "~"" tqmox 
(14 ) 

This yields the velocity Vo itself. Inasmuch as at 
v ~ (Te/m)l/2 we have 

t.-n/ (T,/m) '''»!'-'''mn/eEt, 

the velocity Vo is large compared with the average 
thermal velocity of the core: 
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vo~-A(T,/m)"', A~1. 

The exact value of A depends on the shape of the 
"tail" of the electron distribution function. In t)J.e 
region of the core, the diffusion coefficient D~a) ( v) 
depends little on the velocity, and therefore the function 
fe(v) decreases rapidly at v> (Te/m)1/2, as a result 
of which va is of the order of several thermal veloci
ties, and A varies slowly with time. Assuming it there
fore to be constant, we find that 

eEt (- T. ) -'I. 
qmru:"'-- --

m 11' 

We then get from (13) 

n(') ~ fL-3(T,/~)_'" (~) 3 

COpet m 

The variation of the electron-core temperature with 
time can be estimated at dTe I dt ~ mDtf). Hence 

(15) 

T,~m (e~)' W'(w .. t)-·/·. (16) 

In the interaction of waves of mode 3, the corresponding 
diffusion coefficient, which differs from zero only at 
v < 0, turns out to be of the same order as (15). The 
estimated temperature of the electronic core (16) 
therefore remains unchanged. 

The structure of the ionic core is determined by the 
following processes: 

a) the interaction of the waves of mode 2 with the 
low-frequency part of mode 3 (q3 ">i Y2); 

b) both waves belong to mode 3: 

g, g'~l, gg'=fL"'eEt/mv (v>O). 

In perfect analogy with the procedure for the electrons, 
we can obtain an estimate of the ionic-core tempera
ture: 

(17) 

Knowing the core temperatures, we estimate the 
decrement of the nonlinear Landau damping of the 
oscillations from (10). For waves of mode 3, it is de
termined by the damping by the electronic core: 

1n = _1_ IN •. k''W.(') ~dk' dv. 
2m av 

(18) 
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We find therefore that in the interval of phase velocities 
on the order of unity and 

fL-'" 
1n ~ -t-(w"t) 'f,. (19) 

From a comparison of (19) and (8) it follows that at 
large t the principal nonlinear process is the nonlinear 
Landau damping. 

4. CONCLUSION 

We have thus found that at large t, when the oscilla
tion energy density ~iJ.-2E2( wpe t) is already small in 
comparison with the kinetic particle energy ~E2( wpe tl, 
the nonlinear processes in the system still play an ap
preciable role. As a result, the time necessary to 
reach the asymptotic regime is very large: t » to 

-9/2/ 
~iJ. wpe' 

This stringent criterion is the consequence of the 
specific features of the considered one-dimensional 
solution. One can therefore expect the asymptotic solu
tion to establish itself much more rapidly in the three
dimensional problem. In addition, in a sufficiently weak 
electric field, when the time of the transition of the 
plasma from the initial state to the asymptotic regime 
in the quasilinear problem, T ~ liE, is larger than to, 
the nonlinear effects appear to be generally inessential. 

The author thanks D. D. Ryutov for a useful discus
sion of the work. 

1) In contradiction to the statement made by Kingsep [4J_ 
2) An exact calculation shows that owing to the peculiarities of the oscil

lation spectrum in this problem the particle energy scatter is propor
tional to t In t. 
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