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The spectrum of 1T+, 1T-, and 1To mesons has been determined in nuclear matter with Z =0 
(neutron stars) and Z = N (nuclei), taking into account the nucleon correlations. It is shown that in 
neutron matter, at a density n > n : ::::;0.4,n 0' a negative energy branch, w( +) < - £<;), appears in the 
spectrum of 1T+ mesons. This leads to an instability of the protons in such a medium (p ...... n +1T+), 

i.e" the neutron-star matter must consist of neutrons with a small admixture of positive pions, the 
charge of which is compensated by electrons. For neutron densities n > n ~ ::::;0.8n ° there appears an 
instability with respect to the production of pairs of 1T + 1T - mesons, and for approximately the same 
density the field of the 1TO mesons becomes unstable. This leads to phase transitions of the second 
kind in the system, with formation of pion condensates. The condensate of 1T- mesons proposed inl4J 
does not appear, even for very large densities. In nuclear matter with Z = N at densities 
n = n, ::::;0.6n ° smaller than the nuclear density no there appears an instability with respect to the 
simultaneous production of 1T+, 1T-, and 1TO mesons, leading to a phase transition of the second kind 
with the production of an electrically neutral condensate of 1T+, 1T-, and 1To mesons. This should affect 
the characteristic properties of nuclei. 

1. INTRODUCTION 

In a sufficiently deep potential well, an energy level 
may descend to a depth at which particle creation from 
the vacuum becomes possible. In the case of fermions 
the stability of the vacuum is guaranteed by the Pauli 
principle: particle creation ceases when the "danger
ous energy levels" are filled. In the case of bosons 
the process stops only when the repulsion between the 
particles makes further creation energetically un
profitable. The stability of the boson vacuum in an ex
ternal field has been studied in [lJ. It was shown that 
in a nucleon medium an instability may arise leading to 
the formation of a pion condensate, after which the 
system becomes stable. 

In [2J one of the authors has developed a method for 
the determination of the spectrum of pions in nuclear 
matter, method which was based on the separation of the 
most important diagrams. It consisted in separating 
those diagrams which vary substantially for four- mo
menta of the order m1Tc. The other less important 
diagrams are replaced by already known constants, de
termined from the comparison of theoretical and ex
perimental results (such as, e.g., the constant f de
scribing the pion-nucleon interaction, or the coupling 
constants gnn and gpn of the spin NN interaction in 
nuclei). We shall return below to these questions. 

In [2J it was shown that the pion field becomes un
stable for a nucleon density nc smaller than the usual 
nuclear density no, leading to the conclusion that the 
pion condensate must exist in atomic nuclei. Since the 
square of the condensate field rp6 turns out to be a 
periodic function of the coordinates, it follows that the 
density of nucleons in nuclei in the nucleus has a peri
odic structure (with a period of the same order as the 
average distance between the nucleons). 

In the case of a medium with N = Z, the case con
sidered in [2J, a static electrically neutral condensate 
is obtained with the fields rp~+ = rp~- = rp~o. For a me
dium with Z« N the spectrum of 1To mesons remains the 
same as in the case Z = N, whereas the spectrum of the 
charged mesons changes substantially [3J. For a density 
n'" O.4no together with the pion branch (w -1 for k -0), 
there appears a branch of excitations with the quantum 
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numbers of the 1T+ mesons but with energy w(+) < O. It 
turns out that w (+) + t:~n) < O. It is usually assumed that 

in a neutron star there is a small number of protons in 
addition to the neutrons, and that the charge of the 
former is compensated by electrons. Since for n >O.4no 
one has w (+) + t:~n) < 0, at such a denSity the protons will 

be replaced by 1T+ mesons. The density of the 1T+ mesons 
is' determined by the equation w(+) + t:~l) = O. For a den-

sity n~ = O.Sna there appears a condensate of 1To mesons, 
and for approximately the same density there appears 
an electrically neutral condensate of 1T- and 1T+ mesons. 

We note that the 1T- condensate proposed in the paper 
of Sawyer and Scaiaipino[4J does not appear, at least up 
to very large densities of nuclear matter. These papers 
make use of a Simplified Hamiltonian, which takes into 
account only the interaction of the nucleons with the field 
of a 1T- -meson condensate having the form of a plane 
wave. In a correct calculation this Simplified discussion 
also does not lead to the formation of a 1T- condensate. 
The reason for the error is an incorrect use in [4J of the 
mean-field method, resulting in an incorrect expression 
for the energy denSity of the star in the presence of the 
1T- condensate. The incorrectness of the expression is 
visible already from the fact that for a density below the 
critical value, the energy given in [4J has a nonanalytic 
dependence on the coupling constant (it contains the ab
solute value of this constant linearly!). A detailed 
analysis of the method used in [4J is given in [5J. 

We use this occasion to make some remarks on the 
objections to the method of obtaining the pion spectrum 
developed in [2J. One of these objections consisted in the 
fact that the exchange part of the particle-hole ("pole") 
diagram in the polarization operator had to be left out, 
since it was putatively already taken into account in the 
observable amplitude for resonant scattering [6J. We 
shall stop below in detail on this, but we remark already 
here that the expression for the polarization operator 
proposed in [6J contradicts crossing symmetry and time
reversal invariance, since for Z = N it yields a polari
zation operator which contains odd powers of the pion 
frequency. 

Another objection is that taking into account the re-
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pulsion at small distances must diminish the pole part 
of the polarization operator. The interaction forces be
tween nucleons lead indeed to a decrease of the polari
zation operator, however, this decrease is taken into 
account rigorously in the method of [2) by introducing the 
empirical spin-spin coupling constant between the nu
cleons, constant which was determined by comparing the 
theoretical and experimental values of the magnetic 
moments and the beta-decay rates. Thus, this objection 
is based on a misunderstanding. It is discussed in more 
detail in [7) (cf. also Sec. 2, Item 5). 

Below we discuss in detail all important ingredients 
which determine the polarization operator, and we ob
tain the spectra of rr+, rr- ,rro mesons in the absence of a 
condensate, both for the case Z = N and for the case 
Z «N (neutron star). 

A condition for a phase transition of the second kind 
(the density of the condensate increases from its zero 
value) is the appearance of an instability in these spec
tra. In order to consider the possibility of a phase 
transition of the first kind it is necessary to solve a 
more complicated problem: find the energy of the sys
tem for an arbitrary density of the condensate and 
compare it with the energy of the system in which there 
is no Bose condensation, or (for n >nc) with the energy 
of the system in which the above-mentioned phase transi
tions of the second kind have occurred. This problem 
was solved in [5) for the model involving nucleons plus 
the rr- condensate with a single propagation vector k. 
It turned out that in this model there is neither a phase 
transition of the first kind nor one of the second kind, 
with formation of a rr- condensate. 

In order to determine the magnitude and coordinate 
dependence of the condensate field, as well as the energy 
of the system, it is necessary to determine the Lagrange 
function of the nucleons and mesons in the presence of the 
condensate. In [2) this problem was solved in the model 
!!" = Arp4/4. It turned out that the presence of the conden
sate stabilizes the system: the pion spectra become 
stable in the presence of the condensate (all excitation 
frequencies are positive). Simultaneously with the ap
pearance of the condensate there appears a Goldston e 
branch of excitations of low frequencies. In order to 
solve a similar problem in a real system it is necessary 
to determine the variations of the polarization operator 
in the presence of a condensate, from where one can 
find an additional term in the Lagrange function which 
replaces the model expression used above. The deter
mination of the Lagrange function in the presence of the 
condensate field allows one to answer the question 
whether phase transitions of the first kind are possible 
in the system. Finally, one must solve the problem of 
determining the condensate field and the energy in a 
system of finite dimensions, tn view of applications to 
nuclear theory. 

2. CALCULATION OF THE PION POLARIZATION 
OPERATOR 

1. The Diagrams which Determine the Polarization 
Operator 

The pion energy in nuclear matter is described in 
terms of the polarization operator II (k, w) (n = mrr = c = 1): 

(il2~l+k'+IT(k, (il). ( 1) 

We show that in the region of k and w values which 
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interests us (w.$ 1, k - 1) the polarization operator con
sists of the sum of two terms 

The first term, denoted by IIR, corresponds to the 
production of a nucleon hole in the Fermi sea together 
with an N;3(1232) isobar (the "resonant term"). The 
"pole" term II p corresponds to an excitation of the 
type particle-hole in the medium. All other diagrams, 
not having parts connected by a particle and hole or a 
hole and isobar, are determined by large 4-momenta 
of the intermediate states, and either contribute little, 
or differ little from the corresponding vacuum dia
grams, which are already taken into account in the ob
served pion mass, used in (1), or, finally are contained 
in the effective mass m* of the nucleon, which will be 
used below (m*;:::O.9 m). 

This is easily seen considering some characteristic 
diagrams of this type. For example, the diagram 

is determined by values of ki which are important in 
the form factor A(ki) , i.e., by values of the order of the 
square of the mass of the nucleon, m2 , or of the corre
sponding resonance (Le" also of the order of m2). We 
now consider the diagram 

in which the hole 4-momenta kl and k2 are bounded by 
the conditions k1,3:S;PF and E 1 ,3:S; EF' The ratio of this 
diagram to the corresponding vacuum diagram, which in 
place of the hole contains an antiparticle, is easily seen 
to be -PF/m6 , i.e., this diagram contributes little com
pared to the one taken into account in the pion mass. 
Similarly, all vertices which do not contain parts joined 
only by a particle-hole or isobar-hole have the "radius" 
-m- 1 and can be replaced by constants taken from ex
periment. 

We now estimate the error in the pion mass appear
ing owing to the fact that the incoming pion lines in 
IIvac are taken off the mass shell, namely for k2-m~ 
= II. Since the vacuum part of the polarization operator 
changes considerably for k2 of the order of m2 or of 
the order of the square of the mass of the correspond
ing resonance, we have 

IIIT"" ( m. ) 2 {jm ' ___ (k2_m 2) __ m 2 
• {jk' • m •. 

As we can see, this error is small. 

The vertex of the rrNN interaction is selected of the 
form -f(</JY/J.YsT</J)0/J.cp,where f=g.!2m=1.0, m is the 
mass of the nucleon (m=6.7) and rp={rpl, rp2, rp3} is the 
meson field (rprr+=2- 1/2(rpl±irp2), rpO=rp3)' More pre
cisely, we shall use the limit of this expression for non
relativistic nucleons. In this case the vertex operator 
has the form: 

(2) 
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It is clear that the vertex If! selected this way de
scribes the interaction of nucleons with mesons which 
are only in the P state. Therefore it is necessary to 
add a part which is determined by the S-state lTNN 
interaction: 

II/=IIp+IIs. 

For the determination of IIp we shall make use of 
the vertex (2) (Le., IIp-O as k-O). The operator lIS 
takes into account the interaction of the mesons with 
nucleons in the S state. In other words, 

11S(6)J=A (3) 

where the block S describes the amplitude for S scat
tering of the pion on a nucleon of the medium. Thus, 

II(k, ro)=IIp(k, 1il)+IIR(k, 1il)+IIs(Iil). 

We now study each of these terms in part. 

2. The Pole Term of the Polarization Operator. Allow
ance for the Nucleon Correlations 

(4) 

We consider a medium consisting of particles of a 
single type, e.g., neutrons. The pole part of the polari
zation operator of the IT+ mesons, without taking into ac
count the nucleon correlations, is easily calculated: 

iT 

n(+)(k,6J)/'(,)~ k, 6J 

"P ~ 
f1 

-4/'k2 J d'p n(p) 4fk' mp. IlJ (k 
- (2n)' ro-e(p+k)+e(p) Ea- 2;2' ,Iil); 

( 5) 

€(p) = p2/2m; n(p) are the neutron occupation numbers. 
Here and in the sequel m will denote the mass of the 
nucleon quasiparticles in nuclear matter. As was shown 
in [8J, m is approximately 0.9 of the nucleon mass in 
vacuum. In our computations we have varied the value 
of m within limits of 20%. This has had no practical 
influence on the result. 

The function <P1(k, w) is given by the expression 

m' {a'-b' a+b } 
1lJ,(k,Iil)=2k'PF -2-1na_b -ab , 

(6a) 
a=ro-k'/2m, b=kvF; 

1lJ,(k,lil) n'n 1 lal>b. (6b) 
mp. lil-k'/2m ' 

The density is n = PF/3lT2 . 

Taking into account the interaction between the nu
cleons leads to the result 

;; . 
ll)+)(k,6J) = ~_6J~~ (7) 

-.n-+~.n+ 

p 

The shaded region of the graph takes into account the 
interaction between the particles of the medium: 

.r=~ =--( +~ = flO +:J;ccr 

where r is the scattering amplitude for the particle
hole channel, and G is the Green's function of the 
nucleon in the medium. This relation can be rewritten 
in the form of an equation for the exact vertex I, which 
has been investigated in detail in [8J (pp. 178-181, pp. 
161-163): 

(8) 
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Here rw is the amplitude for the interaction between 
the quasiparticles near the Fermi surface, A is the 
product of the pole parts of the Single-particle Green's 
functions. We have set equal to unity the charge of the 
quasiparticles of the form T a0"2 with respect to the ex
ternal field. 

It follows from the spin structure of the vacuum 
vertex (.ro ex 0") that in a medium which has no average 
spin only the terms corresponding to the spin-spin 
interaction of the nucleons (rW ex 0"1'0"2) contribute to I. 
Retaining only isospin symmetric terms, we write rw 
in the form 

mp. 
-;:t2r-=(g+g'n')aa', (9) 

where Po is the momentum of the Fermi limit of atomic 
nuclei (in me sonic units Po = (1.5lT21lo)1/3 "" 2). The quan
tities g and g' are functions of wand k (the energy 
and momentum transferred in the particle- hole channel). 
They differ from the corresponding quantities intro
duced in [8J in that, by the definition of the polarization 
operator, they do not include diagrams having one 
meson in the particle-hole channel. This difference 
disappears as k - O. 

The functions g and g' are phenomenological para
meters of the theory of Fermi-systems and are deter
mined through a comparison of the theoretical and 
experimental data. From an analysis of the magnetic 
moments of nuclei and the rates of beta decay, the 
following values have been obtained for g and g' [9J 

g=0,5, g' =0,8. 

For a medium with Z« N the functions g and g' 
are unknown, but we assume that they differ little from 
their values in ordinary nuclei. In the determination of 
the meson spectra the values of g and g' have been 
varied within wide ranges and the behavior of the 
branches of the spectrum and the values of the parame
ters which are interesting us have varied little (cf. 
Sec. 3). 

Substituting into (8) the expression for the vacuum 
vertex of the IT+ meson .J"~ = 21/2ifT+kO"z (where T+ = ~(T1 
+ i T2)) and using (9), we obtain for the exact vertex of 
the IT+ meson, for an arbitrary relation between Z and 
N the expression 

q-+ (10) 

where g- = 2g'; p~n), p~) are the momenta of the Fermi 
limit of the protons and the neutrons, and <I>t(k, w) is de
fined by the expression (6). 

Below we shall need the exact vertex of the lTD meson 
in the medium. Making use of the expression for the 
vacuum vertex function of the lTD meson, Ig=ifT~o"Z 
we obtain from (8) 

fT'=i/ka,[ (1-gllJ(+l) "t3+lgIlJH] 

(n) (p) 1 

X [1-gnn llJ(+l+4gg' P'n~' llJ(k,lil;p~nl)llJ(k,lil;p~Pl) r (11) 

(n) (p) 

1lJ(±l ""~IlJ(k, Iil; p:"'»±~IlJ(k, ro; p~Pl). 
po po 

here gnn = g + g' are the amplitudes of the spin- spin 
interaction of two identical particles at the Fermi 
limit, I is the isospin unit matrix, and 
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(12) 

Thus, in a neutron medium (pi?) = 0) it follows from 
Eq. (10) that the exact 7T+-meson vertex is obtained 
from the vacuum vertex by multiplication with the 
factor 

(11.) -1 

[ Hg- P;o <I> , (k, 00) ] 

For the pole part of the polarization operator of the 7T+ 
meson, defined by Eq. (7), we obtain in this case 

We have made use of the fact that p~) = pW) = PF as well 
as of the function 4>(k, w) defined by (12). 

As was to be expected, the taking into account of the 
nucleon correlations in this case leads to the same re
sults for 7T+, 7T- , and 7TD mesons. Indeed, the isospin 
structure of the vacuum vertices in an isospin-sym-

metric medium does not change (for p~n) = Pi?) the 
second term in (11) vanishes) and the taking into ac
count of the nucleon correlations reduces to multipli
cation of the vacuum vertices by the same factor 

(n) 

n;+) (k, 00) =-2/'k' mp; <I> , (k, 00) 
n Hg-([l,(k,oo)p~n)/po' 

(13) [Hg-~: ([l(k,oo) r 
The pole part of the polarization operator of the 7T 
meson in a neutron medium will have the following 
graphical representation 

UpI"") ' .~,." 
p 

(14) 

Comparing with the corresponding diagram for rrp) it 
is obvious that 

(15) 

Finally, for the 7TD meson in a neutron medium, without 
taking into account the nucleon correlations, we have 

=2j'k' S~ n(p+k) -n(p) 
(2n)' oo+e (pH) -e(p) 

(n) 
mp. 

2j'k' z;;;:- <I> (k, ~)). 

(16) 

The function 4>(k, w) is defined by the expression (12). 

In analogy with the case of charged mesons, the in
teraction between the nucleons leads to the multiplica
tion of (16) by the factor 

(n) 

[Hgnn p;. ([l(k, 00) r'. 
Thus, for rr~)(k, w) we obtain finally 

(n) in} 

n~')(k,oo)=-f'k' mp. ([l(k,oo)[Hgnn~<I>(k,oo)]-' (17) 
Jt2 po 

We now go over to a medium consisting of protons 
and neutrons; let in addition pW) = p~) = PF' Since such 

a medium is isospin-invariant, the results will be the 
same for each of the components of the meson field CPl, 
CP2, CP3 (and consequently also for CP7T± and CP7TD) 

n;+) (k, 00; N=Z)=n~-) (k, 00; N=Z)=n;') (k, 00; N=Z) ""np(k, 00). (18) 

It suffices therefore to consider, e.g., only rt mesons. 
The pole part of the polarization operator of the 7T+ 
meson, in distinction from (5), is determined in this 
case by two diagrams: 

215 

k,(') k W 

~~,_~ xXs
p
_ r.~' 

ilp!k, W) = s' .. '-....../;;~- + to 
p n 

S d'p n(n) (p) -n(p) (p+k) 
=4f2k' ___ -..:=...::-:-_2...:~ 

(2n)' w+e (p) -e(p+k) 
4j'k' 2m~::.. ([l (k, 00). 

n 
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(19) 

so that, with the interactions between the nucleons of the 
medium taken into account, the polarization operator 
takes the form: 

np(k,oo)=-2f'k,m~p Il>(k,oo) [Hg- PP Il>(k,oo)]-l (20) 
n p. 

The expressions (13), (17), and (20) for the pole part 
of the polarization operator, with the indicated values 
of g and g' are valid for w < EF [8]. In the case of a 
neutron (Z «N) medium, together with w '" 0 are im
portant frequencies w '" 1 > EF' For such large w one 
may assume that the function g- in (13), describing the 
spin-spin interaction of the proton and the neutron ap
proaches its vacuum value gvac = 0.8 (cf. [8], p. 314). 

3. The Resonant Part of the Polarization Operator 

We start with the case of a medium consisting of 
neutrons (Z = 0). The part of the polarization operator 
which is due to the production of a neutron hole and the 
isobar Nr3(1232) has the following graphic representa
tion 

~
k'''' k,(') 

8#' ~+ 

Ii (21) 

(N'r 

We note that 

iT .y~ (22) 

rrt(k,(')) = ~ + ~ =rrtJ(-k,-fJ) 

(N°r (N")+ 

The shaded vertex in (21) describes the 7TNN* inter
action in the medium. By the definition of the resonant 
part of the polarization operator, this vertex must not 
contain in a section a particle-hole pair (such diagrams 
are taken into account in the pole term). 

The expression for the 7TNN* vertex in the medium 
can be obtained similarly to the way we have derived 
the 7TNN vertex. But the results of Ericson and 
Hufner[lO] , who have obtained good agreement with ex
periment in their description of pion scattering on 
nuclei in the region of the Nr3 resonance by making use 
of vacuum vertices, suggest that the corrections due 
to the presence of the medium are not large in the 7TNN* 
vertex. In the same paper it was shown that the change 
of the isobar mass in the medium is insignificant. 

Thus, 

(21a) 
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and the 7TNN*-interaction vertex is equal to its vacuum 
value. 

Making use of the usual methods of computation for 
(21a), it is easy to see that owing to the large resonance 
energy wR = 2.4 one may neglect the difference between 
the kinetic energies of the isobar and the nucleon, and 
thus obtain for IIR: 

rr/t )=-4nnFR("'>' (23) 

where n=PF,j37T2 is the denSity of the medium, F~) is 
the resonant part of the vacuum amplitude for forward 
scattering of a 7TL meson on a neutron in the laboratory 
system (1.s.). Graphically F(±) has the form 

R 

+ 
(N*r 

n n 

The second diagram (on the mass shell and in thl> 
resonance region it is 1 % of the first diagram) repre
sents the u channel for the diagram 

~ (N*r~-
~ 

which is related to the first term in an obvious way: 

.rr:~*)+ 4+ (N I 
=J 

n n 

Thus, 

F,~+)=a(k)k'[ 1 + ____ 3 ___ ] 
Wn-w-i, (k) k' wn+w+i, (k) k' ' (24) 

F~-)(k, Ol)=F~+) (-k, -w), 

where a(k) and Y(k) are chosen so that on the mass 
shell (w 2 = 1 + k2) one obtains the usual resonance ampli
tude in the l.s., where 

,o(k) "'a (k) =0.081 (1 +0.2:1k'), 

WR = 2.36 is the resonance energy in the l.s. (the 
resonance mass has been taken to be 1232 MeV). We 
have taken all the parameters of the N;3 resonance 
from the paper of Carter et al.[llJ 

(25) 

If one goes off the mass shell (w 2 < 1 + k2) one must 
take into account the fact that the damping of the isobar 
is basically determined by the decay into a nucleon and 
one pion, and therefore, according to the unitarity con
dition the damping term must vanish for w < 1, and for 
w > 1 it must coincide with (25), i.e., 

'='08(w-l). 

In a medium this c"Jndition changes on account of the ap
pearance of low-lying excitations. However, since we 
shall be interested in values of k - 1, when Yk2 « 1, then 
independently of the vanishing of the imaginary part one 
may neglect in our expressions, Y, which will be done in 
the sequel. 

Recently [6J, some confusion has arisen in relation to 
the definition of the concept "resonant amplitude." In 
this connection we make several remarks. 

We write down the Bethe-Salpeter equation for the 
7TN-scattering amplitude F 33(k, p; k', p') (k and pare 
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the 4- momenta of the pion and nucleon, respectively): 

Fj3~=V+~ 
~0~ 

=u,,(k, k)+U 33(k, k,)D(k,)G(p+k-k,)F33(k" p+k-k,; k, pl. 

(26) 

Here U33 by definition does not contain parts connected 
only by a pion and nucleon line. For small w the 
principal role in u(k, k) is played by the part of the 
pole amplitude corresponding to isospin T = ~: 

.,,1'_')',;· X 
4 fk' 

= -3 w+k'/2m . 

This cannot be asserted about the block udk, k1), which 
enters into the second term of (26). It is easy to check 
that in the second term large intermediate 4-momenta 
k1- m are important, as follows, e.g., from the diagram 

2s:7(k 
p P 

which is typical for the structure of the isobar. This 
means that for w < 1 the second term represents a 
function which depends weakly on w (and has, of course, 
a maximum for w '" mN* - m, corresponding to the 
N;3 resonance). The fact that the intermediate momenta 
k1 - m allows one to talk of a small "radius" of the 
isobar, of the order of m- 1. 

The expression for F33 obtained, e.g., in [12J and used 
with insignificant changes in [13J 

F,,=--- 1--+,---4 I'k' ( W . 4 j'k')-' 
3 W WR 3 W ' 

is incorrect, particularly off the mass shell, since it 
involves the assumption that uss(k, k1) in the second term 
of (26) is proportional to Fg. Moreover, for w < 1, this 
expression contradicts the unitarity condition (ImF33 must 
vanish for w<l). 

Thus in the region of wand k in which we are inter
ested (w < 1, k-1), the amplitude F33 is represented by 
the sum of a pole part, corresponding to isospin 
T = % and the resonant amplitude: 

fjJ = *><i + "<---Y = fjf +FR 
~ ~ 

We are situated near the singularity of the first term 
Fg, therefore it is necessary to separate this term out 
from F 33 , as we have done, including this diagram into 
the pole term of the polarization operator. It would be 
completely incorrect to conSider this diagram as in
cluded in the resonant amplitude, and on that basis not 
to take it into account in the pole part of the polariza
tion operator. Furthermore we note that in nuclear mat
ter for w < 1 the pole part FE strongly "feels" the 
Pauli principle, whereas FR does not. 

For the determination of the parameters of FR it is 
necessary to subtract from the observed amplitude F33 
the pole part Fg. This leads to a difference of about 
5-10% in the parameters of FR and F 33 . In the sequel 
we shall neglect this difference. 

A. B. Migdal et a!. 216 



Thus, 
II~+) (k, <il) ~II~-) (-k, -w) =-4rrnF;,+) (k, w) 

=-4rrna (k) k' {_1_ + _3_}. 
Wu-U) (J}n+ w 

The polarization operator of the 1fo mesons in a 
neutron medium is easily obtained from an equation 
similar to the relation between the amplitudes for the 
scattering of 1fo and 1f± mesons: 

II~') (k, <il) ='nII~+) (k, <il) +n~-) (k, <il) J. 

(27) 

(28) 

Finally, we consider an isosymmetric medium, con
sisting of protons and neutrons (p~ = P~ = PF)' As already 

remarked above, the isospin invariance of the medium 
leads to the fact that the result is the same for 1f+, 1f- , 
and 1fo me sons, i.e., 

II~+)(k, <il; N=Z) =II~-) (k, <il; N=Z)=II~') (k, <il; N=Z) ""IIR(k, <il). 

But for the 1fo mesons the polarization operator IlR for 
a medium of given density n does not depend on its 
isospin composition (i.e., the relation between Nand 
Z), i.e., has the form (28); consequently, for N = Z 

where n is the density of the medium, consisting this 
time of two types of particles, n = 2pp/31f2 • 

4. The Contribution of the S-Wave 1TN Interaction 
to the Polarization Operator 

(29) 

Going over to a calculation of the part of the polari
zation operator which takes into account the S-wave 
1fN interaction, ITS, we note that the S amplitude is de
termined by large 4-momenta of the intermediate states 
and can therefore be taken into account in the gas ap
proximation, i.e., 

II~±) =-4rrnF~±) , 

where F~±) denotes the vacuum amplitude for S-wave 
scattering of 1f+ mesons by neutrons in the 1.s. 

The scattering amplitude for w < 1 can be repre
sented, following [14,15] as a series in powers of w 
(one should add to it the nearest singularity-the S 
wave of the pole part of the amplitude, but in the whole 
region of interest (of wand k values) one may neglect 
this contribution, within an accuracy of m1f/m). Making 
use of the crossing-symmetry conditions (FS)(w) 
= Fk-)(-w)), we obtain 

F~+) (<il) -F~-) (<il) =C,<il+C3<il'+ ... , 

F.:+) (<il) +Ft) (<il) =c,+c,<il'+ ... . 

As shown by PCAC theory [14], we have for the 1.s. am
plitude 

C3 C2 Co mn 
-'"""'-"""-""'- (30) 

Thus, for w,$l 

F~+) (<il) -F~-) (<il) =c,<il, F~+) (<il) +F~-) (<il) =0 (31) 

or 

F~±) (<il)=±'/2C,<il. (31a) 

This implies a simple expression for C1 in terms of 
observable amplitudes: 

F;+) (mo)-Ft) (mo) 
c, = = 0.21. 

mo 
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This agrees beautifully with the theoretical value (30). 

The relation between the scattering amplitude of 
the 1fo meson by a neutron, F~O), and the amplitudes 
F(±) is obvious: . 

S 

F~') (<il) ='/2[F;+) (0)) +F~-) (<il) ]=0. 

Returning to the polarization operator, we obtain in the 
case N= Z 

II. (0)) =-4nnF~') =0. (32) 

In a neutron medium (Z = 0) we have 
(+) (-) Cl 

II. (O))=II. (-0)}=-4nnz <il=-1,4nO), 

(33) 

5. Sign Reversal of the Spin-Spin Interchange at k2 ~ 1 

Our equations (1) for the meson frequencies can also 
be obtained by conSidering the poles of the correlation 
function (the NN amplitude in the particle-hole channel). 

The poles of the correlation function, corresponding 
to excitations with the quantum numbers of the pions, are 
associated in the case of a medium with N = Z with the 
condition 

Hg,- PF III (0), k) =0. 
P, 

Here the function gt'(k, IJJ) describes the complete 
spin-spin interaction between the nucleons, i.e., in 
addition to the quantity g-(k, w) introduced above, it 
contains a term produced by one-pion exchange: 

(34) 

2mp, f'k' 
g,- (k, 0)) =g- (k, 0)) + n' 0)2_[ Hk2+II(1) (k, 0))] (35) 

By definition, IT(l)(k, w) contains all the parts of the 
polarization operator, with the exception of IT p: 
IT(l)=Il-ITp. 

Taking into account (35), the relation (34) coincides 
identically with the above listed dispersion equation (1). 
In a medium with N = Z an instability arises if the 
meson spectrum contains pOints with w = 0. It follows 
from (34) and from the fact that ° < <1>(0, k) ~ 1, it is 
necessary for the appearance of such points that 
gf(O, k) ~-Po/PF for some interval of k values. 

Considering the diagrams which contribute to the 
spin-spin interaction of the nucleons one can see that 
only the one-meson diagram depends essentially on w 
and k (for w < EF and k - 1). The characteristic 4-
momenta in all other diagrams, in particular in those 
which are responsible for the repulsion of nucleons at 
small distances, are of the order 2PF, l/rc, or m 
(rc"'0.311/m1fc is the range of the repulsive potential). 
Thus, the relation (35) for w = ° can be rewritten in 
the form 

- k = -( )_ 2mpo J'k2 +o(~ 2 ,) 

g, () g 0 n2 1+k2+II(1)(0,k) 4p/ ,k r< , (36) 
g,-(O) =g-(O) =1,6. 

From this equation it follows that for densities of the 
order of the nuclear density the function gf(k) nec
essarily changes sign already at k - 1 (gt = ° for k'" 0.8, 
for n = no). From the expression (36) we easily obtain 
an estimate for the lower bound of the critical density 
from which an instability of nuclear matter may arise. 
Considering that k-PF we find that gt <-Po/PF, start
ing with PF'" 1.6 (n.2:0.25). 
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Such a behavior of gf(k) does not contradict the ex
perimental facts. From an anala;sis of the magnetic 
moments and spectra of nuclei 9,16) the following values 
have been obtained for gt at two points: 

g,- (0) "'1,B, g,- (2po) "'-1. 

Substituting the first of these values into (36) and taking 
into account that I n(l)(O, 2Po) 1/4~« 1, we obtain 

g,- (2po) "'-1,2+0 (k'/4po', k'ro'). 

This means that even for k2 - 4~:::: 16 the correction 
terms in (36) do not give a large contribution. 

3. THE PION SPECTRUM IN THE ABSENCE OF 
CONDENSATE AND THE INSTABILITY OF THE 
PION FIELD 
1. Quantization of the Meson Field in the Medium 

In the preceding sections we have investigated in de
tail the properties of the polarization operator n(k, w) 
of the mesons in the nucleon medium. We now discuss 
the basic properties of the solutions of the meson field 
equations. We start from the case of charged mesons, 
for which 

(co'-i-k'-I1(±) (k, co) ]cp~~: =0. 

In place of studying separately the fields <p(+) and <pH 

for the 71"+ and 71"- mesons, we introduce the complex 
field 

where ~ and ~ are the annihilation operators of the 
71"+ and 71"- mesons. The coeffiCients C(+l and c(-) are 
defined in the following manner. 

The Lagrangian of the field \If has the form 

(37) 

where Wk is an independent variable, not to be con
fused with the solution w(k) of the equation of motion. 
Making use of the usual method of discussing a Lagran
gian involving time derivatives of arbitrary order, it 
is easy to derive the following formula for the com
ponent T44 of the energy-momentum tensor: 

(38) 

Let us illustrate this relation on the example of the 
electromagnetic field in a medium with permittivity 
€(w) and magnetic susceptibility /l(w). The time aver
age of the Lagrange function, expressed in terms of the 
vector potential A (B = curl A, E =-A I AI = Ao sin wt) 
is of the form 

- ~( k')A' 
2= ~ BCO'--; lB~. 

k -

From here we obtain with the help of (38) the following 
expression for the average field energy 

lJ = d(BCO) E.-+ d(f!co) :160' 

dco iBn dco iBn 

in agreement with [17). 

From Eqs. (37) and (38) it is easy to obtain an ex
pression for the Hamiltonian of the pion field 

:16= ~ 'Y.+ [CO. (2co.- oI1<+»)] 'Y. -4-r Bro" (,)11. _11(11.) 
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= ~ {(e~+» 'CO'+) (k) Q(+) (k)a. +a.+ (et» 'co H (k) QH (k) b. +b.}, 

• (39) 
li"=1 (k) = (2COk _ orr(t) (k, co) ) 

OWk "'k~(t) (kJ 

(we have used the equality n(+J(k, w) = n(-)(-k, -w)). We 
require the Hamiltonian to have the form 

:16= 1: {co<+) (k)a. +a.+co H (k) b.+b.}, 

• 
where w(±) are the energies of the 7I"± mesons. This 
implies that 

(40) 

Thus, 

'¥(r t)= ~{a.exP[ico(+'(k)t-ikr] + b.+exP[-ico<-)(k)t+ikr]} (41) 
, -4-r [Q{+)(k) ]". [Q'-) (k)]," . 

The same result can also be obtained in another way. 
By the same method used for the computation of T 44 one 
can determine the current 4-vector. From (37) we 
obtain the following expression for the charge density 

(42) 

Requiring that jo be of the form 

(43) 

we again obtain (40), The factor 2w-lJn/lJw in (42) 
arises also from the Ward theorem, according to which 
the electromagnetic vertex (Le., its 4-component) has 
the form 

oD-! 011 
r:'=--=2co-- D-!=<il'-1-k'-I1(k,w). 

ow Ow 

As follows from (41), the dependence of w(+)(k) for 
the 71"+ mesons must be such that 

[ 200-
urr(+) (k, (0) 

(jw 
] >0. 

w=w'+)(k) 

for the 71" mesons 

[ oI1'-) (k, 00) ] 
2w - ow w=w'-)(k) >0 

or 
[ 

uI1'+)(k,oo) 

200 uco 1 oo=-oo'-'(k) <0. 

We thus obtain the following rules for selecting solu
tions. 

Assume we know the. solutions w(k) of the equation 

oo'=1+k'+rr'+)(k, co). 

The solutions lying in the region 

2co-ill1'+)(k, (0)/000>0, 

correspond to 71"+ mesons. The solutions situated in 
the region 

2oo-orr'+' (k, oo)/iJw<o, 

become, after the substitution w --w the dispersion 
law for the 71"- mesons. 

By analogy with the method by which we have obtained 
the representation (41) for the field of the charged 
mesons, it is easy to find the corresponding expres-
sion for the 71"0 mesons. The density of 71"0 mesons is 

(44) 
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FIG. I FIG. 2 

FIG. I. The spectrum of charged mesons in a neutron medium with 
density n = 0.1 < nf+ (g- = 0.8). The solid line represents the energy of 
the 1[+ mesons, w (+ , the dotted line represents the energy of the 1[
mesons with sign reversed Cw (-) For all k we have w(+)+ w(-) > 0 and 
w(+»o. 

FIG. 2. The spectrum of charged mesons in a neutron medium with 
density n = 0.3 (n~ < n < n~. g- = 0.8). For 2 ~ k2 ~ 5.5 the energy 
w(+) (k) < €F (n), which leads to an instability of the protons in such a 
medium with respect to the process p ..... n + 1[: Everywhere w(+) + w(-) 

>0. 

z 

0 I I 

~ 
2 "Z 

-/ ---

-Z k. 
FIG. 3. The spectrum of charged mesons in a neutron medium with 

density n = 0.5 > n~ (g- = 0.8). For k = k~ = 1.4 we have w(+) (k) + w(-) 

(k) = O. A system with such a density is unstable with respect to the pro
duction of 1[+ 1[--meson pairs. 

Here nCO) is an even function of w, an(O) law 
= 2wan(O) law 2 • One can see from the spectral decom
position that an(O) I aw 2 < 0 (this can also be seen from 
the example of the expressions (20) and (29)). Conse
quently, the physical solutions for the 110 meson corre
spond to the condition w > O. 

2. The Pion Spectra in the Case Z = 0 and Z = N 

We first consider the case Z = O. Collecting the re
sults of Sec. 2, we obtain the following equation for the 
determination of the energy of the 11+ meson, w(k): 

w'(k) =1+k'+II'+) (k, w) =1+k' - 2m:F fk'lll, (k, w) [ 1 
n-

PF ] -, (1 3 
+g--cD,(k,w) -1,4nw-4nna(k)k' --+--), 

po Wn--(U tJ.)n+W 

( 45) 

where n=PF/3112 is the density of nucleons. 

Figure 1 shows the result of a numerical solution of 
Eq. (45) for n < n~. The solid line represents the branch 
of the spectrum where 2w- an(+) law >0, i.e., the branch 
corresponding to 11+ mesons, the dotted line represents 
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FIG. 4. The minimal energy 
w~in(n) of the 1[- mesons in the 
neutron medium as a function 
of the density n - represented 
by the solid line and the Fermi O.s 
energy of the neutrons €~n)(n) 

n 
(broken line); wri'tin (n) > 
€~il-), therefore the process 
n ..... p + 1[- is impossible. 0 "-___ .L.... ___ -L.. __ -L ____ -'-

2 

FIG. 5. The spectrum of 1[0 
mesons in a neutron medium of 
density n = 0.3 > n~ (gnn = I). The 
three branches of the spectrum 
correspond to the three types of 
excitations: the isobar-hole type 
("resonance branch", w(k = 0) 

'" wR)' the mesonic branch 
(w(k = 0) = I), and the particle
hole type("spin-acoustic" branch). 
For all k. w2 > O. 

(,)2 

6 

II 

the portion where 2w- on(+) law < 0, i.e., corresponds to 
11- mesons (we recall that for 11- mesons the sign of w 
changes to the opposite one). Starting with a density 
n~ = 0.2 in the (+ -)meson spectrum there appears a solu
tion with w <-E; (cf. Fig. 2). The presence of such so
lutions leads to an instability of the proton in a neutron 
medium (p-n+11+). We note that for n<n~ the meson 
energies are such that (w(+) +w(-») > O. 

The spectrum of charged mesons in a medium with a 
density n 20 n~ = 0.4 (Fig. 3) is distinguished by a charac
teristic peculiarity: the presence of a point where w(+) 
+w(-)=O (at this point 2w-an(+)/aw=0, dw/dk=oo), i.e., 
a system with such a density is unstable with respect to 
the production of pairs of 11+11- mesons, similar to what 
happened in a strong electric fieldYl 

Figure 4 represents the minimal energy of the 11 
meson as a function of the neutron density, w~tn(n) 
for n > n~, from where it can be seen that even without 
taking in~o acc01J.nt the stabilizing action of the conden
sate, winln- E~n) >0. This implies the impossibility of 

a phase transition of the second kind with the formation 
of a 11- condensate (n-p+11-). 

The dispersion law for the 110 meson has the follow
ing form: 

,o'=t+k'+fl'''(k,w)=1+k'- ~~'--f'k'<J)(k,w) [1 

(46) 

A numerical solution of this equation yields the spec
trum w2(k2 ) represented in Fig. 5 for n > n~ = 0.4 For a 
density n > n~ (Fig. 6) there appears a region w 2 < 0, 
which signifies an instability with respect to the pro
duction of neutral mesons. 

We now treat the case Z =N. As we already said, in 
such a medium isospin invariance implies that the re
sults for all mesons are the same. The energy w(k) of 
the meson is determined by the equation 

w'=l+k'+II(k, w)=l+k' ___ F j'k'(Jl(k, w) 1+g-!2'..<l>(k, w) 2mp [ ]-' 
n 2 po 

(47) 
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FIG. 6 FIG. 7 

FIG. 6. The spectrum of 1To mesons in a neutron medium with density 
n = 0.9 > n~ (gnn = I). For 1.5 :;;; k2:;;; 15 there exists a branch with 
w2 < O. A system with such a density is unstable with respect to the pro
duction of 1To mesons. 

FIG. 7. The meson spectrum in a medium with Z = N at a density n = 
no = 0.5 > nc (no is the nuclear density, g- = 1.6). For 2:;;; k2 :;;; 15 the 
quantity w 2 < O. The system is unstable with respect to the produc-
tion of 1T+ 1r", and 1To mesons. 

g- I 
0 0.37 1.4 

} 
0 0.2 2.4 0 0.1 1.6 

0.3 0.3D 1.6 0.2 1 0.4 2.5 0.8 0.2 2.2 
0.6 0.41 1.6 P. 1.6 0.6 2.5 1.6 0.3 2.4 
0.8 0.43 1.6 

This equation has the same form as the one for neutral 
mesons in the case Z = O. 

For n < nc the spectrum is analogous to Fig. 5; for 
n > nc = 0.3, as before, there appears a region w2 < 0 (cf. 
Fig. 7), but for N= Z this means already an instability 
with respect to the simultaneous production of 1T+, 1T- , 

and 1To mesons. 

The table lists the characteristic parameters for dif
ferent values of g- and gnn. The quantities k~ and kc 
are the values of k for which w2 = 0, and accordingly 
n=n~ (Z=O) and n=nc (Z=O); k~ is the value of k for 
which w<+) + w<-) = O. 

3. Instability of the Pion Field and Pion Condensation 

As we see from Figs. 1-7, there are three branches 
of the pion spectrum corresponding to the three types 
of possible excitations: the meson branch (w(k = O)::e 1) 
the resonance branch (excitations of the isobar-hole 
type) (w(k=O)::eWR) and the particle-hole branch, which 
we shall call the spin-acoustic branch. The resonant 
branch is of interest in questions related to pion
nucleus scattering in the region of the N~3 resonance. 
The two others are essential in studying questions of 
stability. 

In a symmetric medium, as already noted, the po
larization operator is an even function of the frequency 
and the physical solutions correspond to w>O. Starting 
from n = nc = 0.3 there appears a solution with w2 < 0 for 
all mesons (an interval of k2 in which w2 < 0 increases 
from zero as n increases). It follows that a pion con
densate must exist in the nucleus, and the presence of 
this condensate will influence the computations of the 
different characteristics of the nucleus, e.g., its bind
ing ene rgy, etc. 

Near the transition point the condensate field has 
the form CfJoO: sin kox, where ko corresponds to the 
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minimum of the energy and approximately corresponds 
to a minimum of w2 on the spin-acoustic branch (ko 
- PF) [2J. Since CfJ~ turns out to be a periodic function 
of the coordinates, the nucleon density has a modula
tion with the same period. Thus, apparently, the nu
cleus has a stratified structure, the direction of which 
is coupled to the spin of the nucleus. This should lead 
to peculiar phenomena of the type of Bragg reflections 
in the scattering of particles on oriented nuclei. 

As a result of the phase transition there appears a 
low-lying (Goldstone) branch. The existence of such 
oscillations can be an argument in favor of the existence 
of a condensate. 

For Z «N (a neutron star) at a density n=n~ the 1T+

mesons acquire a branch with energy w <+) < 0) At the 
instant of appearance of this branch w(+) + €~ = 0 

(k = k~ = PF). As the &~nsity increases further I w <+) I 
grows faster than €; . This has an important implica
tion. Usually one assumes that in a neutron star there 
exists an admixture of protons, the charge of which is 
compensated by electrons. Since w<+) + €~) < 0 the pro-

tons will convert into neutrons and 1T+-mesons (p-n 
+ 1T+). The equilibrium number of 1T+ mesons and elec
trons is determined by the equation w<+) + €~) = O. 

At a density n = nF, = 0.4 the energies of the pair of 
1T+ 1T- mesons w(+) + w -) vanishes for k~ = 1.6, leading to 
the formation of a 1T+1T- condensate. Approximately for 
the same density there appears a condensate of 1To 
mesons. As was shown in [lJ and then in [2,3J the ap
pearance of the condensate stabilizes the system. The 
formation of a condensate corresponds to a phase transi
tion of the second kind. 

The minimal energy of the 1T- meson before the ap
P0~rance of the 1T+1T- and 1To condensates is larger than 
€; and thus the phase transition of the second kind 

with formation of a 1T- condensate is impossible. When 
the condensates appear the minimal energy of the 1T

mefrsns increases, as was shown in [3J, so that w<-) 

- €Fn > 0, at least up to very large densities, which 
proves the assertion that the 1T- condensate which was 
conjectured in [4J does not in fact exist. 

In ref. [2,3J the problem of coordinate-dependence and 
energy of the condensate field was solved in the !/" = A,CfJ4/4 
model. This model describes the picture only from a 
qualitative point of view. In order to solve a realistic 
problem it is necessary to determine the variation of the 
Lagrange function of the system in the presence of the 
condensate. This problem, as well as the problem of 
the possibility of phase transitions of the first kind will 
be discussed by the authors in the sequel. 
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