
Propagation of electromagnetic waves in an inhomogeneous 
nonlinear medium 

V. M. Eleonskil and V. P. Silin 

P. N. Lebedev Physics Institute, USSR Academy of Sciences 
(Submitted April 13, 1973) 

Zh. Eksp. Teor. Fiz. 66, 146-153 (January 1974) 

An investigation is made of the propagation of waves of the TE type along a spatially 
inhomogeneous layer of a nonlinear self-focusing or self-defocusing medium. It is shown that under 
certain conditions depending on ,the intensity of the electromagnetic field waveguide propagation of 
the TE field may be disrupted. Conditions for the localization of a strong field in a plasma layer 
region leading to oscillations of a weak field at infinity are elucidated for TE-type waves propagating 
along an inhomogeneous plasma layer. 

1. A considerable number of papers has been de­
voted to investigations of self-focusing electromagnetic 
fields in a homogeneous nonlinear transparent medium. 
We indicate here a number of papers [1-6] in which the 
principal features of the structure of the electromag­
netic field of self-focusing waveguides have been eluci­
dated. However, in our opinion sufficient attention has 
not been paid to investigations of self-focusing fields in 
inhomogeneous nonlinear media. A dielectric wave­
guide produced in a nonlinear transparent medium can 
serve as an example which is also of practical interest. 

It is shown below that propagation of an electromag­
netic field along a layer of inhomogeneity in a non­
linear transparent medim possesses a number of im­
portant properties. Thus, as the intensity of the elec­
tromagnetic field in a dielectric waveguide increase a 
disruption occurs of propagation in the waveguide if the 
nonlinear medium is self-defocusing. Another limita­
tion on the amplitude of the excited waves turns out to 
be the phenomenon of phase mismatching arising as the 
intensity of the field is increased in an optical dielec­
tric waveguide the modes of which require phase match­
ing with the radiation being introduced. Finally, in in­
vestigating the propagation of TE waves along an in­
homogeneous plasma layer it has been shown that there 
exist solutions which correspond to the localization of 
a strong field in the region of the plasma layer and to 
oscillations of a weak field at infinity. 

The dispersion relation for the above field distribu­
tions arises in seeking such solutions of the field in the 
symmetry plane of the layer which lead to a minimal 
amplitude of stable oscillations at infinity. Such field 
distributions are of interest in connection with efforts 
to create systems of controlled thermonuclear synthe­
sis based on the ''trapping'' of powerful laser radiation 
in a long but thin plasma filament contained by a mag­
netic field[7]. 

The distributions of fields of the TE type in a non­
linear inhomogeneous medium in the case of plane 
geometry are determined by solutions of the equation 

-d'E/dx'=[k'£(x, E') -k,']E. (1.1 ) 

Here kz is the longitudinal wave number, k = w/c, 
dx, E2) is the nonlinear dielectric permittivity at the 
point x which depends on the field at the given point 
E(x). 

2. We consider the case when the nonlinear dielec­
tric permittivity is of the form 

e(x, E')=e(x)+£,(x)E'. (2.1) 

Here dx) corresponds (in the case of a vanishingly 
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weak field) to the inhomogeneous dielectric permittivity 
of an optically more dense layer, dO) > E( co); finally, 
E2(X) is the parameter of the inhomogeneous self-focus­
ing (in the case of E2 > 0) or self-defocusing (in the 
case of E2 < 0) nonlinear medium. Taking into account 
(2.1) we write (1.1) in the form 

d'H/d~'+ [e (£) -x,']E=-e,C~)E" 
x,=k,jk, ~=kx. 

Let the inhomogeneity be such that 
f!,.e 

e(6) =8 (00) + ch' (Vkl) . 

(2.2) 

(2.3) 

In this case Eq. (2.2) leads in the linear approximation 
to the following expression for the discrete spectrum of 
eigenvalues for the longitudinal wave number (cf., for 
example/ B]): 

x,z(n) =e (00) + (s-n)'/(kl)'. (2.4) 

Here the parameter s is determined by the relation 

(2.5) 

while n are integers which do not exceed s. Relation 
(2.4) represents the dispersion relation for the con­
stants characterizing the propagation in a plane dielec­
tric waveguide of characteristic thickness l, while the 
greatest allowable value of n determines the number of 
waveguide modes of the TE type, Utilizing an expansion 
in terms of the small field amplitude 

E=En+E~I)+ ... , x,'=x,z(n)+o(l)(n)+ ... , (2.6) 

where En and xz( n) are the field and the propagation 
constant for the n-th mode, we find that 

d2E~t) /d£'+ [8 (£) -x,' (n) ]E~') =-£, (~)En3+6(I) (n)E n. (2.7) 

The condition for being able to solve the inhomogeneous 
equation (2.7) determines the value of (j (1) (n) and leads, 
taking (2.6) into account, to the dispersion relation 

x,z=e(oo) + Ssc-n >,' + Sd~ £2(~)En' IS d£ En'+... (2.8) 
kl)' 

This dispersion relation takes into account the effect of 
the nonlinear properties of the medium and of the finite 
amplitude of the field on the constants describing the 
propagation of waveguide modes of the TE type. For 
example, for a single mode dielectric waveguide, when 
s = 1, the eigenfunction of the principal mode is equal 
to 

E(O) 
E(~)= ch(Vkl) (2.9 ) 

and the relation (2.8) for the case when the parameter 
of an inhomogeneous nonlinear medium given by 
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assumes the form 

s,(O) 
e.(~)= ch'(;/kl,)' 

x,'(O) =8(00) + (k~), +S,(O)E'(O)F( +). (2.10 ) 

Here F depends on the ratio of the characteristic di­
mensions of the inhomogeneities of the linear (l ) and 
the nonlinear (l2) contributions to the dielectric permit­
tivity of the medium. In the case when the characteris­
tic dimensions of the inhomogeneities are the same 
F(z 2 = t} = "'15, while in the case l2» t the function 
F - 73' 

We consider the case of a self-defocusing medium 
(E2 < 0). The relation (2.10) shows that as the ampli­
tude of the field E(O) increases the longitudinal wave 
number xz(O) diminishes and can become smaller than 
E 1/ 2 (oe). However, Eq. (2.2) can not have localized solu­
tions for x~ < d 00). Thus, the critical value of the am­
plitude of the field which leads to a disruption of the 
principal waveguide mode of the TE type of a dielectric 
waveguide due to the self-defocusing properties of the 
nonlinear medium is determined by the relation 

E'O=-~~ 
( ) (kl)'F(lI12) . 

We note that for (kl)2» 1, and in virtue of (2.5) 
also AE « doe), the critical amplitude is equal to 

(2.11 ) 

1 ).. 
E(O)~ls,(O)I'" z' (2.12) 

where A = k-" and turns out to be smaller than the 
characteristic field of the nonlinearity in the ratio of 
the wavelength of the radiation A to the characteristic 
dimension of the inhomogeneity l. In the case of a non­
single-mode dielectric waveguide'(s > 2) in a self­
defocusing medium as the intensity of the electromag­
netic field increases at first modes of' higher order will 
be subject to disruption, and the number of propagating 
localized modes will diminish as the field is increased. 

In the excitation of optical dielectric waveguides (for 
example, by the method of spoiled total internal reflec­
tion[9 j ) resonance coupling is utilized which arises when 
the projection of the propagation vector of the radiation 
being introduced on the symmetry plane of the wave­
guide coincides with the propagation constant for one of 
the waveguide modes. For a dielectric waveguide in a 
nonlinear medium the condition of phase resonance de­
pends in virtue of (2.8) on the amplitude of the field, and 
as the latter increases a mismatch arises which leads 
to a restriction on the amplitude of the mode being ex­
cited (with the projection of the propagation vector of 
the radiation being introduced remaining unchanged). 

The example of inhomogeneity (2.3) considered above 
evidently has a universal Significance since the same 
conclusions can be drawn also for other cases of in­
homogeneous dielectric waveguides. 

We note that in the case of propagation of waves of 
the TE type in a self-focusing medium along an 
optically less dense layer when the dielectric permit­
tivity has the form (2.1) and dO) < E(oO) waveguide 
distributions of the field localized with respect to the 
transverse variable x are possible only in the case 
when the amplitude of the field exceeds a certain criti­
cal value. Since one of the conditions for the existence 
of self-focusing states is (kz /kl > d 00) then localiza­
tion of the field in an optically less dense layer is pos­
sible only if 
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E(0);<>_1_( s(oo)-8(O) )'1' 
e;' e(O) 

If doo) - dO)« dO), the critical field E(O) is con­
siderably smaller than the characteristic field of the 
nonlinearity 1/ d/2 • 

We note here that in a homogeneous transparent non­
linear medium localized solutions exist for any value of 
the amplitude of the field on the plane of symmetry of a 
self-focusing waveguide. It is evident that in the linear 
approximation, Le., for fields with a vanishingly small 
amplitude, there are no localized solutions. The lower 
bound on the amplitude of the field corresponds essen­
tially to the condition of total internal reflection of the 
radiation propagated in a layer of the nonlinear medium 
which is optically less dense only in a sufficiently weak 
field. 

3. We consider the propagation of waves of the TE 
type along an inhomogeneous plasma layer taking into 
account the nonlinear properties of the plasma. The 
dielectric permittivity has the form 

411e' ( E') e(x E')=1---n x--, m%' En2. • (3.1) 

Here En is the characteristic field of the nonlinearity, 
n is the density of particles at the point x under the 
condition that the field at the given point is E(x). 

For example, let 

n (x, ::,) =n ( + ) exp [ - ( :. ) '] , (3.2) 

where the explicit form of n(x/z} is determined by the 
method of containment of plasma, E~ = 4Tmw 2/e 2 , 

while 1 is the characteristic size of the inhomogeneity. 
In the case of a homogeneous nonlinear medium 
(n = const) equation (1.1) leads to self-focusing distri­
butions of the TE-field in the plasma for (kz /k)2 < 1. 
Taking into account (3.1), (3.2) we have 

~:. + [ 1-Ap ( ~ ) e-"] ,w=O; 

(1-x.')A= (00: r, T=(1-x.')"'kl, 1')= (1-X.')"'kx, (3.3) 

E 
,w=-, 

En 
,_ 411e' (0) 

Olm ---n , 
m 

We consider the expression 

J'€=(: r+E'-AP( ~ ) [1-e-"]. (3.4) 

In the phase space (d,wjd1), ,w, 1) the surfaces de = const 
for \1) \ « T are close to the surfaces of the first inte­
grals of the homogeneous nonlinear problem, while for 
\1) \ » T they are close to the surfaces of the first inte­
grals of the homogeneous problem for free space. Fur­
ther we shall assume that the density of the particles of 
the plasma layer decreases monotonically from unity at 
x = 0 to zero as \ x \ - 00. Differentiating (3.4) we find 
that 

~ dp [ -I'] --=-A-1-e . 
d1') d1') 

(3.5) 

It is evident that for all 1) 2': 0 the derivative dde/d1) is 
nonnegati ve. 

Investigating the curves of the inflection points of the 
solutions of equation (3.3) for 

p=exp[ - (1')/T)'], (3.6) 

and it is speCifically for such a distribution of the parti­
cle density in the layer that the numerical calculations 
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presented below have been carried out, it can be shown 
that for 111 I < T In 1/2 A there exist three branches of the 
curve of inflection points: 

8 ±(11) =±[lnA- (1]/1:)2]"'. 

8 0 (1])",,0, 
(3.7) 

while for 111 I > T In 1/2 A there exists the single branch 
8 0 (11) == O. In phase space the surfaces JG '" 0 and 
JG '" const < 0 are closed (cf. Fig. 1), while the surfaces 
JG '" const > 0 are open along the 11 axis and for I 11 I 
» T Inl/2 A they are close to the surfaces of a circular 
cylinder 

( : )' +82=con~t>0. 

We investigate the boundary conditions 

8"~0=8(0), ~I =0. 
d1] "_0 

(3.8) 

(3.9 ) 

The values of 8( 0) belonging to the surfaces 
JG '" const > 0 are of no interest to us. Indeed, in view 
of the nonnegative nature of the deri vati ve d JG / d 11 as 
11 increases the integral curve 8 [11, 8 ( 0)] intersects 
the surfaces JG '" const with ever increasing values of 
the positive constant. As I) - 00 the integral curve 
emerges on the surface of the circular cylinder (3.8). 
In virtue of the fact that :Je( 00) > JG( 0) the am plitude of 
the established oscillations 8( 00) will exceed the 
boundary value of the field 8( 0). Let 8( 0) belong to 
the surface d6 '" const < O. In this case the integral 
curve will intersect the surface JG '" 0 at the point 
which is separated from the boundary plane by a dis­
tance <T In l/ 2 A. If at the point of emergence of the 
integral curve on the surface :Je '" 0 the values of 
(d8 / d 11, 8) turn out to be small, then the deri vati ve 
d:Je / d 11 will also be small. 

One should expect (and this is confirmed by results 
of numerical calculations), that as 11 - "" the integral 
curve will emerge on the cylindrical surface (3.10) cor­
responding to oscillations of the field with the small 
amplitude JG 1/2 (00). The solution of the boundary prob­
lem (3.9) leads to the determination of the amplitude of 
the established oscillations of the field at infinity as a 
function of the parameters (A, T) and of the amplitude 
of the field on the boundary plane 8( 0). Since in the 
case under consideration the field at infinity does not 
vaniSh, it is necessary to find such values of 8( 0) for 
which the amplitude of the oscillations of the field at 
infinity is minimal. The dependence of the amplitude of 
the established oscillations on the boundary field is 
shown in Fig. 2. For A '" 9, T '" 10 there eixts a sharply 
pronounced minimum for 8(0) ~ 1.78, which leads to 
8 2 ( "" ) ~ 0.007, and a weak minimum for 8( 0) ~ 1.48 
which leads to established oscillations with a consider­
ably greater amplitude. Figure 3 shows a distribution 
of the field corresponding to the minimal amplitude of 
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FIG. I. The integral surfaces 
of JC in phase space: I-the sur­
face JC = O. II-the surface JC '" 
const < 0; I-the pointd~/d7) '" 
0,7) '" T Inl> A. 
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FIG. 2. The dependence of 
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tions of the field at infinity on 
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symmetry plane of the plasma 
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FIG. 3. The distribution of ::~ the electric field across the 
plasma layer for A '" 9, T '" 10 
and HO) '" 1.78 
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established oscillations. For I) :s 10 the variations in 
the field correspond to oscillations near the curve of 
inflection points. However, for 1) :: 10 such oscillations 
are replaced by oscillations with a small amplitude 
about the zero value of the field. 

Thus, in spite of the fact that in Jhe propagation of 
TE waves along an inhomogeneous plasma layer there 
do not arise in the given case any self-focusing wave­
guide solutions, it turns out to be possible to construct 
solutions corresponding to a localization of a field of 
the TE type basically near the plane of symmetry of 
the inhomogeneous plasma layer with small established 
oscillations of the field at infinity. The dispersion rela­
tion which determines the longitudinal wave number as 
a function of the parameters of the inhomogeneous 
plasma layer and of the value of the field on the sym­
metry plane of the layer arises in seeking such a value 
of the field 8( 0) for which the amplitude of the field at 
infinity is minimal. Such a condition selects from the 
continuous spectrum of wave numbers kz only those 
which lead to the greatest permissible localization of 
the field in the region of the plasma layer. 

In the geometrical optics approximation Steinhauer 
and Ahlstrom[7] have shown that a plasma filament 
which is the most favorable for the capture of laser 
radiation is such a distribution of plasma density, de­
fining an inhomogeneous but linear dielectric permit­
tivity of the medium, which has a local minimum on the 
plane or axis of symmetry of the plasma. The analysiS 
carried out above has shown that the equations of non­
linear electrodynamics lead to solutions that correspond 
to a significant capture of radiation brought about by a 
redistribution of the plasma density in the field of a 
strong electromagnetic wave and leading to the forma­
tion of a local minimum of the density under conditions 
when the distribution of the plasma density in a weak 
field falls off monotonically as one recedes from the 
plane or axis of symmetry of the plasma layer (fila­
ment). 

4. When dissipations are taken into account the equa­
tions of nonlinear electrodynamics for waves of the TE 
type assume the form [9] 

rJ'8 +[1-~-Ap(--'!...)e-~']8=0, 
d1]' 8' "t 
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:~ =-l.Ap ( ; ) e-w'~'; 
(i-X.') JJ-'=M'/En', 1.=v.,jro. 

Here M is the energy flux along the inhomogeneity, 
list is the collision frequency. 

(4.1) 

We investigate the boundary conditions (3.9) supple­
mented by the condition J..L (0) = O. Qualitative analysis 
shows that in this case for Ys « 1 localization of a 
strong field turns out to be possible primarily in the 
region of the plasma layer. In this case at infinity there 
arise established oscillations of small amplitude about 
a weak nonzero value of the field. The absolute value of 
the energy flux as 1) - 00 increases and tends to a con­
stant value. For constant plasma density the energy 
flux J..L should grow indefinitely, and this also follows 
from results of the work of one of the authors[lO). In the 
case under consideration the plasma density falls off 
rapidly, and this limits the increase in the energy flux 
across the layer. Propagation of the TE waves along 
the plasma layer without a change in the amplitude of 
the field is maintained in the presence of dissipation at 
the expense of transverse energy fluxes J..L (± 00) directed 
from the external regions towards the symmetry plane 
of the plasma layer. The dispersion relation for such 
waves again arises from the condition of minimization 
of the field at infinity. Indeed, the asymptotic behavior 
of the solutions as 11) I - 00 is completely determined 
by the expression 

d'€(oo) = ( : )' +~'+ JJ-~~) . 

Just as before, the problem consists of finding the 
minimum of d'€( 00) as a function of the value of the am­
plitude of the field ~(O). For low values of an estab­
lished energy flux J..L ( 00) this is what leads to the weak 
oscillations of the field at infinity about a nonzero solu­
tion of the average field which is likewise small com­
pared to the value of the field on the symmetry plane of 
the plasma layer. Results of numerical calculations 
carried out for values of the parameters A = 10, T = 10 
and Ys = 0.001 point to the existence of a weak minimum 
in the oscillations of the field at ipfinity for ~(O) ~ 1.5 
and of a pronounced minimum at ~(O) ~ 1.95 (Fig. 4). 

In conclusion we note that propagation of waves of 
the TE type along a plasma layer the density of which 
in a weak field is constant has been studied by Dem­
chenko and Dolgopolov[ll). The distribution of the field 
across the layer investigated in this connection is such 
that the intensity of the electric field has a local mini­
mum on the plane of symmetry of the plasma layer and 
increases towards the edges, while outside the plasma 
layer it oscillates with a constant amplitude greater 
than ~(O). Solutions of such type also arise in the 
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FIG. 4. The dependence of 
8max(oo) (curve I), Jf(oo) 
(curve 2) andiS(oo), (curve 3) 
on IS(O). All curves correspond 
to the case A = 10, T = 10 and 
rs = 0.001. 

0.5 

1.5 2 "ro) 

problem which we have investigated above. However, 
our aim is the demonstration of solutions which corre­
spond to the most complete capture of the radiation by 
the plasma layer, since it is just solutions that are of 
the greatest interest in connection with one of the new 
directions of work on controlled thermonuclear synthe­
sis. 
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