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A theory that takes into account electron scattering from irregularities of the interface between the media is 
developed for the tunnel current in the threshold region. It is shown that if the initial states corresponds to the 
top of the valence band of the semiconductor, then the surface scattering alters qualitatively the threshold 
behavior of the current. In the case of a metal, the functional dependence of the current on the voltage is the 
same as in an ideal structure, but the coefficient can decrease appreciably. 

The elementary theories of phononless tunneling of 
electrons in solids presuppose that theelectron-mo
mentum components are conserved along the interface 
between the media. This means that scattering from 
the interface and in the volume of the barrier is neg
lected. Stratton's [lJ phenomenological allowance for 
the diffuseness of the surface in the case of a metal
dielectric-metal system shows that the change in the 
tunnel current reduces to a numerical coefficient that 
ranges from 1 to 4, depending on the diffuseness co
efficients of the two interfaces. It is obvious, however, 
that the role of the scattering processes can become 
more significant for threshold phenomena, when the tun
nel current J undergoes abrupt changes at a certain 
value of the voltage V o. 

The results of the investigations of the threshold 
characteristics of tunnel systems are reported in a re
cently published collection [2J. It is assumed in the 
cited papers that there is no surface scattering. 

In this paper we conSider the influence of the geo
metrical irregularity of the interface on the behavior 
of the tunnel current as a function of the voltage. We 
shall show that in a number of cases allowance for the 
surface scattering leads to a qualitative change in the 
threshold dependences of the current. In addition, fluc
tuations in the barrier thickness can greatly increase 
the current in the tunnel structure in comparison with 
the equivalent smooth barrier (by equivalent is meant a 
barrier whose thickness is equal to the average thick
ness of the real barrier). 

In all threshold problems, the final state of the elec
tron is characterized by a small kinetic energy E, and 
consequently by a large wavelength. We shall assume 
that the electron wavelength in the final state is much 
larger than the height of the surface roughnesses. 

The initial state in tunneling from the top of the 
valence band of the semiconductor also corresponds to 
a large wavelength. In tunneling from the metal, how
ever, the electron wavelength prior to passing through 
the interface is of the order of the lattice constant. 
The dimensions of the surface roughnesses are assumed 
to be large in comparison with the lattice period, and we 
can therefore use the geometrical-optics approximation 
to find the wave function in the region of space corre
sponding to the initial state of the electron. 

Let the barrier boundaries be described by the equa
tions z = U1(P), z = d + U2(P) , where p is a vector in the 
(xy) plane, d is the average thickness of the barrier, 
and U1,2(P) are random functions with zero mean value 
and identical, by assumption, binary correlation func
tions W(p). In the regions -<Xl < Z < U1(P) (I) and d + U2(P) 
< Z <"" (III) the electron is described by effective masses 
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m1 and m3, and the edges of the bands are located at the 
pOints -Uo and 0 (Uo >0), respectively. In region II in
side the barrier, we neglect the electric field F, a pro
cedure justified if the parameter me(eFd2)2 is much 
smaller than the distance A to the boundary of the for
bidden band of the dielectric (e and me are the electron 
charge and mass). 

The traditional approach to tunneling theory is to re
gard the dielectric region as a potential barrier for the 
electrons. This model contains two parameters, the 
barrier height A and the electron effective mass m2, in 
terms of which the transparency coefficient and the tun
nel current is expressed. It is easy to show, however, 
that in the threshold region we can obtain the same re
sults without resorting to these model concepts. 

Indeed, the damping K of the wave function in the z 
direction is determined by analytically continuing the 
dispersion law that holds in the dielectric into the region 
of complex pz: 

Imp,=x, E (PII' p,) =E. 

The energy pertains in this case to the forbidden band. 
We assume that the given value E belongs to only one 
branch of the spectrum, i.e., there is no "intersection" 
of the forbidden bands of the dielectric. The main con
tribution to the tunnel current is made by electrons 
corresponding to the wave functions that attenuate least 
along the coordinate z. The quantity K, regarded as a 
function of PII (at a fixed energy), can therefore be ex
panded near its minimum: 

x (PII, E) =x,(E) +const pi!'. 
For Simplicity we assume the minimum to be isotropic 
and located at PII = O. In the Schrodinger equation 

for the envelope function I/! we can carry out expansion 
in the vicinity of the point 0, 0, Ko(E) in the Brillouin 
zone. 

If the barrier is broad enough (exp[Kod]» 1), then we 
can confine ourselves in the expansion to the first power 
of the operator a/az (the diffraction approximation). The 
equation for the wave functions that attenuate in the di
rection of positive or negative z is 

88(0, xO)(~+x) 1jJ _ ~ 8'8(0, xo) ~ 1jJ = O. 
8x 8z - 0 2 8p If P ( 1) 

It is recognized here that the energy of the tunneling 
electrons inside the barrier can be regarded near the 
tunneling threshold as coinciding with the bottom of the 
conduction band in region III (Le., equal to zero for our 
choice of the origin). 
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The Green's functions of (1) are equal to 

( bP') Z-I exp 'Fx,z - ""2? ' 

This enables us to explain the meaning of the parame
ters m2 and ~ in the potential-barrier model. For the 
case of an isotropic mass we obtain 

-(2 A)'/.· -I 8'8(0, x,) "'0- m2Ll , mz = --:-,-::-'-
8pu' 

with b = Ko. The wave function and the current density 
should remain continuous at the boundaries of the re
gions. Under the assumptions made, this implies the 
requirement that I/! and m- 181/!/8z be continuous. 

The complete wave function inside the barrier is 
represented by a linear combination of the solutions 
of Eqs. (1). However, the assumption that the barrier 
has low transparency makes it possible to retain, with 
exponential accuracy, only one term of this combination 
in order to find the wave function in the region I. In 
other words, it is necessary to find the solution in the 
region -0() < Z < U1(P) by using the Huygens principle (the 
wavelength is. smaller than the roughness), and to as
sume the barrier to be perfectly impenetrable. 

We normalize the wave incident on the barrier by the 
condition I/!inc= exp(i(Po 'p+qz)], where Po is the tangen
tial component of the momentum, 

q'=2m l (U,+E) -p,'~2mIU,-po', 

inasmuch as E« Uo in the threshold region. To find the 
reflected wave, we consider a barrier section that is 
small in comparison with the characteristic diameter or 
confine ourselves for Simplicity to the case of gently
sloping roughnesses with I Vu(p)1 «1. Then, accurate 
to terms of order Vu2, we obtain the reflected wave in 
the form 

I/lret=(iqm2+m,x) (iqm,-m,x)-'exp[ip,p-iq(z-2u(p»]. 

The complete solution in region I is 

I/l=I/linc+I/lref' 

In the same approximation, the wave function inside the 
barrier can be expressed with the aid of the Green's 
function: 

S J.I,(p') [ ,x(p_p')2 ] 
I/l(p,z)= -z-exp -x(z-u,(p »- 2(z-u,(p'» ds, 

(2) 
S J.I,(p') [ ,x(p_p')2 ] 

. + Z-d-U2(p') exp -x (Z-d-U2(p »- 2(z-d-u,(p'» ds, 

(the subscript 0 of Ko will henceforth be omitted; S1,2 
are the barrier boundaries). 

The condition eKd » 1 enables us to neglect the sec
ond term of (2) at z - U1(P). The value of the "source 
density" jJ.1 is expressed in terms of the derivative 
8,,!/ 8z outside the layer and is equal to 

J.I,=-exp[i(p,p+qu,(p»] 1 + __ 1 • 
x [ iXm]-' 
:It qm, 

The "source denSity" jJ.2 at the second boundary is de
termined by the requirement 81/!/8z = 0 at z = d + U2(P). 
This statement is a consequence of the threshold ap
proximation, namely, when the total energy in region I 
tends to a value corresponding to the bottom of the con
duction band in region III, the kinetic energy on the right 
of the barrier tends to zero. The electron wavelength 
corresponding to the z-component of the momentum then 
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increases within limit, which is equivalent to vanishing 
of the normal derivative of the I/! function. Hence 

J.I,= S J.It~') e~p[ -x(d+u,(p')-II.,(p'» x (1'2:1") , ]d'p'. 

The wave function in the region III can be obtained 
from its value z = d + U2(P) on the surface, which is de-
termined by Eq. (2), using the standard methods of po
tential theory. Leaving out the intermediate steps, we 
present an expression for the averaged partial current 
in the case of a Gaussian distribution of the random 
functions Ul,2(P): 

<1 (k»= .,,(m,q)'e-'" 
• Po, n'm,d[ (m,q)'+,(rn,x)'] 

x f (k'-p')"'exp[ - X(p;;')' +{2x'-q')W(0)+x'W(pl' (3) 

+(x'+q')W(p')+i(p,p'-pp) JdpdpdP'; 

k2= 2m3E. In order of magnitude we have W(O)= WO-H2, 
where H is the characteristic height of the roughnesses. 
The wavelength in region I and II is much smaller than 
H, i.e., the inequalities KH, qH »1 hold. The integrals 
in (3) can therefore be calculated by the saddle-point 
method. 

We consider the case when W(p) has a quadratic be
havior as p - 0, namely W(p)-W(O) =_yp2, where y>O 
(it is easy to show that W(p) increases as p - 0). The 
factors containing W in the integrand of (3) take the 
form 

exp (4x'W.) exp [-oyx'p'-oy(x'+q')p"]. (4) 

The first factor in (4) describes the barrier average
transparency increase due to the thickness fluctuations. 
It is equal to (exp[-2K(U2-U1)]) and should, of course, 
be smaller than e2Kd• This limitation has a simple 
meaning. We describe the thickness fluctuations by a 
Gaussian ensemble. It is clear at the same time that 
d + U2-U1 is always larger than zero (the local thickness 
of the film is positive). Consequently, the values of 
U2-U1, which play an important role in the calculation of 
the mean values, should lie in the region of applicability 
of Gaussian statistics. From this we can readily derive 
the criterion 2Kd-4K2Wo »(8WO)1/2K• In the opposite 
case the fluctuations are so strong that the function is no 
longer a tunnel junction, since the entire current is de
termined by sections of practically zero thickness. The 
second factor in (4) describes effects connected with 
nonconservation of the tangential momentum • 

In the integral of (3) we have competition between two 
characteristic dimensions in p and p', namely (d/ K )1/2 
(Fresnel zone) and (K2yt 1/2 (length over which coherence 
of the I/! function is destroyed by scattering from the 
surface). It follows therefore that the results will de
pend significantly on the ratio of these dimensions, Le., 
on the value of the parameter YKd. In addition, a dis
tinction should be made between tunneling to the bottom 
of the conduction band of region III from the Fermi level 
of the metal and from the top of the valence band of the 
semiconductor. Thus, a number of possibilities arise. 
We present below the final results for the total density 
J of the tunnel current at zero temperature (Le., in the 
region kT« e(V- Vo»: 

?-... 8E -, 
1= (2n)-' S <;.(p,k»d'p=(2n)-· f deS <f. (p,k» (ap:-) dp.. (5) 

, 
1. Tunneling from the metal. If YKd« 1, the non-
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conservation of the tangential momentum can be neg
lected. The current differs from the corresponding 
value for an ideal barrier only in the factor exp( 4K2WO)' 

The tangential momentum is conserved in practice 
likewise in the case YKd» 1 if the electron momentum 
to the right of the barrier greatly exceeds the uncer
tainty of the momentum due to the scattering, i.e., if the 
condition V - Vo »4K2y/m3 is satisfied. Thus, in the re
gion V - Vo« K/dm3, YKd« 1 we have 

tbe semiconductor than for the metal, inasmuch as in 
the metal the region of integration with respect to Po is 
always much larger than YK2( Y - Vu2 « 1, K - PF), i.e., 
than the tangential-momentum uncertainty due to scat
tering from the surface. In a semiconductor this inte
gration region is of the order of ml(V - Yo) and can be 
either larger or smaller than YK2. 

Thus we see from (6}-(12) that the behavior of J(V) 
in the metal, in the immediate viCinity of the threshold 

(6) voltage, remains unchanged when surface scattering is 
taken into account, in the sense that J - (V - VO}5/2. How
ever, the coefficient in this relation can contain y, a where PF is the Fermi momentum in the metal and 

D=exp(-2Kd+4K2Wo). In the region V-Yo »max[K/dm3, 
4K2y/m31 we have 

1= 4l'2 -==-e_m_,m_'_'x_P_F --D(V-Vo)'/'. 
3n' l'm, d(m,'x'+m,'p/) 

(7) 

The scattering changes the value of the current only 
in the case when YKd» 1, V - Vo «4K2y/m3; 

1= 4l'2 em,l';;;, m,'PF D(V-Vo)'/'. 
15n' "(xd! (m,x) '+ (m,PF)'j 

2. Tunneling from the top of the valence band of the 
semiconductor. Far from the threshold, i.e., at V - Vo 
»max[K/m3d, 4K2y/m3l. we have 

emzZ 

I=-==-D(V-Vo)'. 
2nl'm,m,xd 

(8) 

(9) 

At smaller excesses of the voltage over the threshold, 
the results depend strongly on the value of the parameter 
yKd: at YKd«l, V-Vo«4YK2/m3 we have 

l=el'm,m,m,'(48n,,(x') -'D(V - Yo) '; 

at Kyd« 1, 4K2y/m3« V - Vo «K/dm3 we have 

I=el'm,m,m,'! 4nx'(m,+m,) j-'D(V- Yo)'; 

and at YKd» 1, V- Vo« 4K2y/m3 

l=el'm,m,m,'(96nd,,('x') -'D(V - Vo)'. 

(10) 

(11) 

(12) 

The number of possible limiting cases is larger for 

1253 SOy. Phys.-JETP, Vol. 38, No.6, June 1974 

parameter that characterizes the scattering. In this 
case the current is much smaller than in an ideal 
structure. In tunneling from the valence band of the 
semiconductor, the deviation of the surface from ideal 
changes the threshold behavior of the current qualita
tively, namely (V - VO}4 instead of (V - VO)3. 

We note finally that we have assumed throughout in 
this paper that direct transitions are possible. This is 
true if the structure of the bands to the left and to the 
right of the barrier is such that the transition does not 
call for a large change in the tangential momentum (on 
the order of the reciprocal-lattice vector). It is obvious 
that in the case of indirect transitions the surface scat
tering leads to the appearance of "tails" of the current 
in the region below threshold. The value of the below
threshold current is obviously determined by the value 
of the Fourier component of the function exp(W(p)- W(O)} 
for momenta on the order of the critical change of the 
tangential momentum. 

lR. Stratton, Phys. Rev. 136A, 837 (1964). 
2Translation in: Tunnel'noe yavlenie v tverdykh telakh 
(Tunneling in Solids), Mir, 1973, Chaps. 4,5,8, and 13. 
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