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Formulas are obtained for the critical temperature of a superconducting sample consisting of 
alternating thin (d <~o) films of two metals that have different electron-electron interaction constants 
and different electron densities. Under the same conditions, equations of the Ginzburg-Landau type 
are obtained for the order parameter. The inhomogeneity of the sample leads to the onset of effective 
anisotropy of the superconducting properties, as a result of which the latter are described with the 
aid of tensorlike quantities. 

A characteristic feature of the superconducting state 
of metals is the macroscopically large correlation 
length of the superconducting electrons, ~o ~ 10-4 cm. 
Consequently, in systems whose microscopic properties 
vary over distances smaller than ~ 0, specific effects 
are produced as the result of nonlocality over distances 
on the order of ~o. An example of such a system can be 
a multilayer sandwich, consisting of different supercon
ducting films with thicknesses smaller than ~o. The 
mutual influence of the films makes it possible to re
gard this system as a new superconductor which is 
generally speaking anisotropic, with a certain average 
critical superconducting-transition temperature. 

The effects of mutual penetration of the supercon
ducting properties (proximity effects) has been the sub
ject of a number of studies [1-5), in which different 
models of layered structures were conSidered. De 
Gennes [l), who initiated the investigations of the prox
imity effects, has proposed a very simple model, con
stituting a junction of two superconducting films differ
ing only in the electron-electron interaction constants. 
Asa result he obtained a formula relating the critical 
temperature of a two-layer superconductor with the 
critical temperatures of each of the films separately, 
and elucidated the character of the averaging of the in
teraction constant. 

From a more general point of view, interest attaches 
to a study of the influence of the proximity effect on the 
magnetic properties of an inhomogeneous superconduct
ing system, Le., a clarification of the character of the 
spatial variation of the order parameter t:. (r) in the 
presence of magnetic fields and currents. It is clear 
that the dimensions of the system should be large in 
comparison with the characteristic linear superconduc
tor parameters A(T) and ~(T); under this condition, 
the behavior of systems in a magnetic field will be ana
logous in many respects to the behavior of a bulky 
homogeneous superconducting sample. 

We have investigated in this connection the super
conducting properties of a sandwich consisting of a 
large number of alternating flat films of two different 
metals and constituting thus a macroscopic sample (in 
comparison with 11. and ~). It is assumed that the films 
differ not only in their interaction constants, but also 
in the electron densities (Le., in the Fermi energies). 
We consider the temperature region near the critical 
temperature Te (see Sec. 1 of the present article), so 
that we can obtain a closed system of equations of the 
Ginzburg-Landau type [6) for the order parameter. 
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1. CRITICAL TEMPERATURE OF SUPERCONDUCTING 
TRANSITION 

The problem of finding the critical temperature of an 
inhomogeneous superconductor reduces mathematically 
to a solution of the Gar 'kov linear integral equation [7) 

for the order parameter t:.(r): 

t1(r)=lg(r)IT,ES dV'G(r,r'; w,)G(r',r; -w,)t1(r'), (1) 

where g( r) < 0 is the interaction constant; Wc 
= 1TTc(2n + 1), n = 0, ±1, ±2, ... ; G(r, r'; wc) is the 
Green's function of the electrons in the normal metal 
and satisfies the equation 

(p'/2m-/l(r)-iw,)G(r, r'; w,)=6(r-r'). 

Here p = -iV (Ii = 1), and Il (r) is the local value of the 
Fermi energy. In the model in question, g = g(x) and 
Il = Il (x) (the x axis is perpendicular to the layers) 
are specified in the following manner: 

kd<x<kd+dh /lex) =/l,=pF1'l2m, g(x) =g" 

kd+d,<x< (k+l)d, /lex) =/l,=pF2'/2m, g(x) =g" 

where d is the period of the layered structure 
(d « ~ 0), k is the number of the layer, while d land 
d2 = d - d 1 are the thicknesses of the alternating films. 
For the sake of argument, we assume that III > 1l2. 

The critical temperature Tc is defined as the maxi
mum eigenvalue of the integral equation (1). Substituting 
in (1) the spectral expansion of the Green's function 

G(r,r'; 00,)= E¢,(r)¢,(r')/[g(A)-iW,J, 
, 

(p'/2m-/l(x) )¢,(r)-g(A)¢,(r) 

and separating the free motion of the electrons with 
momentum p along the layers, we obtain after summa
tion over Wc 

t1(x)=lg(x)1 S dx' t1(x') S (~~,SS de de' F(e,e',T,)Xp,p;.,.'(x,x'), (2) 

where 
, th(e/2T)+ th(e'l2T) 

F(e,e ;T)= 2(de') 

Xv,P';"" (x, x') =fp. (x) f p.' (x') f;'.' (x) fp'" (x'), 

and the wave functions of the electrons fpE(x) satisfy 
the equation 

[ (P.'+p') I2m-/l (x) lfp' (x) =ef .. (x), (3) 

The investigation of Eqs. (2) and (3) can be carried out 
by relatively Simple methods in the case when the re-
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flection of the electrons from the layer interface can be 
neglected ll . The corresponding solution of (3) is (kd 
< x < (k + l)d) 

! (x) = exp [iaxA (/t (x» 1 ( (') ( ) -'a",d, 
.. (2nv (x) )'/' x' x e 

0<p2<2m /t" 

! .. (x) = (2Id,) '/'x:') (x)sin(x-kd)A(/t,) if 2m/t,<p'<2m/t" 

/p,(x)=o if p'>2m,l" 

where 

(4 ) 

mv(x) =A(/t(X» = [2m(/t(x) +e) -p']"', i=A(/t,) -A (/t,), a=±1, 

x:') (x) =1, x;') (x) =0, kd<x<kd+d" 

xi'\x) =0, x:') (x) =1, kd+d,<x< (k+1)d. 

We note that at 0 < p2 < 2mIJ.2 the energy spectrum of 
the electrons is continuous, and the corresponding wave 
function in (4) is normalized to a o-function with re
spect to the energy E. At 2mIJ. 2 < p2 < 2mIJ. 1 and d2 
» 1/.\1 the electrons can be regarded as trapped in the 
layers kd < x < kd + d 1, and consequently can be as
sumed to have a quasidiscrete spectrum: 

en(p) =(nv,ld,)(n+a(p», n=O, ±1, ±2, ... 

a(p) = {d,A,!n} , 0<a..;;1, 

where the symbol {x} denotes the fractional part of x. 
The wave function of these electrons is normalized to 
the 0 symbol with respect to the quantum number n, 
and the integration with respect to the energy, which is 
contained in formula (2), is replaced in the case of 
2mIJ. 2 < p2 < 2mjJ. 1 by summation over n. 

Using the equation of the BCS theory[8] to determine 
the critical temperature of a bulky superconductor 

"D 

S e de 
1=lg(x) Iv(x) th 2T,(x) 2;-

-"D 

(WD is the Debye temperature in energy units) and 
taking into account the completeness relation for the 
wave function fpE (x) 

S de!p;(x)!p,(x')=I)(x-x'), 

we transform Eq. (2) in the following manner: 

S dx'Q(x,x')~(x')=+v(x)~(x)lnT'~~) , (5) 

where 

Q(x,x')= J (:~2 Sf de de' $ (e, e'; T,)Xp,p;",' (x, x'), 

$(B, e/; T)=F(e, e' ; T)-F(e, e; T). 
(6 ) 

Substituting in (6) the expressions for the wave func
tions (4) and discarding terms of oscillate over the 
wavelength of the electron .\ F «d, we obtain the ex
pliCit form of the kernel Q(x, x'). It is the sum of two 
terms, Q(c) + Q(d), corresponding respectively to the 
continuous and discrete spectra: 

Q=Q(d+Q,d~, 

Q") (x, x') = J ~~ S J de dw Cl> (e, e-w; T,) 
O<p~<2.mlLl ( ) 

x ~ Ya(X)Y:(x') , , -_,-
~ (2n)2v(x)v(x') exp (taw (k-k )dv (x», (7) 
a=±1 

Q'" (x, x') = J _d_'P_) S de ~ <I> ( e, e-~; T,) 
,,.,,,,<p'<'rn., (2n '~ d, 
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~ X~m) (xht) (x') (nnd { x }) ( nnd { x' }) x cos - - cos -- -
m nv,d, d, d d, d . 

Here and henceforth, the superior bar denotes averag
ing over x within the limits of the period d of the 
layered structure; 

-,- 1 (d' d') v- (x)=- -+- , 
d VI V2 

k= [: ], k'=[~] , 
the symbol [x] denotes the integer part of x, and 

Ya(X) =x,'» (x)exp (iaw~{-=-}) 
, v, d 

+x;') (x)exp (iaw v~ ({ : } -1) +iaw dv-' (x) ) , 

kd<x«k+1)d, Ya(x+d)=Ycr(x). 

Since the system in question is macroscopically 
homogeneous, and there is neither magnetic field nor 
current, the coordinate dependence of A (x) is deter
mined completely by the coordinate dependences of 
g(x) and jJ.(x). It follows therefore that the solution of 
(5) should be sought in the c lass of functions A (x) 
= A (x + d) that are periodic in x. Then the integral 
term contained in (5) can be transformed as follows: 

(""+t)d d 

S dx' Q (x, x') ~(x') = ~ J dx' Q (x, x') ~ (x') = J dx' QR (x; x') ~ (x'), 

.' .'d u 

where 

QR(X,X')= ~Q(x,x'+k'd). 
" 

Let us investigate the properties of the "reduced" 
kernel QR(x, x'); to this end we sum in (7) over k, us
ing the Poisson formula: 

~ - 2n ~ ( 2nI) ~exp(iawdv-'(x)k)=-=- ~ ~ w--=- . 
• dv-' (x) b_oo dv-' (x) 

(8) 

Combining formulas (8) and (7) and integrating in (7) 
with respect to w, we note that the term with l = 0 
drops out of the sum over l (since <l>( E, €; T) = 0), and 
the expression for Q(c) acquires a structure similar to 
Q(d).' In particular, Q(c) and Q(d) contain integrals of 
the type 

+~ 

l(wn) = S de II> (e, e-wn; T,), 

It is easy to verify that the integrals I( wn), and with 
them also the kernel QR(X, x'), are asymptotically 
large (~ln(vF/dTc) ~ (In ~o/d)>> 1). Thus, the 
kernel T(x, x') is logarithmically large in the class of 
functions that are periodic in x. This makes it possible 
to carry out all the subsequent calculations with logar
ithmic accuracy in the parameter d/~o «1. In the case 
when the dimensionless coupling constant g(x)v(x) 
does not vary too strongly on going from one layer to 
the other (Le., [In (Tc/Tc (x)) I « ln (~o/d)), Eq. (5) 
contains in first-order approximation only the integral 
operator 

• S dx' ~O(X')QR(X,X')=o. (9 ) 
o 

Taking into account the orthogonality of the functions 
fpE (x) contained in the kernel QR(X, x' ), we can show 
that the only solution of (9) is Ao(X) = Ao = const. The 
condition under which the next-approximation equation 

f dx'QR(X,x')~,(x')=+v(x)~oln T~~) 
o 
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can be solved is that its right-hand side be orthogonal 
to the solution Ao of the homogeneous equation, Le., 

i S· T. T. 'T. 1 T. 0 (10) _ d.zv(z)ln---"(z)ln--=c,,,,ln-+c.,,. n-= , 
. d T.(z)' T.(z) T.. ToO o .,. _ 

where c, = d,/d and C2 = 1 - Cl are the concentrations 
of the superconductors. Relation (10) is the sought 
equation for Tc' Solving it with respect to Tc ' we ob
tain 

To clarify the physical meaning of this result, we 
turn to the BCS-theory formula for the critical tempera
ture: 

T.-COD exp(-2/Igl,,), T.(X)-coD(x)exp(-2/Ig(x) Iv(x». 

Neglecting the logarithmically insignificant differ
ences between the Debye f17equencies, we obtain 

T. (-1- ''(X») 
v(x)ln T.(x) =2 Ig(x)1 -1giV =0, 

whence 

1 1 ( 1 ) 
~= ,,(x) Ig(x)1 . 

Thus, in the case lIn (Tc/Tc (x))1 « In(~o/d) an 
independent averaging of the quantities g-'(x) and 
v(x) takes place in the superconducting system. It ap
pears that this conclusion is general in character and 
does not depend significantly on the shapes of the layers. 

In the opposite limiting case (e.g., if g2 - 0 or g, 
- 0) the logarithmically exact solution of (5) is the 
periodic function 

~,x:')(X)+~2X:') (x) (kd<x«k+1)d, ~'*~2)' 

The integral equation (5) is then transformed into a 
system of homogeneous algebraic equations in to, and 
to2, and the conditions under which it can be solved is 
the formula for the determination of Tc. In particular, 
as g - 0 (I g,1 » I g21) the expression for Tc takes the 
form 

(11) 

where 

If g, - 0 (I g21 » I g,l) it is necessary to make the 
substitutions Tcl - Tc2' v,- 112, C2 - C" in (11). 
Obviously, at v, = V2 = v we have II, = II' = II; thus, the 
relation (11) is a generalization of the known McMillan 
formula[5] for metals with different Fermi energies. 

2. THE GINZBURG-LANDAU EQUATIONS 

The general scheme for the derivations of the Ginz
burg- Landau equations for the investigated model is 
perfectly analogous to the known procedure for expand
ing the Gor'kov equations in the order parameter to 
(see, e.g.,[7]) with account taken of the expansion terms 
nonlinear in to. Use is made here of a gauge-invariant 
formulation of superconductivity theory, with the super
fluid velocity vs separated in such a way that the order 
parameter is real. The integral equation obtained for 
to as a result of the expansion is 

1015 Sov. Phys.-JETP, Vol. 38, No.5, May 1974 

~(r)=lg(x) IS dV' Q(r;r')L\(r')+lg(x) lOW), 

Q(r, .') =T ~ G(r, r'; co)G(r', r; -co)cos(2p,(r) (r-r'», (12) 

p, (r) =mv,(r) =\/, Vx-eA(r). 

The symbol O(to 3) denotes here the term nonlinear 
(cubic) in to, )( (r) is the phase of the order parameter, 
and A( r) is the vector potential of the magnetic field 
(curl A = H) and is taken into account, as usual[7 l , in 
the "quasiclassical" approximation, To obtain a gauge
invariant system of equations, it is necessary to sup
plement the integral equation (12) by the cundition that 
to be real: 

T ~ S dV' ~ (r')G(r, r'; co)G(r', r; -co)sin(2p.(r) (,-.'» -0 (13) 
w 

and by a relation for the connection between the current 
j and the order parameter: 

j(r)= ~ T ~ IS dV, dV 2 ~(r,)~(r,)sin(2p.(r,) (r,-r,»· 

(14) 
x (p-p')G(r, r,; co)G(r" r,; -co)G(r" r'; co) ,'_,. 

It is convenient to carry out the subsequent calcula
tions by transforming Eq. (12) in the same manner as 
Eq. (2): 

1 T 
S dV' Q,(r, r')~(r') = T~(r)v(x)ln T,(x) _O(~3), (15) 

where 

Q,(r, .')=K,(r, r') cos(2p.(r) (r-r'», 

~~ d2pd2p' K (r 1") = -- e;(p-p'Xp_p'). 
o , (2n)< 

x ~~ dsds'CfJ (8; s'; T) Xp , p'; ,.,' (x, x'), 

where p is the component of the vector r in the yz 
plane. 

(16) 

We note that the procedure customarily used in the 
derivation of the Ginzburg-Landau equations, that of 
expanding to (r) and )( (r) in the gradients of these 
quantities, cannot be applied directly to (15) because, 
as already noted above, the inhomogeneity of the system 
over distances on the order of d « ~ 0 generates a rapid 
variation of the functions to ( r) and )( ( r) along the x 
axis. Since, however, the principal physical interest 
attaches to relatively slow changes of to and )( (over 
distances of the order of ~(T)) and not the small scale 
oscillations of these quantities, which are connected 
with the initial inhomogeneity of the system, it is ad
vantageous to establish the hierarchy of the character
istic scales of the functions that enter in (15). Namely, 
the largest scale over which a smooth variation of to 
takes place is the effective coherence length near Tc: 
~(T)~ ~oh(T,= (Tc - T)/Tc« 1). The radius of the 
kernel Qo, the order of magnitude of which is ~o 
~ vF /Tc « ~ (T), is the next smaller characteristic 
scale; finally, the dimension d of the inhomogeneity of 
the considered system is the smallest linear parameter: 
d « ~o « ;(T). Since the spatial dependence of to(r) 
has the character of small-scale oscillations along the 
x axiS, "modulated" by a smooth function of the coordi
nates, it is convenient to separate formally the depend
ence of to on n = [x/d] and ~ = {x/d}: 

~(r)"';~(x, p)=L\(n; s; pI. 
The dependence of to on nand p is determined only 

by the external conditions, and is quite slow in the 
scale of ~ 0 (and all the more of d). This circumstance 
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enables us to represent ~ in the form of a sum of a 
slowly varying function ~ (n, p) and a small rapidly 
oscillating (over distances on the order of d) term 
15 ~ (n, ~; p)" 

~(n, s; p)""~(n, p)+M(n, s; pl. 
In the first nonvanishing approximation we have 

S dV'Qo(r,r)M(n',S';p')"" S dV'Qo(r,r)M(n,s';p) 

d 

= J dx'Q(x,x')M (n, 6'; p) = I dX'QR(X, x')M (n, x'; p), 

where 

Q(x,x')= S dp'Q(r,r'), 

and account is taken of the fact that the dependence of 
15 ~ on nand p, like the ~ (n, p) dependence, is weak 
in the scale of the radius of the kernel Qo. 

Since the kernel QR is logarithmically large (in the 
class of functions periodic in x) (see Sec. 1), Eq. (15) 
takes in the prinCiple approximation the form 

J dx' QR(X, x')M(n,x'; p) "=' +v(x)~(n,p)ln-T_ (17) 
, ~~ 

-0 W) - S dV' Qo (r, r'M (n', p'), 

Le., it is an inhomogeneous integral equation for Ii~. 

In the condition for the solvability of (17) 

f T - S --
2~(n,p)v(x)ln T,(x) =0(~3)+ dV'Qo(r,r')~(n',p') 

we can replace, with the assumed degree of accuracy, 
the slowly-varying "step" function ~ (n, p) by the 
"smooth" function ~(r): 

i T--S---~(r)v(x)ln-(-) =0(~3(r»+ dV' Qo(r,r')~(r') 
2 T, x ' 

(18 ) 

where 

Q,(r, r') =K,(r, r') cos(2p.(r) (r-r'», 

--- d'p d'q 
Ko(r,r')= S --S--exP(iq(P-p'»S S dedw 

(2n)' (2n)' (19 ) 
O<1,2<Zmll1 

( pq ) 2(v-'(x»' , --
XeD e,e---w;T ( cos(w(x-x )v-'(x». 

m 2n)'d 

In the derivation of (19) we used the fact that ~(r) 
varies over distances ~H T), and consequently the 
characteristic frequencies w ~ Tc « VF/d. We note 
that a contribution to the integral with respect to p in 
(19) is made only by the interval 0 < p2 < 2mjJ. 2; this 
corresponds phYSically to the fact that the electrons 
"trapped" in the layer kd < x < kd + d 1 make no con
tribution to the essentially nonlocal properties of the 
superconducting system. Taking the definition of Tc 
(see (10)) and the condition T « 1 into account, we 
transform Eq. (8) in the following manner: 

J dV'Qo(r,r')l\(r')++';v(X) ~(r)+O(~'(r»=O. (20) 

Equation (20) contains only slowly varying functions 
of the coordinates ~ (r), and therefore the integrand in 
(20) can be expanded in powers of V ~ ( r) and ps' Con
fining ourselves to the quadratic terms of the expansion, 
we have 

S dV'Qo(r,r') ~(r')=L.~(V.V~-4p •• p.~)~(r), (21) 

where 

is ~ L.~= 2 dV' K,(r, r') (r-r').(r-r')~. (22) 
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The calc ulation of La f' with the aid of formulas (22) 
and (19) is elementary and yields 

L.~= (2nI1T,') -II.~, 11=8n'/7~(3), 

where laf' is a diagonal tensor with components 

1",,= S d'p--
--(lr'(x»-' 
(2n)' ' 

O<pl<2TnJ'1 

d'p --S --v'(v-I(x» 
(2n)' y . 

O<p2<2mjlz 

(23) 

As is well known[7], we can neglect the spatial de
pendences of ~ and X in the term of (18) cubic in ~, 
and consider this term in the local approximation: 

OW(r»"='- 2~ v~~) l\'(r). 

A similar procedure of separating the "smooth" 
functions ~ and X can be carried out also in (13) and 
(14). The condition (13) that the order parameter be 
real reduces in this case to the current-conservation 
law 

L.~ V .v,~~'(r) =0, 

and the connection between (14) the current and Vs 
takes the form 

(24) 

(25) 

It is easily seen that Eqs. (20) and (24) are respec
ti vely the real and imaginary parts of the equation 

{La, (V+2ip.). (V+2ip.) ~+1/2V (~) [,;-~' (r)/I1T,'l) ~ (r) =0, (26) 

and form together with (25) a complete system of equa
tions, which are a generalization of the usual Ginzburg
Landau equations [6]. It can be verified that Laf' is pro
portional to liaf' in the homogeneous case (v(x) = v 
= const). Thus, the superconducting properties of the 
considered layered structure exhibit an effective aniso
tropy described by the tensor laf" 

The physical meaning of the quantities in (25) and 
(26) becomes clear if (26) is rewritten in the more com
plete form 

[8.~ (T) (v+2ip,). (v+2ip,)~+1-~o -'~' (r) M (r) =0. (27) 

Here ~o = ~o(T) = Tc frjT is the equilibrium value 
of the order parameter in the absence of external fields 
and currents, while the tensor Eaf' differs from Laf' 
only in the coefficient 

8.~ (T) = (n~o'v (x» -II.~. 

Simple calculations show that in the homogeneous 
case we have :2a f'(T) - ~2(T)liaB' where HT) is the 
effective coherence length near 'l'c: ~2(T) = vF/6~~. 
It follows therefore that Eaf' has the meaning of the 
tensor of the squares of the coherence length. 

Using Maxwell's equation curl H = 41Tj /c and rela
tion (25), we can introduce in similar fashion the tensor 
of the squares of the magnetic -field penetration depth: 

c2 -I 
Aa, (T) = --I., 

i6e',; 

and the Ginzburg- Landau tensor parameter 

c[ -'I _I ".,= 4e I1 V (x) 1 'T,I.,. 

Direct calculation of the components of the tensor 
laf' in accordance with formulas (23) leads to expres-
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sions that contain a rather complicated dependence on 
vF1, vF2, c land cz, and are too complicated to present 
here. It is easy to show that at ill > ilz we have Lxx 
> lyy, lzz, and consequently KXX < Kyy ' K;z.z, The 
asymptotic form of la(3 at E = (ill - il2); il2 « 1 is 3) 

, 3 
1",,=~VF2' (1+-C I 8), 

6n 2 

1 .. =I,,=~V823 (1-~c.Y"~). 
6n 2 

(28) 

Thus, if the properties of the superconducting films 
are such that K is near its "critical" value 1/../2, then 
in principle there can be realized a situation in which 
the sandwich behaves as a type-I superconductor in a 
direction perpendicular to the layers and as a type-II 
superconductor in the plane of the layers. In particular, 
an intermediate state with normal and superconducting 
layers parallel to the film in the sandwich can be pro
duced in such a superconductor, since the surface 
energy of the interface between the phases is positive 
in this case. At the same time, if the magnetic field is 
perpendicular to the layers, quantized Abrikosov 
vortices can appear[G) and a mixed-state structure can 
consequently be produced. 

As seen from the foregOing, a distinguishing feature 
of the considered system 4 ) is the noticeable anisotropy 
of its magnetic properties. This aspect of the behavior 
of a layered-periodic superconductor can be greatly en
hanced by interlining the superconducting films with 
dielectrics, and the latter can be made of the same 
material in this case. A detailed theoretical calculation 
of this system is now underway, and we note here only 
some physical features of this case. The presence of 
multiple reflection of the electrons from the dielectric 
layers leads to the appearance, in the electron wave 
functions, of random phase factors that oscillate over 
the wave length of the electron. As a result, a unique 
problem arises, that of the averaging of the physical 
quantities over the pOSitions of the dielectric layers, 
analogous to the averaging over the random position of 
the impurity [7). The role of the scattering "centers" 
is played here by two -dimensional "defects," which 
are the dielectric layers. Another feature is that in the 
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case of low transparency of the dielectric layers, this 
system constitutes a superconductor with weak coupling, 
consisting of a set of parallel Josephson junctions. The 
Josephson jumps in the phase of the superconducting
ordering parameter, which occur in this case, should 
lead to a number of specific electrodynamic phenomena. 

l)Prom the point of view of the study of proximity effect, it is precisely 
this case which is of greatest interest, since the mutual influence of the 
films is maximal when the electrons are weakly reflected. 

2)ln accordance with the results of Sec. I, the separation of the small 
increment fit:,. is possible only if the difference between g, v, and ~v, 
is small enough. 

3)Only the limiting transition c, ... 0 is possible in formulas (23) and (28), 
but not c, ... I. The latter is due to the fact that expressions (4) are 
valid only for a sufficiently large thickness d., when the electrons with 
longitudinal momenta 2mll. < p2 < 2mll, can be regarded as "trapped" 
in the layers kd < x < kd + d,. 

4)Prom the point of view of technology, it appears that the construction 
of such a multilayered sandwich is not a complicated problem and can 
be effected, e.g., by successive sputtering of superconducting films made 
of different materials. 
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