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It is predicted that low-frequency "plasma" oscillations analogous to Josephson plasma oscillations in 
tunnel junctions exist in superconducting films and thin filaments. An attempt is made to explain 
with their aid the recently observed generation of a high-frequency field in superconducting films in 
the resistive state. 

Superconducting thin films and filaments have unique 
electromagnetic properties connected with the inertia 
of the superconducting carriers (kinetic inductance). 
Allowance for the electric fields produced by the un
compensated charges and emerging to the surrounding 
space leads to the conclusion that natural field oscilla
tions exist in such systems. The frequency of these 
oscillations, while containing alongside with other para
meters also the characteristic "plasma" factor 
(41TNs e2/m)1I2 (Ns is a concentration of the supercon
ducting electrons), is nonetheless quite small, and tends 
in particular to zero as k - 0 (k is the wave vector). 
The corresponding waves considered in the present 
papers will be called plasma oscillations ("miniplas
mons"), in analogy with the Josephson plasma oscilla
tions in tunnel junctions of superconductors. [1) For
mally, they are similar to surface plasmons in thin films 
of normal metals[2,3), but unlike the latter they have a 
lower frequency and much weaker damping. 

The concept of kinetic inductance[4)l) follows from 
the definition of the definition of the superconducting 
current j = Nsevs, where Vs is the superfluid velocity, 
and from the relation 

If I depends on x then, in accordance with the conti
nuity equation 

aIlax+fJQlat~O 

charge will accumulate in definite sections of the fila
ment. Here Q = Q(x, t) is the linear density of the un
compensated charge at the point x and at the instant t. 

(3) 

At frequencies that are small in comparison with the 
plasma frequency Wo of the metal, this charge will emerge 
to a surface (in a layer on the order of the Debye length) 
and produce in the surrounding space a field E. The 
value of the field can be obtained in the quasistatic ap
proximation from the condition 

divE~4nQ(x, t)li(p), (4) 

where o(p) is a two-dimensional 0 function in the (y, z) 
plane. Solving Eq. (4) and determining the field E = 
Ex(x, t) on the surface of the conductor, we easily obtain 

E=-!!.!.!, <p(x,t)= J~ a(x-x')Q(x',t)dx', (5) 
ax 

where a(x) is given by 

a(x) ~(1-e-I"l!d)/lxJ, (6) 

av.lat~eElm. (1) or in the k representation 

From this we find that the electric field E is propor
tional to the time derivative of the current, E = !f' 
x (dI/dt), and the quantity Y ("superconducting" or kinetic 
inductance) is inversely proportional to Ns and to the 
conductor cross section area S. At sufficiently small 
Ns and S, the effects of kinetic inductance predominate 
over effects of the ordinary (geometrical) inductance 
and the normallosses.2) 

1. We consider a superconducting filament with trans
verse dimension d that is small in comparison with the 
correlation length ~ of superconductivity theory and with 
the penetration depth o. In this case, a state of one-di
mensional superfluid motion is realized, in which all 
the quantities-current, superluid velocity, etc.-depend 
only on one spatial coordinate x and generally speaking 
on the time t. We assume the time variation to be suffi
ciently small, and in particular, we assume that the 
characteristic field-variation frequency is small in com
parsion with the gap ~ ~ [Tc (Tc -T)]1I2. 

The expression for the current in the superconductor, 
taking into account the nonlinear effects and the normal 
losses, is 

I ~ [N.ev. (1-v.'lv;) +crnE)S, (2) 

where S is the cross section area of the filament, Vc is 
the critical velocity of the condensate corresponding to 
the vanishing of the Euler parameter (the critical velo
city determined from the maximal value of the super
conducting current is equal to vm = vc/V3). 
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(7) 

The function a(xi -Xj) is actually the coefficient of 
the reciprocal capacitance between the points Xi and Xj. 
Since the integral (7) diverges as K - 00, we have intro
duced a cutoff radius (Km) equal in order of magnitude 
to the reciprocal filament diameter d. Inverting the re
lation (5), we obtain 

y(x,t)= J 1.. (x-x')E(x',t)dx', (8) 

where ;\(k) = -(ika(k)r1 in the Fourier representation. 

Substituting (8) in (3) and taking (2) into account, we 
obtain a closed relation for the quantity vs(x, t): 

a [N.e'S ( v.' ) S av. ] + a' J~ ( ') (' ) d' 0 (9) - _. __ v& 1--2 +On - -2 A. x-x V5 X It x = . 
ax m v, at at _~ 

The obtained equation determines the possible states 
of the superfluid motion in the one-dimensional case. 
In particular, the homogeneous state 

v.~const~vo, I~lo~N.evo(1-vo2Iv;)S (10) 

is one of its particular solutions. Assuming then 

v,=vo+weik~-ifllt, (11 ) 

we obtain the spectrum of the small oscillations (w) 
supe rimposed on the homogeneous state. Substitution of 
(11) in (9) leads toa dispersion equation for the small 
oscillations 
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oo'+k'ex(k) (iooan-N,e'Tj (1o)lm)S=O 

We have introduced here the function 

(12) 

Tj (10) =1-3vo'lv,'=1-vo'lvm " (13) 

which vanishes at the critical current (10 = Ic)' We see 
from (12) that at Vo > vm the frequency is pure imaginary 
(1m w > 0). This means instability of the homogeneous 
state on the decreasing branch of the pair-braking curve, 
dloIdvo < 0.[6] At Vo > vm, the solution has a vibrational 
character with a small imaginary part (1m w < 0). Put
ting w = w-iy, we obtain at small k: 

[ N,e'S ] 'I, " 
Gi= -m-'1(/o) ex"(k)k=v(k)k, (14) 

"(='hk'ex(k)anS. (15) 

According to (6), at small k the quantity a(k) takes 
the form a "" In [(kdr2] ~2 In (L/d), where L is the total 
length of the filament. Since the logarithm is a slow func
tion, we can approximately assume a to be constant. In 
this approximation, formula (14) describes waves with 
a linear spectrum, the propagation rate of which along 
the filament is small in comparison with the velocity c 
ofthe electromagnetic waves in vacuum: vic "" S1/2/0 « 1, 
where 0 = (mc2/47TNse2 )1/2. The damping is proportional 
to the square of the wave vector and is small in com
parison with the frequency as k - O. In "dirty" systems 
(un - 0), and also at small S, the damping effect becomes 
relatively negligible, since y decreases more rapidly 
than w when these parameters decrease.3 ) 

2. The foregoing analysis can be automatically ex
tended to include the case of thin films, but it becomes 
necessary then to take into account effects connected 
with electrodynamic delay. 

The equation analogous to (9) takes in the two-dimen
sional case the form 

div [ N,e'd v, (1- v': )+ and aV'l +~S d'p'A(p-p')v.(p', t)=O, 
m v, ot at (16) 

where d is the film thickness and Mk) = -ik/27Tk. The 
frequency and damping of the waves are given by 

Gi= ( 2n~e'd )\"'(Io)l'k, 

1=nandk. 

(17) 

(18) 

At small k, the phase velocity v(k) = w/k increases 
like 1/v'k and at sufficiently small k it exceeds the speed 
of light c. It is clear that in the latter case the foregoing 
analysis is insufficient.4 ) 

For a more correct description, we write down the 
equations for the potentials in the Lorentz gauge (div A 
+ c-1 acp/dt = 0) in the form 

( 1 a' V'-~at') cp=-4nq(p,t)6(z), 

( V'-~~) A=-~j(p t)6(z) 
c2 8t2 c' , 

(19) 

where q and j are the charge density and current density 
integrated over the thickness of the film. The quantities 
q and j satisfy the continuity equation 

&ql&t+div j=O 

and 

j=N.ev, ( 1- ~::) d+andE. (20) 

Solving (19) in the momentum representation and 
representing Vs in the form vo + w exp [ik .p-iwt], we 
obtain 
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( 'k' 'I 2nN.e'd ( c' k( ) ) c -_00') 'W= --- -;; ku -u , 
me {i)W 

U=W (1-vo'lv,') -2vo (vow)lv,'-imooa"wIN,e'. 

For longitudinal oscillations (the vectors k, w, and u 
parallel to one another) we obtain 

(21 ) 

w=[2Q(l'c'k'+Q'-Q) l"'. (22) 
,,(=w"rI (00 '+2Q'). (23) 

We have introduced here the notation (see (13) for the 
definition of 7j) 

Q_ nN.e'd ( ) 
---'1 10. 

me 
(24) 

At k» O/c, formulas (22) and (23) coincide with (17) 
and (18). In the limit of small k (k « O/c), to the con
trary, we have 

w""ck, 1""1:(ck)'I2Q'. (25) 

We see therefore that the propagation velocity of long 
waves actually coincides with the speed of light c. 

If we have a superconducting strip of finite width 
(d1), then the transition from the behavior typical of a 
film to the behavior corresponding to the case of a "fila
ment" is realized in the case of values d1 ,5 02/ d, inas
much as the quantity A = 02/d has the meaning of the skin 
depth of penetration for superconducting films. [7-9] At 
small d, even relatively broad strips (d1 » 0) may be
have not like "films" but like "filaments." 

3. Let us demonstrate the analogy between the con
sidered phenomena and "plasma" waves in Josephson 
tunnel junctions. The role of Vs in the latter case is 
played by the quantity cp, which is the coherent phase 
difference between two superconductors separated by a 
thin insulating layer. We have the equations (see[10]) 

Ii 2ed 
I=I,sincp+ 2eR <P, ~=hE, (26) 

Q=eSE/4n, I+Q=O. (27) 

In this case S is the area of the junction, d is the thick
ness of the insulating gap, € is its dielectric constant, 
Ic is the critical Josephson current, and R is the resist
ance of the junction to Single-particle current. 

Confining ourselves to the case of a one-dimensional 
system (Sec. 1), we see that the first pair of equations 
in (26) is analogous to formulas (1) and (2), whereas 
relations (27) correspond to the formulas (8) and (3) 
given above. Combining (26) and (27), we obtain in the 
usual manner the equation for the phase shift in the 
junction [10] 

Ii. lie. 
I, sin '1'+ 2eR '1'+ 2e ep=O, (28) 

where C = €S/47Td is the capacitance of the junction. If 
the ohmic losses are small (wRC » 1), then Eq. (28) 
describes "Josephson plasma resonance," which are 
current oscillations with frequency wJ = (2elc/fiC)1I2. 
Equation (28) is analogous to relation (9) given above 
for the superfluid velocity. 

Unlike the case considered in this paper, the oscilla
tion frequency for the tunnel junction is finite as k - 0.[1] 
Nonetheless, this is valid only for the "Meissner" state 
of the junction. [10] When vortices enter into the junction, 
thresholdless modes of the small-oscillation spectrum 
also appear. [11 ,12] 

4. We present in conclusion estimates of the frequency 
of the considered "plasma" oscillations and the feasi-
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bility of observing them in experiment. The most inter
esting in this respect is the case of a "filament" (n = 1), 
since the predicted waves have in this case a practically 
linear dispersion and a small propagation velocity (v 
« c). Considering a filament of length L, we obtain on 
the basis of (14) the following estimate of the frequency 

( N )'" 8'1. L 
W-Wo N' T ln rs1]'I'(Io), (29) 

where Wo = (41TNe 2/m)1/2 is the plasma frequency for the 
metal and Wo ~ 1016 sec-1. Since the density Ns of the 
superconducting electrons decreases with decreasing 
mean free path (l) (see[13)), w is small for "alloys" with 
sufficiently small l. Simultaneously, as already noted, 
the wave damping also decreases in such systems, since 
"y is proportional in accordance with (15) to the normal 
conductivity an' The case of extremely "dirty" sytems 
(l« ~o) is therefore of greatest interest. Thus, at para
meter values 

-.!... _10-' T,-T _10-' "-10-,, L=10 cm, 8=10-" cm2 
So To' ., 

we obtain the estimate w ~ 108 sec-1. 

Churilov, Dmitriev, and Beskorsy'i[S) have reported 
observation of radiation in superconducting films in re
sistor state, i.e., when current flows through them. Al
though no explanation was offered of this phenomenon, 
it was attributed in natural fashion to the decreasing 
current-voltage characteristic of thin films, observed 
in, [14 ,15) and to the relaxation oscillations of the current 
in the superconducting channel, which are connected 
with the pair-breaking mechanism. [10,15,16) The soft 
mode of the "plasma" oscillations considered in the 
present paper suggests that plasma-wave excitation can 
serve as one of the possible explanations of the observed 
phenomenon. Let us estimate the degree to which such 
an assumption can correspond to reality. 

The films (strips) investigated in[5) satisfy the crite
rion d . d1 < {/ (see Sec. 2) and should be regarded in thi.s 
sense as thin filaments (one-dimenSional samples). Sut
stituting the parameters of[S) in (29), we obtain 

(30) 

The experimentally obtained frequencies were 108-109 
sec-1. [S) Although the additional factors in (30) are small 
in comparison with unity (1/ tends to zero as I - Ic )' it 
is nevertheless difficult to imagine them to be able to 
cause a frequency decrease by two orders of magnitude, 
as is required for reconciliation with the experimental 
data.[S) Thus, the effect observed in[5) cannot be ascribed 
with assurance to any of the aforementioned mechanisms. 

Experimental observation of the low-frequency plasma 
waves in superconductors, predicted in the present 
paper, can be of definite physical and possibly also prac
tical interest. It appears that this phenomenon is of great 
Significance in the analysis of the problem of "high-tem
perature" superconductivity in one-dimensional and two
dimensional systems. In accordance with the results 
of[17), on going to the three-dimensional case (a system 
of parallel films or a two-dimensional conglomerate of 
"filaments") the thresholdless mode of the plasma os
cillations vanishes. At the same time, the possibility is 
restored of long-range order-phase correlation at large 
distances (I x -x' 1- co) and for long time intervals 
(It-t' 1- co). 

In conclusion, I take the opportunity to thank A. F, 
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Andreev, V. M. Dmitriev, and I. K. Yanson for discussing 
the work and for a number of useful remarks. 

I)Littie [4] cites an unpublished remark by Onsager on the possibility 
of the existence of "baby plasmons" in one-dimensional supercon
ductors. It appears that the density-oscillation modes considered by 
us are indeed such plasmons. We present below a detailed theory of 
the corresponding phenomenon and its connection with recent experi
ments [5]. 

2) At first glance it seems paradoxical that2'becomes infinite as Ns ~ O. 
It must be recognized, however, that at small Ns (sufficiently close to 
T c) nonlinear effects manifest themselves quite early and change the 
picture in question. 

3)In addition to the "dissipative" damping described by formula (15) it 
is necessary to take into account also radiative damping due to 
radiation of waves into the surrounding space. By regarding the 
radiation of a superconducting-filament segment of length Las 
dipole radiation, we easily obtain 'Yrad ~ Nse2Sw2Jmc 3k, where 
k - L-1• Generally speaking, the radiative damping decrement ('Yrad) 
may not be small in comparison with the damping coefficient 'Y = 
'Ydis calculated above. Nonetheless, the ratio 'Yrad6, being pro
proportional to (VJC)3, is always small in comparison with unity. 

4)In the case of a filament the velocity v(k) has increased with de
creasing k only logarithmically, and since the coefficient preceding 
the logarithm is much smaller than c, it has in fact always been 
smaller than the speed of light. 
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