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An investigation, is made of the influence of randomly distributed pinned impurities present in a low 
concentration on the singularities of thermodynamic quantities at second-order phase transitions. Two 
one-dimensional models, exhibiting transitions in a field H at T = 0 OK in the absence of impurities, 
and a two-dimensional Ising model are considered. The influence of impurities on the transition in 
these models can be reduced to the problem of the density of levels of a particle in the field of 
randomly distributed impurities. It is shown that the presence of impurities results in "diffuseness" of 
the transition: All the derivatives of the free energy at the transition point are finite. The maxima of 
the thermodynamic quantities are shifted in the direction of lower temperatures (or in the direction 
of lower fields in the case of field-induced transitions). The dependence of this shift and of the 
amplitudes of the maxima on the impurity concentration are deduced. A dimensional analysis, 
generalizing the results to the three-dimensional case, is given. Some features of field-induced 
transitions in the presence of magnetic impurities and of transitions in the presence of nonmagnetic 
impurities in an Ising lattice are considered. 

1. INTRODUCTION 

A very large amount of experimental work has been 
done on phase transitions in systems containin/f impuri­
ties and on solid solutions (see, for example, 1-3]). The 
presence of an additional thermodynamic quantity, which 
is the impurity concentration c, makes it possible to 
vary continuously all the parameters of a transition and 
this is of major theoretical and practical interest. How­
ever, little theoretical work has been done on this sub­
ject. Obviously, one should distinguish mobile equi­
librium impurities whose positions vary with tempera­
ture T so as to minimize the thermodynamic potentials 
and pinned nonequilibrium impurities whose positions 
are governed only by the method used in the preparation 
of a mixture and are independent of T (the relaxation 
times of such impurities are longer than the durations 
of thermodynamic experiments). Solids contain pinned 
impurities if the temperature T is not too high. 

The thermodynamics of transitions involving inter­
stitial equilibrium impurities has been considered by 
Syozi [4] and Lushnikov and Shapoval. [5] They have found 
that nonmagnetic equilibrium impurities reduce the 
transition temperature and weaken the singularity of the 
specific heat C(T) but do not affect the kink in the de­
pendence C(T) characterized by an infinite derivative 
at T=Tc. Pinned impurities tend to smooth out the 
singularities, giving rise to "diffuse" transitions.[ll 
For example, Mikulinski'i[S] shows that the presence 
of nonmagnetic pinned impurities in a two-dimensional 
Ising lattice makes all the derivatives of the specific 
heat finite at T = T c' The same result is obtained 
rigorously by McCoy and WU[7] but only for special 
(linear) impurities and very unusual distribution func­
tions of their interaction. Moreover, Griffiths[Sl and 
Mikulinski'i (self-consistent field method)[9] have shown 
that two nonanalytic points of the free energy F(T) may 
appear in the Ising model with nonmagnetic pinned im­
purities. One of these points is associated with the 
appearance of a spontaneous moment but the signifi­
cance of the other is not yet clear. 

We shall attempt to provide an approach which is 
more rigorous than that used by Mikulinskil[S,9] and con­
sider the problem of the singularities of phase transi­
tions in systems containing substitutional pinned impuri­
ties in a low concentration. The general idea is that, in 
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some cases, particularly in the two-dimensional Ising 
model, this problem can be linked to the widely dis­
cussed [1O-1S calculations of the energy spectrum of a 
particle in a random field of impurities, i.e., it can 
be reduced to the determination of the density of states 
p( €). Therefore, using the results on the nature of p( €) 
near a band edge, we can obtain several results relat­
ing to the singularities of F(T) and C(T) at a transition 
point. 

Since explicit equations for the density of states are 
known only in the one-dimensional case, we shall first 
consider two one-dimensional Ising-tYRe models subject 
to a transverse magnetic field Hx = H. 17-19] In the ab­
sence of impurities, these models predict a phase transi­
tion induced by a field H at T = 0 K and the transition 
field corresponds to the saturation of the moment Mx (in 
the first model) or of the moment Mz (in the second 
model).[19] The susceptibility X=-82F/8H2 becomes in­
finite for H - Hc and the approach to infinity is by a 
square-root law X ex: (Hc - H)-1/2 in the first case and by 
a logarithmic law X ex: In I H - Hc I in the second case. In 
the first case, the nature of the singularities of the de­
pendences on H is fully analogous to the Singularities 
iii the dependences on T in the two-dimensional Slater 
model [IS and in the second case it is fully analogous to 
the two-dimensional Ising model.[19] Thus, the problems 
in question are quite close to the Slater and Ising models 
and an explicit solution can be obtained even in the 
presence of impurities. 

In Sec. 4 we shall consider the two-dimensional Ising 
model. Applying the Vdovichenko method,[20,211 we can 
express the free energy F at low values of c in terms 
of the density of states of a particle obeying a two­
dimensional equation of the Dirac-Schrodinger type for 
a random field of impurities. Using the limiting expres­
sions for p( €) near a band edge, we shall show that in 
the case of weakly magnetic impurities (i.e., impuri-
ties whose interaction with the spins of the host crystal 
J21 is less than the interaction of the host spins with one 
another) a nonanalytic point of F(T) occurs at Tc of a 
pure crystal and all the derivatives at this point are 
finite. This is in agreement with the conclusions reached 
by Mikulinskil. [s] We shall consider the nature of the 
singularities for strongly magnetic (J21 >J ll) impurities. 
We shall show that irrespective of the sign of J 21-Jll 
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the temperature corresponding to the specific heat max­
imum Tm always shifts (for low values of c) in the 
direction of low temperatures T and the shift amounts 
to Tm-Tc--cTc In(l/c). In Sec. 5 we shall give a 
dimensional analysis of the type used in the Similarity 
hypothesis and apply it to the impurity- concentration 
dependences of the specific heat maximum Cm and the 
susceptibility maximum Xm. This dimensional analysis 
is supported by the earlier results and is also applicable 
to the three-dimensional case. According to this analy­
sis, we can express Cm(c) and Xm(c) at low values of c 
in terms of the critical indices of the pure system. We 
shall conclude by discussing the results obtained and 
some of the problems in the extrapolation of these re­
sults to values of c which are no longer small. 

2. CHAIN OF SPINS WITH AN AXIALLY SYMMETRIC 
INTERACTION IN A TRANSVERSE FIELD 

Pikin and Tsukernik[17J obtained the exact solutions 
for one-dimensional models using the Hamiltonian 

i N i N 

d6'=-T .L,la.(l, l+i)a,aa'!'-Z-H.L, a,X, (1) 
1=1 1=1 

where (J represents the Pauli matrices and 01, (3 = y, z. 
In the case of a pure system considered in [17J the con­
stants J 01{3 are independent of 1. It is shown in that 
paper that in the case of axial symmetry of the interac­
tion we have J yz = 0 and J yy = J zz = J. Moreover, at 
T = 0 K the moment Mx = M(H) reaches saturation at the 
point H = J and the susceptibility X rises as (J - H)-1/2 

for H-J. 

We shall consider the influence of pinned impurities 
on the thermodynamics of a transition under these con­
ditions. The constants of the interaction of an impurity 
with spins of the host crystal J 21 =J12 and with other 
impurities J 22 will be assumed to be different from 
J 11 = J , and the magnetic moment of the impurity, i.e., 
the term with H in Eq. (1), will be assumed (for the 
sake of simplicity) to be unaffected. If we follow [17J and 
pass from the spin to the Fermi operators al and ai, 
the Hamiltonian (1) becomes 

d6'=- .L, [ -;-1",+.(a/a,+.+a,:.a,)+H( ';--a,+a,)] . (2) 

The Hamiltonian (2) can be diagonalized by going over 
from the coordinate representation to an orthonormalized 
system of functions <Pill (analogous to eilll in the im­
purity-free case) which diagonalizes Single-particle 
states in d6': 

a/= .L,aACPM' .L,CP"ICP"·'1=6"",., .L, cp)'lcp,,~r=611" 
1 

(3) 

The equations for <P III can be obtained, as in [171, by 
writing out the equations for the operator al and assum­
ing that ax =-iExax. 

In this way, we obtain 

(E1-H) <PU+'/2J(t],-., '<Pl, .-.+t]., ,+'<P1, ,+.) =0. (4) 

Here, TlU'=JZl'/J, and Ex represents the required 
eigenvalues of d6' .. Multiplying the left-hand side of Eq. 
(4) by <P~ and summing over X and Z with the aid of 
Eq. (3), we find that the sum of EX over X is equal to 
N(H). Consequently, the Hamiltonian d6' and the free 
energy per unit cell F at T = 0 K become 

d6'=.L,E.(a.+a.-f), F=-2~.L,IE11. (5) 
1 - • 
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The susceptibility X is given by the formula 

-{)'F 1 
x= ()N' =N".L, 6(E.)=p(E=0), 

• 
(6) 

where p(E) obviously represents the usual energy den­
sity of states. 

In the absence of impurities we have TlU' = 1 and it 
follows from Eqs. (4)-(6) that 

ei)'l 1 I 

<Pu=-, E.=H-JcOSA, x(H ..... l-0) ..... -[2J(/-H)]-h. (7) 
~ n 

We shall consider only the case of low impurity con­
centrations c« 1 and fields H close to H<O) = J. If we 
replace Ex with a dimensionless energy EX and change 
p( E) to the corresponding density of states p( E): 

k' i ('-H) E=H-I+le 8""- "'=-p--, 2' h I I 

(here and later the index X will be omitted), we find 
that the values k« 1 are important in the thermody­
namic description of the critical range IH-JI «J. 
In this long-wavelength limit we can improve the 
clarity of the results by going over from a discrete 
equation (4) to a continuous one. We can see that in 

(8) 

the impurity-free case and if k« 1, Eq. (4) transforms 
to the free Schrodinger equation and E then represents 
the dimensionless energy. Clearly, in the presence of 
impurities Eq. (4) transforms to the Schrodinger equa­
tion with a potential energy u(x) which depends on the 
coordinates of the impurities. It is also clear that dis­
tant impurities in a discrete chain may act as isolated 
scatterers. Therefore, in the case of small values of k 
considered here, the equivalent potential u(x) in the 
Schrodinger equation should be of the short-range type, 
Le., it can be represented in the delta-function form 
go(x). The value of g can be determined from the con­
dition that, in the case of small values of k, the scat­
tering by impurities should be the same in the discrete 
and continuous problems. We shall therefore solve the 
problem of the scattering of a plane wave exp(ikl) by a 
single impurity in a discrete chain. 

Let us assume that an impurity is located at a site 
l=O so that in Eq. (4) we have 

t]1I'=l-(i-t]) (6,,+6,'0), t]=I,,/I. (9) 

We shall now separate from Eq. (4) the term correspond­
ing to the ideal lattice and transfer the inhomogeneity to 
the right-hand side. Solving the equation obtained in this 
way by the Fourier transform method, we find that 

i-t]' 
<p,=e'''+ (i-t]) 6,,<po- --(E - H) G (I) <po, 

t] 

where G(l) is the Green's function in the scattering 
problem: 

n dp eip1 

G(I)=S ' 
_" 2n E-H+l cos p+i6 

6 ..... +0. 

(10) 

(11) 

Assuming that Z=O in Eq. (10), we can find <Po. Com­
paring then <PZ from Eq. (10) for Z»l,k«l with the 
solution of the continuous equation 

<p" (x) +k'<p(x) =g6(x)<p(x), 

we find that the solutions are identical if 

( 12) 

g=2 (i-t]') /t]', (13) 

We must stress that the relationship between k and 
the distance l to an impurity is now arbitrary: the so-
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lutions become identical as soon as land l/k become 
much greater than the lattice constant. In the case of low 
impurity concentrations (in the lowest approximation 
with respect to c), we may assume that the impurities are 
sufficiently far apart so that allowance for the configura­
tions with close impurities gives rise to corrections of 
higher orders in c. Therefore, the transformation from 
Eqs. (4) and (10) to Eq. (12) can be made for each im­
purity independently of all the other impurities. In this 
way, Eq. (4) becomes 

cp"+k'cp=g E6(X-Xi)cp, (14) 

where the summation is performed over the impurity co­
ordinates Xi, and g is given by Eq. (13). Thus, the prob­
lem of the energy spectrum of Eq. (4) in the range of low 
values of k has been reduced to the problem of an elec­
tron in a field of random point impurities, which has 
been discussed widely in the literature.[1O-15] 

Equations (8) and (14) are the solutions of the prob­
lem and give the susceptibility of the spin system with 
impurities in terms of the density of states of an elec­
tron in a random field. It should be noted that Eqs. (8) 
and (14) are obtained without imposing restrictions on 
the nature of the impurity distribution function or on 
the value of the constant J 12 . 

We shall assume that the impurities are distributed 
at random and use the well-known results[1O-15] for the 
density of states in the presence of such impurities. We 
shall first consider the case of weakly magnetic impuri­
ties I J 121 < J, which corresponds, in the continuous prob­
lem of Eq. (13), to a repulsive potential g >0. Moreover, 
we shall restrict ourselves to moderate values of g: 
g »{c, k}. The problem of finding p(E) under these con­
ditions was solved by Bychkov and Dykhne. [12] If we 
use their results, we find that the susceptibility of one 
unit cell follows from Eq. (8): 

_1 nc' _,en 
x(H)-/4IAI'I. sh 2IM'" (15) 

where ~=2(H-J)/J. 

If I ~I »c2, we find that Eq. (15) reduces to Eq. (7) 
and in the case when I ~ I «c2 the susceptibility X de­
creases exponentially: 

(16) 

If H >J we find that the susceptibility vanishes (X = 0), 
which corresponds to saturation of the magnetic 
moment. 

Thus, the presence of pinned impurities causes a 
transition to become diffuse and makes all the derivatives 
of the susceptibility finite at the transition point Hc = J . 
It follows from Eq. (15) that the maximum of X shifts in 
the direction of lower magnetic fields by an amount 
which is proportional to c2: (Hc - Hm) 0: c2 J and the max­
imum value of X is Xm - 1/ cJ. The general nature of 
the dependence X(H) is illustrated in Fig. 1. 

The conclusion that X and all its derivatives are 
finite at H = Hc is not dependent on the assumption 
g »c, which is utilized in [12] to obtain Eq. (15). It fol­
lows from other investigations[ll,I4] that for any value 
g > 0 the density of states near a band edge (k - 0) has 
the form po: exp(-c1T/k) for a Poisson-type distribution 
of impurities. Therefore, in the case of small values 
g < C the susceptibility in fields H - Hc is given with 
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FIG. I. General nature of the de­
pendence X(~) in the case of weakly 
magnetic impurities; ~ = 2(H - J)/J. 

JX 

exponential precision by Eq. (16). However, as Hc-H 
rises, the case g < c begins to differ from the g» C 

case discussed above. Thus, according to Magarill and 
Entin, [15] in the g« C case, the density of states has 
its maximum at Em - cg and p( Em) 0: (cg2f 1/3. There­
fore, in the case of low values of g« c, we obtain 

H,-Hmo:J", Jxmo: (cg')-'/', 

so that the influence of impurities on the susceptibility 
singularity is weaker. 

4 

The exponential suppression of the Singularity (16) at 
the transition point has a simple meaning discussed by 
Mikulinskil. [6] Weakly magnetized impurities reduce 
that interaction between the spins which confines them 
to a plane perpendicular to H. Therefore, as H - Hc , 
the system is close to saturation everywhere except for 
the regions which, as a result of fluctuations of the 
Poisson distribution, are free of impurities. In fields 
H - Hc the magnetic moment is not saturated only in 
these regions for which the correlation radius of the 
pure system rc - I ~ 1-1/2 is less than the size of a 
region l which is free of impurities. Since the prob­
ability of the appearance of such a region in the Poisson 
distribution is exponentially small, being proportional 
to exp(-cl), it follows that the thermodynamic contribu­
tion of such regions decreases as exp(-cl~l-l/2). 

We shall now discuss the case of strongly magnetic 
impurities 7)2 > 1, which corresponds to attraction in the 
continuous problem of Eq. (13), and we shall again re­
strict ourselves to small values c« I gl . The density of 
states corresponding to this case has been investigated 
earlier[1l,13] and is plotted in Fig. 2. If J - H »J c2 , the 
values of p and X are still given by Eq. (15). For lower 
values I ~ I < c2, the exponential terms -exp( -c I ~ 1-1/2 ) 

can be ignored and the expression for q can be found by 
expanding the Frisch-Lloyd equation[lO in powers of 
E/c2 and c/g. At still lower energies, corresponding to 
E >c2 , the influence of many impurities decreases ex­
ponentially and the levels appear only when impurities ap­
proach each other closely (mainly in the form of pairs if 
the concentration c is low). 

The corresponding "pair" contribution to p( E) can be 
found quite easily by calculating the dependence of the 
energy E(l) on the distance l between impurities and 
then replacing the Poisson distribution over the distance 
c exp(-cl) with the distribution of E: 

/x(H)=p(e)=c [~(1-~ )'1'1, x=(-2e)'/'=A'/'. 
de Igl 

In the direct vicinity of an impurity level 

11-2x/lgll<exp(-lgl/c) 

(17) 

Eq. (17) becomes invalid because of the appearance of 
contributions of many distant impurities. However, the 
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JX 
I 
I 

J 

d 

FIG. 2. General nature of the dependence X(..1.) in the case of weakly 
magnetic impurities: ..1. = 2(H - J)/J; 

1 - /x=l/"I'It.T; 2 -IX 
="c'It.I-'I,e-,"II""; 3 - !x='j,cg-'(1=-.4t.j5c'j; 4 - h=2c'r'jl't;, 

5 - h=8c'lgl-'11-21't.jlgll"/,gH 

refined result of Bychkov and Dykhne[13] for this re­
gion differs from Eq. (17) only by a numerical factor 
of the order of unity. 

Subject to this stipulation, Eq. (17) describes p for 
c < K < I g I. In the case of greater values of K, the con­
tribution to p iEj made only by impurity triplets propor­
tional to c3, and so on. We must also mention that the 
contributions to p corresponding to the approach of im­
purities to distances shorter than or of the order of 
the lattice constant give an incorrect quantitative de­
scription of the discrete problem (4). However, these 
contributions are proportional to c2 and higher powers 
of c, so that refinement of these contributions does not 
alter the general nature of the dependence X(H) given 
in Fig. 2. 

We can see that, in this case, the point of transition 
in a pure system, H = J, is not a singularity and X(H) 
varies continuously at this point. True, the terms 
-exp(-c 16.1-1 / 2), which arise because of expressions such 
as Eq. (15) and which correspond, as above, to the ex­
ponentially small contribution of the impurity-free re­
gions, may give rise to a nonanalyticity of X at H = J; 
however, the moment M(H) does not become saturated. 
As in the case of weakly magnetic impurities, the max­
imum of X(H) is shifted to the left. This result is not 
universally valid: according to Magarill and Entin, [15] 
in the case of a weak attraction g < 0, I g I «c, the 
maximum of X shifts to the right (Hm-J)-Jclgl. 

In this case, the most interesting features are the 
rise and singularity of x(H) which occur in accordance 
with Eq. (17) at the point corresponding to an impurity 
level 2K = I g I , which is confirmed by a more rigorous 
discussion. This feature of X and the corresponding 
step-like rise of M(H) can be explained quite simply. 
Strongly magnetic impurities result in an undersatura­
tion of the magnetic moment and give rise to local 
moments which are not oriented along the field even if 
H >J. At the point a. = g2/ 4, the energy E of these states 
vanishes in accordance with Eq. (8). Therefore, in 
strong fields H the existence of these local moments 
is not favored by the energy considerations and they 
disappear. Consequently, the average moment increases 
by an amount -c and this change is discontinuous (to 
within the concentration broadening). Thus, a character­
istic "impurity" phase transition occurs in an external 
field. Similar phenomena should also occur in three­
dimensional systems, but this point will be discussed 
in a separate paper. 

In the next approximations with respect to c we 
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should encounter local levels corresponding to bound 
states in the fields of impurity pairs, triplets, etc. 
(in a discrete lattice). This may give rise to singulari­
ties in X(H) similar to that shown in Fig. 2, but these 
singularities increase in intenSity in proportion to c2, 
c3, etc. [16] The total saturation point of M(H), i.e., the 
"true" phase transition, corresponds to the coalescence 
of strongly magnetic impurities into continuous "mac­
rochains," whose probability (for low values of c), is ex­
ponentially small, being proportional to exp(-l/c). 

We shall conclude this section by noting that it follows 
from Eq. (13) that the constant g is independent of the 
sign of TJ. In particular, in the case of purely antiferro­
magnetic impurities, we have J I2 =-J and g=O, so that 
in the lowest approximation with respect to c these 
impurities do not affect the thermodynamics of the sys­
tem. In this case, the contribution to F is made only by 
pairs, triplets, and similar configurations if J 22 = ~J ~ J . 
In this case, the main results are the same as those 
given above if c is replaced with the concentration of 
impurity pairs c2. Similar considerations apply also to 
antiferromagnetic impurities in the models considered 
in Secs. 3 and 4, but this point will not be discussed for 
lack of space. 

3. ISING CHAIN IN A TRANSVERSE FIELD 

We shall now consider the case when only the spins 
of interact in the Hamiltonian (1): J zz = 2J, J yy = J zy = 0 
(case a in [17]). If we go over to the Fermi operators,[17] 
we can replace Eq. (2) with 

;J6~- ~ LJ,.,+I[a,+la,+a,+a,:I+a,!,a,+a,+a,+ll-H L (;- -a,+a,) 

, {( 18) 
We shall now diagonalize the Hamiltonian (18) by 

the transformation which combines the treatment 
given in [17] with Eq. (3): 

where the number of states A is, as before, equal to the 
number of spins N. The functions cP and X should satisfy 
the following relationships: 

L (rp"rp,:+x,,'x,,') ~all" L (rp"x:,'+rp,,'x,,') ~O, (20a) 

The conditions (20a) follow from the commutation rela­
tionships for az and ai; the condition (20b) follows from 
the orthogonality requirement, i.e., from the diagonality 
of the Hamiltonian expressed in the operators aA and a~. 

As before, we shall perform the diagonalization oper­
ation with the aid of the "equations of motion" for al. 
This gives a system of two equations for the functions 
CPA[ and XAZ, which can be written conveniently in the 
spinor form (the index A is omitted): 

(E-Ha,)'i',+1j,J[ I'],-I.,(a,-ia,)'i'l-1+I']I.,+1 (cr,+icrv) 'i"+ll ~o. (21) 

Here, E = EA are Single-particle eigenvalues of the 
Hamiltonian; I./JZ=(CPl, XZ) is a two-component "wave 
function"; Uy and Uz are the second and third Pauli 
matrices acting on the components of I./J; TJll'=JU'/J· 
For each distribution of impurities Eq. (21) has eigen­
values E of two signs: EA with an eigenfunction I./JA and 
E' =-E A with I./Jx = UXI./JA' In order to diagonalize the 
Hamiltonian (18) it is sufficient to consider, as in [17] , 
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only the states with E A > 0 (the selection of E A < 0 cor­
responds simply to a redefinition of the operators 
aA~al)· 

After the substitution of Eqs. (19)-(21) into Eq. (18), 
the Hamiltonian and the free energy are again given by 
Eq. (5). In the absence of impurities, it follows from 
Eqs. (21) and (20) that[17] 

(22) 
u,v_:+u_,v:~O, E,=[ (/-H)'+2lH(l-cos A)]''', 

and after the substitution of EA in Eq. (5) we find that 
the susceptibility at H - HJO) = J has a logarithmic 
singularity: X cclnl H-J I. 

In general, it is convenient to express Eq. (5) for F 
in terms of the energy density of states p(E): 

F~--f SEp(E)dE, p(E)= ~L,I)(E-E,), (23) 
, 

Thus, in- this model the problem of calculation of F 
and X reduces to the determination of the density of 
levels of a particle described by Eq. (21) and located 
in a field of randomly distributed impurities. 

As before, we shall assume that the impurity con­
centration is low and we shall discuss the range near 
H=Hc, i.e., IJ-HI «J. Once again, it is convenient 
to go over from the discrete equation (21) to the con­
tinuous form, having first solved the problem of the 
scattering on a single impurity in the discrete equation 
(21). Applying, as in the preceding section, the Fourier 
transform method, we obtain the following expression 
instead of Eq. (10): 

1jl,=u(k)e'''+(i-tj)l>101jlo- i-tj' G(l) (E.-Ha.)1jlo. (24) 
tj 

Here, the first term describes an incident plane wave; 
u(k) is a normalized spinor, which is the solution of 
the impurity-free equation (21) with the energy 

E=E.=[ (/-H)'+2JH(l-cos k) 1"'; (25) 

Tj has the same meaning as in Eq. (9) and G(l) is the 
Green's function of the impurity-free equation (21) for 
the scattering problem: 

A s" dp . ... A 

G(l) ~ -e,p'[E.+(J cosp-H)cr.-J sinpcr.+il>]-' 
_" 2n 

(26) 
i [( )A. A . 1 A A =--21H' E.- lcosk-H cr.+/smkcr.sgnl)]e'''''-I>IO-(cr,-icr.). 
smk 2H 

If we write the transmitted wave in the form Au(k)eikl 
for l >0, we find that Eqs. (24)-(26) subject to the condi­
tions k« 1, I J - H I «J give the amplitude A: 

A = 2tj' I-H ( ) 
. i+TJ'-imk-1 (1-TJ'), m=-,-' 27 

It should be noted that a comparison of Eq. (27) with 
the usual quantum-mechanical expression for the ampli­
tude (see, for example, [22]) shows that the case 
m( 1-Tj4) > 0 corresponds to the attraction to an impurity 
and the presence of bound states, whereas the case 
m( 1-Tj4) < 0 corresponds to the repulsion. 

The continuous equation corresponding to Eq. (1) 
can be found as follows. At points far from an impurity 
this equation can be obtained from Eq. (21) by an ex­
pansion in terms of gradients. The short-range influ­
ence of an impurity can be described, by analogy with 
Eq. (12), applying the boundary condition to 1/J at the 
point where the impurity is located (x= 0). It follows 

803 Sov. Phys.-JETP, Vol. 38, No.4, April 1974 

from the nature of Eq. (21) and from parity considera­
tions [the corresponding transformation is of the form 
1/J'(x) = uz1/J(-x)] that this boundary condition should be of 
the form 

icr:[1jl(+O) -1jl(-0)] =1~.["'(+0)+",(-0)], l~(i-TJ')/(1+TJ'). (28) 

The quantity y in Eq. (28) is selected to give the cor­
rect value of the amplitude of the transmitted wave (27). 

The condition (28) can be combined with the equation 
for 1/J corresponding to small values of k and the re­
sults can be written in a form similar to Eq. (12): 

(e+mcr.)"'Hi.~~21a."'ol>(x), "'o""~[1jl(+O)+1jl(-O)]. (29) 
dx 2 

Equation (28) is obtained from Eq. (29) by integration in 
the direct vicinity of an impurity. The quantity E = E/J 
in Eq. (29) is the dimensionless energy. In the impurity­
free case we find that 1/J cc exp(ikx) and E = (m2 + k2)1/2 and 
we can see that the quantity m in Eq. (27) has the prop­
erties of mass. 

At the low impurity concentrations considered here, 
each impurity scatters independently. Therefore, the 
complete equation for the spectrum, analogous to Eq. 
(14), is of the form 

• Ad1jl A~ 
(e+ma.)1jl+ia'a::; ~21cr. ~ 1jl,1> (x-x,), 

, (30) 
1jl,~lh[1jl(x,+O) +1jl(x,-O)]. 

Since the density of the levels corresponding to Eq. (30) 
has not yet been investigated, we shall first consider 
the simplest case of nonmagnetic impurities Tj« 1. 
Then, in the zeroth approximation a chain can be di­
vided into segments of length l with the Poisson 
distribution function cexp( -cl). The boundary condi­
tions for finding the energy in accordance with Eq. 
(28) are (uz + iuy)1/J = 0 at the right end and (uz -iuy)1/J = 0 
at the left end. This yields the following equation for 
the levels E in the continuous spectrum: 

k/m=tg kl, k'=e'-m'>O. 

Moreover, if m > 0, there are bound states E < m 
whose energies are given by 

x/m~th xl, x'~m2-e'>O. 

(31) 

(32) 

The density of Rtates p( E) can be found from Eqs. 
(31) and (32) by going over from the Poisson distribu­
tion of the lengths cexp(-cl) to the energy distribution. 
In this way, the density of states in the continuous Pl 
and discrete P2 spectra is given by 

dkd[l (e m) en] p (e)=e-- -exp -arctg- sh-'-
1 de dk 2 k k 2k' (33) 

p,(e)=c8(m) :e exp (- : Arth :), 

where 8(x) is equal to unity for x > 0 and to zero for 
x<O. 

We shall now give some asymptotic forms of p(E): 

+ _ nc' ( en) e»k»lml: PI (e)=pl (e)~ 2k' exp -2:k ; (34a) 

k<.m: (34b) 

k<.lml: (34c) 

O<e<.m: p,(e)= 2~' (2~ ) o/m_l. (34d) 

Here, p1=Pl(m >0) and PI =Pl(m <0). 
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It is clear from the formulas (34) that PI and P2 have 
the usual properties of the density of states in the pres­
ence of impurities. Thus, Eq. (34c), which corresponds 
to the nonrelativistic limit of the repulsive interaction, 
is identical with the results given in [12J. The expres­
sion (34a) , corresponding to the ultrarelativistic case, 
has the exponential form usual for k« c but with a 
somewhat modified value of the argument of the ex­
ponential function (rr/2 instead of rr), which is due to 
the modified boundary conditions. The formula (34b) 
shows that in the attraction case the distribution p( €) 
is continuous at € = m. Finally, it follows from Eq. 
(34d) that P2( €), corresponding to c < m, has an inte­
grable singularity at the point of location of an im­
purity level (in the case considered 11 = 0 lying at € = 0), 
which is similar to corresponding singularities in the 
nonre lati vistic proble m. [11, 13J 

The substitution of Eq. (33) into Eq. (23) alters the 
free energy to 

~ d m 

F=F,+F,=-l S (m'+k'),/ p, (e) d~ dk-l S ep,(e)de, (35) 
o 0 

where ko-1. It is clear from Eqs. (33)-(35) that in the 
case of small values of m and c considered here, the 
main logarithmic contribution to the susceptibility X 
comes from the continuous spectrum: 

x''''X,,=- {)'F, =_1_ In Il-H I for Iml= I--=T-I ~e,(36a) I "I I H 

{)lP 2nl In+ for Il~H I <%:e. (36b) 

As expected, Eq. (36a) is identical with the result 
of Pikin and Tsukernik[17l for the impurity-free case. 
Furthermore, we can show that x'= ax/em is negative 
for m = 0 and is of the order of (cJfl, so that the max­
imum of X lies in the m >0 range, i.e., Hm <Hc =J. 
Equating X'(H) to zero, we find that the maximum of X 
is located at n - c, i.e., (Hm - Hc)--cJ , and the order 
of amplitude is given by xm-In(l/c). Thus, in contrast 
to Sec. 2, the shift of the maximum is linear and not 
quadratic in respect of c. Another difference is the rel­
ative smallness of the contribution of the bound states. 
We can easily see from Eqs. (35) and (34) that this con­
tribution to the susceptibility X2 is of the order of 
_c3/m3 for m »c, whereas for m« c it is given by 

x,,-(elm) , exp( -elm). 

We can also show that at the nonanalytic point m = 0 
the expression (35), like Eq. (15) in Sec. 2, is infinitely 
differentiable with respect to H. 

We shall now consider the general case I) '" O. In a 
comprehensive study of the density of states, it would 
be necessary to use Eq. (30) and derive an equation for 
p( €) similar to the equation of Frisch and Lloyd[lOJ for 
Eq. (14) and then study the behavior of this equation in 
the case of small values of k and m, as has been done 
in [13-15J and in Sec. 2. 

We shall confine ourselves to the following comments. 
The general expression for F is always of the form 
given by Eq. (35) and the general properties of the den­
sity of states p remain the same as in Eqs. (33)-(34). 
Variation of 11 alters only the position of an impurity 
level so that, for example, the formula analogous to 
Eqs. (17) and (34d) becomes 

I d (K-K ) '1"1 p,(e)=e -;h ~ . K.=m~, (34e) 
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where the dependence K(€) is given by Eq. (32). In par­
ticular, in the case of strongly magnetic impurities 
with 1)2 > 1, the contribution of the bound states corre­
sponds to H >J and not H < J, as in the foregoing dis­
cussion. The susceptibility X is obtained by differenti­
ating Eq. (35) with respect to m. It follows clearly 
from the form and meaning of Eqs. (30) and (27) that 
the singularity along the m scale in Eq. (35) or in 
p( €, m) can only occur at the point m = O. Any other 
value of m is not physically distinguishable and for 
each m '" 0 the quantity p( €, m, c) is a smooth function 
of € and c [with an integrable singularity of € of the 
Eq. (34e) type at the point of location of an impurity 
level: this singularity does not give rise to Singulari­
ties in F and X]. However, it can easily be shown 
that even at m = 0 the density of states p( €) correspond­
ing to Eq. (30) is also a smooth function which falls at 
small values of k, like Eq. (34a). In fact, if k«c, a par­
ticle experiences, in the first approximation, the average 
potential of the right- hand side of Eq. (30), which gives 
a term with -ycUz instead of the term containing the 
mass. Therefore, the states with small values of 
€ = k «cy can only appear in impurity- free regions of 
length l~ l/k» l/c and averaging over the Poisson 
distribution of these regions should give a result of the 
Eq. (34a) type (with a possible substitution c -cy). It 
therefore follows from Eqs. (30) and (35) that F(H) and 
x(H) are infinitely differentiable with respect to H at 
the point H = J; in the case of weakly magnetic impurities, 
this point is also the transition point. 

4. TWO-DIMENSIONAL ISING MODEL 

We shall now consider a square Ising lattice with 
substitutional impurities. The constants of the inter­
action of neighboring spins of different kinds will still 
be denoted by J 11 =J, J 12 , and J 22 . Well-known methods 
[20,21,6J can be used to reduce the partition function to 
the form 

Z=2N(Ch~IIl)N"(ch~I,,)'N"(Ch~I22)N"[II (1-xA,)] 'I. (37) 

Here, N is the total number of sites; Nkl = 2NckCl is the 
total number of bonds of type Jkl (Ck = NkiN is the con­
centration of spins of type k); x = thj3J; Ai are the eigen­
values of the transition matrix A(r, r')=I)(r, r')Ao(r, r'), 
where Ao is the transition matrix for the impurity-free 
case;[20,21J the quantity 11(r, r') = th!3J(r, r')/thj3J repre­
sents the change in the interaction because of the pres­
ence of impurities; and r are the coordinates of the 
lattice sites. 

The equations which define the eigenvalues Ai can 
be found by introducing, as in the book of Landau and 
Lifshitz,[20J the random walk amplitudes WO'(r) (0'= 1,2, 
3,4). Instead of WO'(r), we can conveniently use a four­
component function I/I(r) related to WO' by 

1jJ",=W,-W,+i(W,-W,). 1jJ",=-W,-W,+ (W,+w,) , 

Then, the equations for 1/1 and Ai, similar to Eq. 
(141.8) in [20J, can be written in the form 

1.(-1 +Y2~,)1jJ(r) ='/,[ 1']" .+" (Hox) (H~x)1jJ(r+a,) 

(38) 

+I'] •• -.,(1-ox) (H;x)1jJ(r-a,) (39) 
+1'] •• + .. (Hay) (1-sx)1jJ(r+a,) +1']., ._,,(1-ay ) (1-sx)1jJ(r-a,)]. 

Here, r ± al are the coordinates of the nearest cells to 
the right and left of r; r ± a2 are the corresponding co-
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ordinates of the nearest upper and lower cells (I all = I a21 

= 1). The four-row matrices acting on 1/1 Aare di~ect 
products of the two-row Pauli matrices s and (J, wh~re 

S acts on a column composed of qJ and X, whereas (J 

acts on a column composed of the components of qJ or 
of the components of X. 

The roots Ai of Eq. (39) are generally complex quan­
tities but since the partition function (37) is real, it fol­
lows that for each A= Ai there is a conjugate A= Ai. This 
also follows from Eq. (39). If we examine the equation 
which is the complex conjugate of Eq. (39), we find that 
the function 1/1' = axl/l* is the solution of Eq. (39) corre­
sponding to the eigenvalue A' = A*. 

In regions free of impurities all the components <PC\' 
can be expressed in terms of anyone component and 
then Eq. (39) becomes 

4",(r) -Ij)(r+a,) -",(r-8,) -11> (r+8,) -11> (r-8,) ~2E",(r), (40a) 

(1.'-21.-1)' 
E~ 21.(1.'-1) 

(1.-1.0 )'(1.+1/1.0)' 

21.(1.'-1) 
(40b) 

where \J = 1 + 12. 

In the absence of impurities the expressions (40) are 
valid throughout all space. Then, the Fourier transfor­
mation of Eq. (40a) with respect to r gives E = 2 - cos kx 
- cos ky and the substitution of this expression in Eq. 
(40b) yields four branches AV( E) for the impurity-free 
case. 

As before, we shall confine ourselves to low impurity 
concentrations C2 = C «1 and to the vicinity of the transi­
tion point of a pure system Tc defined by (see [20J) 
AoXo = \JthJ/Tc = 1. It is clear from Eq. (37) that a singu­
lar contribution to F and C(T) now comes from the 
values of A close to \J, i.e., from small values of E in 
Eq. (40b). According to Eq. (40a) , this corresponds to 
the functions 1/1 which vary slowly in the space between 
the impurities so that in these impurity-free regions 
Eq. (40a) can be expanded, as before, in terms of gradi­
ents. Then, the left-hand side of Eq. (40a) is replaced 
with -t.l/I and once again we go over from the discrete to 
the continuous problem of the eigenvalues of E in which 
the impurities that govern the difference between fJ(r, r') 
and unity in Eq. (39) act as isolated scatterers. 

The continuous equation corresponding to Eq. (39) 
can be obtained by solving (as in Secs. 2 and 3) the 
problem of the scattering of a plane wave by an isolated 
impurity in a discrete lattice. In accordance with the 
above discussion, we shall confine ourselves to values 
of A close to Xo= 1+12. It follows from Eq. (39) that 
in the corresponding function 1/1 we have X« qJ for the 
impurity-free regions so that it is convenient to use a 
two-component equation for qJ. Solving the scattering 
problem for a single impurity by applying, as before, 
the Fourier transform method and the Green's functions, 
we find that the wave function in the r» 1, k = (2E)1/2 « 1 
region is 

1 k. g/4 (kH;<> (kr) +in_k+H~<> (kr) ) 
cp(r)~ kf2 (k)e'" H'/,g(Hl'2In) k+H:" (kr)+in+kH:<> (kr) . 

( 41) 

Here, r=(x, y) is the two-dimensional radius vector; 
g=(1-rn/7]2; k.=kx+iky; n±=(x±iy)/r; H~l) is a Hankel 
function of the first kind. 

The continuous equation for qJ can be obtained from 
Eq. (39) by the usual expansion in terms of gradients 
and by introducing the potential V(r), which gives the 
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result (41) for a single impurity subject to r» 1 and 
k« 1. It is then clear from Eqs. (39) and (40b) that this 
"potential" should be purely imaginary, which corre­
sponds to a fall of the wave function in the region of the 
potential: 

[-iaHk-iV(r) ]cp(r) =0. (42) 

The potential V(r) can be selected in the form of, 
say, a centrally symmetric barrier of radius a and 
height Va. The identity with Eq. (41) subject to k« IVai 
gives one condition for the two constants a and Va. For 
the sake of Simplicity we may assume that the barrier 
is impermeable: Va - ± 00. This gives the minimum 
value of the radius a for a given amplitude (41): 

1 g 1-'1' 
asgn Vo~ g=--. 

n1'2 H'/,g(H1'2/n) '1' 
(43) 

Thus, in the case of nonmagnetic impurities fJ = 0, g = 00, 

and the radius is a = 0.31. 

The presence of such a barrier can be formulated 
also as the boundary condition applicable to qJ at r = a. 
Assuming, in accordance with Eq. (42), that both com­
ponents of qJ = (CfJl, qh) are continuous at r = a and postu­
lating that Va -±oo, we obtain the following expression 
for qJ(r) in the limit r-a+O: 

[n+<p,(r)+<p,(r) sgn Vo],~"+o=O, (44) 

where n+ and a have the same meaning as in Eqs. (41) 
and (43). 

The most important qualitative difference between 
Eq. (42) and Eqs. (12) and (29) considered earlier is the 
complex nature of the potential, i.e., the non-Hermitian 
nature of the effective Hamiltonian d'e; it follows that 
the eigenvalues of k are imaginary. Moreover, it is 
clear from Eq. (43) that the sign of Va, which is identi­
cal with the sign of 1-1l, governs the Sign of the scat­
tering length, which is the coefficient of the second 
term of Eq. (41) divided by k. Therefore, in the non­
relativistic case the transition from weakly magnetic 
impuritiesfJ2 < 1 to strongly magnetic impurities 7]2 > 1 
should correspond, as in Secs. 2 and 3, to the transi­
tion from repulsion to attraction. However, in the case 
of the imaginary potential in the "ultrarelativistic" 
equation (42) the interpretation is more complex: in the 
range of action of V the function qJ falls for both signs 
of V and this basically corresponds to repulsion. 

For the same reasons we find that, in contrast to 
the results in Secs. 2 and 3, there are no bound impurity 
states with real and negative values E=k2/2 <0. In fact, 
Eq. (41) for the scattering length does not have poles 
[in contrast to, for example, E~. (27)] which might be 
associated with bound states. [22 This can also be dem­
onstrated with the aid of Eqs. (42) and (44). True, all 
these expressions are valid only for small values of 
k2=2E. However, if we increase 7]2 smoothly from 
unity to large values, we find that as -g rises a level 
(pole) appears first and has a low binding energy -E - 0 
and only if 7]2 is increased still further can this level 
deepen to -E ~ 1, whereas Eqs. (43) and (41) do not have 
a pole even for 7] - 00 and g --1. 

The complete equation for the calculation of E, simi­
lar to Eqs. (14) and (30), is obtained from Eq. (42) by 
the summation of the potentials of all impurities: 

(-iaV+k)cp(r)=i I: V(r-r,)cp(r), k'=2E. (45) 
I 

In this case, the potentials V in the range I k I a «1 of 
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interest to us are indeed governed by the scattering 
length (43) or by the boundary condition (44). The values 
of A(k) are found from Eq. (40b) by expansion in E up to 
linear terms inclusive. It is clear from Eq. (40b) that 
the solutions of this equation are Al = A(k) and A2 = A(-k). 
Moreover, as mentioned earlier, there are also solutions 
A3 = A~ and ~ = A:. The substitution of these values of A 
into Eq. (37) yields the following expression for Fc which 
represents the contribution of small values of k and 
A- AO to the free energy: 

-~F,= + ~ lnl (i-x!.,,) (i-x!.,,) I' . 
1 Eo 11 

= T f f In{[ (i-x!..) '+vEx (i-x) cos 2a]' (46) 
~ 0 -15 

+2v'Ex'(l'2~!..x)sin' 2dp(E, a) dE da, 

E=lei=lki'/2; a=argk; v=!.,'·2-'J,; E,-1. 

Here, p(E, a) is the density of states deduced from 
Eq. (45): 

(47) 

Thus, once again the problem of the determination of the 
singular part of F reduces to the problem of finding 
the density of the levels of a particle in a field of im­
purities. 

The exact solution of this problem is not available. 
Therefore, we shall confine ourselves to a quantitative 
discussion similar to that given by I. M. Lifshits[llJ for 
the three-dimensional case and we shall assume, as be­
fore, that the impurity concentration is low: c« a-2. We 
shall first consider the range of the lowest energies 
E«c. It follows from Eqs. (41)-(45) that, in accordance 
with the above discussion, in the present case the im­
purities have the same influence on the spectrum as the 
repulsive impurities in the nonrelativistic problem. In 
fact, in the case of states with the minimum energy and, 
consequently, minimum momentum the condition (44) 
leads to the following behavior of the wave function in 
the vicinity of the point located by an impurity (r~a): 

!p, (r) =const[J, (kr) +'/,inkaN,(kr) ], 
(48) 

!p, (r) =-in+ const[!, (kr) + 'f,inkaN.(kr) ], 

where I n and Nn are the Bessel and Neumann func­
tions. 

If another impurity is located at a distance l« 1/ I k I 
from the one being considered, we can use the expan­
sions of J n(x) and Nn(x) at low values of x to show that 
the condition (44) is not satisfied in the viCinity of the 
second impurity. Therefore, one or several waves can 
be fitted between these impurities, I kl ~ l/l so that 
small values I kl «C1/2 -111 may be encountered only in 
impurity-free regions of size l~l/lkl and it follows 
from the Poisson distribution that the probability of the 
appearance of such regions is exponentially small. 

We shall estimate quantitatively the minimum value 
of k(l) by applying the method of I. M. Lifshits.[llJ We 
shall consider a circular region of radius R» l - C- 1/2 , 
which is free of impurities. Solving Eq. (42) subject to 
the condition (44) at the boundary of this region, we ob­
tain the following relationship for the determination of 
the required values of k 

modulus of k corresponding to n = -1 and n = 0 are 
klR"'2.9-i1.3 and k2R=-2.9-i1.3. Moreover, as men­
tioned earlier, there are roots k2 = k! and ~ = k2" and 
the corresponding equation is derived from Eq. (49) 
by the substitution k --k. 

The density of states can be found from Eq. (47) 
by averaging over the Poisson distribution. In the case 
of large values of E »c, the function p(E, a) should 
have the value (1/27T)6(a) corresponding to the impurity­
free case. Therefore, it is natural to expect that in the 
range c« a- 2 considered here, the function p(E, a) for 
all the values E« 1 can be represented in the form 
p=p(E/c, a) with the following asymptotes: 

E<.c: p(E, a) 
a: exp (-AclE) 6 (a-a.), (50a) 

A"'i6, tg 0:."'0,46; . 

E>c, p(E, a) ..... 6(a)/2n. (50b) 

It follows from Eq. (50) that in both limiting cases 
E «c and E» c the angle ao is determined 'unambigu­
ously by the value of E: ao = ao(E/c). It is possible that 
this property of p(E, a) is also retained at intermediate 
values of E. However, this can be proved only by a sepa­
rate investigation and it is irrelevant to the estimates 
given below. 

We shall now consider the dependence of the free en­
ergy (46) and the corresponding specific heat e on the 
temperature T and the impurity concentration c. Apply­
ing Eqs. (46) and (50), we obtain the specific heat (with 
logarithmic precision): 

I T-T, I '1,. 
1:= ~ :»c· c=.!.(.!...) ' In~=0.491n~; 

n T, 1" 1: (51) 

where Tc is the transition point of a pure system (for 
weakly magnetic impurities this point is identical with 
the transition point of a mixture). Next, calculating 
with the same precision the derivative e '(T) at T = Tc, 
we find that 

JC'(T,) =-0.Oi31n(i/c) <0, 

so that the specific heat maximum em shifts in the di­
rection of lower temperatures: Tm < Tc. Finally, equat­
ing e '(T) to zero, we can find the temperature Tm: 
(Tc-Tm) -O. lTccln(l/c). 

The general nature of the dependence of e on T is 
plotted in Fig. 3. It follows from Eqs. (46) and (50a) that 
all the derivatives of the specific heat with respect to T 
are finite at T = T c . 

5. DIMENSIONAL ANALYSIS OF THE DEPENDENCE 
OF SPECIFIC HEAT AND SUSCEPTIBILITY MAXIMA 
ON IMPURITY CONCENTRATION 

The results obtained in the preceding section for 
weakly magnetic impurities have a simple physical 
meaning. The correlation radius rc in the impurity­
free two-dimensional Ising model increases on ap­
proach to Tc as l/T (see, for example, [23J). If rc is 
less than the average distance between the impurities, 
r 0:: c -1/2, i.e., if T > c 1/2, the influence of impurities is 
weak and the specific heat varies mainly as In 1/ T. If 
rc > r (T < C1/2) the correlation radius is r and the singu­
larity of T is cut off at T- C1l2. 

I n+, (kR) +iJn(kR)sgn v.=O. (49) This reasoning can also be used in estimating the in-
If Vo > 0 the solutions of Eq. (49) with the minimum fluence of impurities on the magnetic susceptibility X. 
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FIG. 3 

In the case of an impurity-free two-dimensional Ising 
lattice, the susce~tibility rises as X 0: 7-7 / 4 at T - Tc. [23J 
Clearly, if 7» c1 2, this result also applies in the pres­
ence of impurities. If we make the natural assumption 
that for 7 - 0 the susceptibility X is a power law of c 
and if we match X at 7- C1/ 2, we obtain for 7« c1l2 : 

The same approach can be used in the three-dimen­
~ion~l Ising model for which Fc 0: ,Jl, Jl '" 0.64/23J and 
r 0: c 113. In the range 7» c 1/ a (a = 3 Jl) the influence of 
impurities should be unimportant and we obtain C 0: 7 - Q! 

and X 0: ,y.[23J 

Assuming, as before, a power-law dependence of C 
and X on the concentration for 7 - 0, we find from t)1e 
matching condition in the iptermediate region 7- c 1/ a 
that, in the case of 7«c1/ u: 

C a::::c- rlJO , 

For example, if we assume that Q! '" 1/8, y '" 5/4, Jl '" 5/8, 
[23J we find that 

The same estimates can be obtained by a somewhat 
different method. By analogy with the similarity theory 
in the impurity-free case,[23J we may expect the free 
energy in the Ising model with impurities in the absence 
of a magnetic field to be described by expressions of 
the type 

Fo:-r:af(cha). (52) 

Here, a= Jld, d is the spatial dimension, Jl is the 
critical index in rc (rcO: ,Jl), and f(x) can be expanded 
in terms of x (or c) in the range x« 1. If x» 1 (7 - 0) 
it follows from the finite nature of F and of its deriva­
tives that f(x) is of the form 

f(x) ~x[aO+alx-lla+a2x-2Ia+ ... +a,x-·1a+, ... J, x»1. (53) 

Using Eqs. (52) and (53), we can easily show that the 
specific I)eat is C 0: 7 a- 2 in the range c« TO' and 
Co: c 1- 2/ a in the range c »TO', which is in agreement 
with the earlier estimates if we use one of the similarity 
relationships Jld = 2- Q!. [23J The susceptibility X and the 
dependences of C and X on the magnetic field can be 
analyzed in a similar manner. 

In order to avoid misunderstanding, we must stress 
that these considerations are applicable only to pinned 
nonequilibrium impurities. No new indices are introduced 
in the Similarity theory because there is no correlation 
between impurities and r is a single-valued function of 
c and independent of T. 

807 SOy. Phys.-JETP, Vol. 38, No.4, April 1974 

6. CONCLUSIONS 

The models discussed above demonstrate that the 
presence of pinned impurities influences a phase transi­
tion in the following way. First of all, such impurities 
result in a completely "diffuse" transition: all the deriva­
tives of free energy F become finite. Consequently, the 
specific heat and susceptibility maxima are smooth, 
whereas in the case of mobile impurities, these quanti­
ties have a kink with an infinite derivative at the point 
T = Tc. [4,5J Secondly, the maximum of the specific heat 
C does not coincide with Tc. In all the models con­
sidered the maximum for systems with low impurity 
concentrations c is shifted in the direction of lower 
temperatures T < Tc (or lower fields H < Hc in the 
case of susceptibility discussed in Secs. 2 and 3), irre­
spective of the nature of the impurities. The shift of the 
maximum, Tc=Tm, increases with the impurity con­
centration and the maximum value of C decreases. 
Thirdly, the nonanalytic point in the dependence of F 
on T coincides with Tc of a pure system and it corre­
sponds to the contribution of exponentially rare impurity­
free regions; there are no other singularities near Tc 
in the case of low values of c. It is natural to assume 
that, in the case of weakly magnetic impurities, this 
point coincides with the point of appearance of the spon­
taneous moment, i.e., it is also the transition point of a 
system with impurities. In the case of strongly mag-
netic impurities, the spontaneous moment M should ap­
pear at higher values of T as a result of accumulation 
of impurities (due to fluctuations) into more or less 
dense regions, although at low values of c the prob­
ability of such accumulation and its contribution to F 
and M should be extremely small, so that they should 
not affect the lowest apprOXimation with respect to c. 

In view of this, it is interesting to consider Griffiths's 
ideas[8J on the possibility of the existence of two phase 
transition pOints in systems with nonmagnetic impuri­
ties. His main argument is that at sufficiently high im­
purity concentrations c -1 we may expect phase transi­
tions as such a system is very likely to split into non­
interacting regions separated by nonmagnetic impurities. 
In view of this, Griffiths suggests that the point of 
appearance of the magnetic moment Tc(c) decreases 
smoothly with increasing c (dashed curve in Fig. 4), 
vanishing at some.value C=Co. On the other hand, in 
agreement with Mikulinski1[6J and our results, he points 
out that the point T c corresponding to c = 0 is a singu­
larity of the free energy and hence he concludes that 
two transition pOints are possible. 

Extrapolation of the results obtained above, particu­
larly those for nonmagnetic impurities, to higher values 
of c is outside the scope of the present paper. Clearly, 
when impurity-impurity distances become of the order of 
the lattice constant, the assumptions used above (particu­
larly those in the case of nonmagnetic impurities) be­
come invalid. However, in the range of small values of 
c there is no physical mechanism which could alter 
basically the results obtained and give rise to a second 
singularity of F. Consequently, it seems more likely that 
the dependence of Tc on c does not have the smooth 
nature predicted by Griffiths but at low values of c the 
value of Tc does not vary with c and begins to fall 
only in the range c 20 Cl, following curve 1 or curve 2 in 
Fig. 4, which would correspond to a transition of the 
first or second (or higher) kind with respect to the im-
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