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Anisotropy of the upper critical field H c2 in layered superconductors with Josephson interaction of 
the layers is investigated. It is shown that in pure (along the layer) superconductors at low 
temperatures an inhomogeneous state is realized for field directions that are close to the layer 
direction, provided that the Cooper pairs in the field He 2 are not in the lower Landau orbit. The 
angular dependence of He 2 at T = 0 and the temperature dependence of He2 (II) are obtained for 
pure superconductors. The dependence of He2 (1) on temperature and purity of the crystals is 
investigated. It is shown that in dirty superconductors the transition from the normal to 
superconducting state at low temperatures may be a first-order transition for field directions close to 
a parallel direction and a second-order transition for other directions. The experimental data for 
TaS2(PY)'12 are analyzed and it is shown that Josephson interaction of layers occurs in this 
compound. 

1. INTRODUCTION 

It has already been noted [1,2] that in the case of in­
tercalation of layered compounds of the TaS2 with mole­
cules, superconductors with Josephson interaction be­
tween layers can be obtained. In the case of the hopping 
mechanism of conductivity between layers, an interac­
tion of this type is realized if the following condition 
is satisfied: 

/i/T.L ~!J.(T), (1) 

where T1 is the time between the hops of the electrons 
from one layer to the nearest neighboring one, and ~(T) 
is the superconducting gap at the temperature T. Super­
conductors in which condition (1) is satisfied will be 
called layered superconductors with Josephson inter­
action of the layers (LSJI). 

The value of the lower critical field HC1(11) for the 
direction parallel to the layers and the structure of the 
vortical state in the LSJI were obtained earlier [l]. It 
is shown in the same reference that the anisotropy of 
HCl and other features of the magnetic properties of 
LSJI in weak fields are due to the nonlinear dependence 
of the Josephson current between the layers on the 
vector potential A. In the present article we investi­
gate the anisotropy of the upper critical field of LSJI. 
An important factor in the mechanism whereby the 
nuclei of the superconducting phase are produced is 
the quasi-two-dimensional character of the LSJI [3], 

which is also connected with the Josephson interac-
tion of the layers. It was shown earlier [l] that if the 
condition (1) is satisfied near Tc (when Tc -T «Tc), 
then the field HC2 can be obtained without allowance 
for the motion of the electrons between the layers. It 
is clear that this conclusion is also valid in the region 
of lower temperatures. Therefore, if the condition (1) 
is satisfied, then the motion of the electrons in the LSJI 
can be regarded as two-dimensional in the self-con­
sistent field approximation in calculation of the parame­
ters that determine the appearance of the supercon­
ductivity. We note that by going outside the framework 
of the self-consistent-field approximation, i.e., by 
taking the phase fluctuations into account, we arrive, in 
a truly two-dimensional system, to a destruction of the 
superconducting long-range order. This does not occur 
for LSJI, since the phase fluctuations are suppressed by 
the Josephson interaction in the layers. Within the 
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framework of the two-dimensional motion of the elec­
trons the self-consistent-field approximation turns out 
to be valid because the phase fluctuations exert an es­
sential influence on the superconducting properties only 
in a very close vicinity of the transition point, at prac­
tically arbitrarily small interaction between the 
layer [3- 6] • 

For the case of a field parallel to the layers, in a pure 
superconductor (mean free path inside the layer l» ~o), 
the orbital motion of the electrons is inessential, and 
HC2 is determined only by the paramagnetic effect. 
Then, at temperatures T < O.55Tc , an inhomogeneous 
state is realized [7 ,S], and at T = 0 we have 

lI,,( II) ~ 1211 p ~!J. (0) / ~", where ~" ~ g~B / 2. 

For all other field directions it is necessary when de­
termining HC2 to take into account also the orbital 
effect connected with the two-dimensional motion of 
the electrons inside the layers. 

We shall show below (see Sec. 3) that when account 
is taken of both the paramagnetic and the orbital effects, 
the inhomogeneous state is realized for field directions 
close to parallel, and in the LSJI it corresponds to the 
situation in which the Cooper pairs in the field HC2 are 
not on the lowest Landau orbit. In the same section, we 
obtain the angular dependence of HC2 at T = O. The tem­
perature dependence of Hc2( II) is investigated in Sec. 4. 
In Sec. 5 we obtain the dependence of HC2(1) on the tem­
perature and the degree of the purity of the LSJI. 

Section 6 is devoted to dirty LSJI. In them, the in­
homogeneous state is not realized, and the transition 
from the normal state to the superconducting state may 
turn out to be a first-order transition for field direc­
tions close to parallel, and a second-order transition 
for other directions. In this section we take into ac­
count the influence of the spin-orbit scattering on the 
type of transition and on the value of HC2' In the last 
section we analyze the experimental data for TaS2(Pyh/2 
and show that this compound is of the LSJI type, and that 
an inhomogeneous state can apparently be observed in it. 

2. EQUATION FOR THE DETERMINATION OF HC2 

If the condition (1) is satisfied, tlien in the calculation 
of HC2 we should take into account the paramagnetic ef­
fect and the orbital motion of the electrons inside the 
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layers (in the x, y plane) in a field Hz = H sin e. As­
suming the transition from the normal state to the 
superconducting state to be a second-order transition, 
we write down the linear equation for the order param­
eter 

T, S ~(r)InT= d'r'X(r,r')~(r'), r=(x,Y), (2) 

from which HC2 is determined as the maximum value at 
which a nontrivial solution for .:l(r) exists [9J. 

To describe the orbital motion of the electrons in a 
field Hz = H sin B, we use a quasiclassical approxima­
tion, since we shall show below that the condition for 
the applicability of this approximation 

eliH" sin 8 / me ¢'. nT (3) 

is satisfied at practically all temperatures (T »T~/ €F). 

In the lowest approximation in the (nonmagnetic) im­
purity concentration, we obtain for the kernel of Eq. 
(2) [lOJ 

X(r,r')= I: In~ 6'(r--r')-8.(r,r'), 

tzu", S 8.(r,I")=3."(r,r')+ 2nTI d'I'''8."(I·.I''')8w (r'',r'), 

3 wO(I',I")= T(plivF )-' exp{[- 2 1001 +~ + 2i",lI sgn w]_p-
I liv. 

2' " 
+ ~;SA(S)dS}. p=r-I", 

where w = (2k + l)7rT and the two-dimensional vector 
potential A=(Ax , Ay) corresponds to the field Hz 
=H sin B. 

(4) 

In analogy with the isotropiC three-dimensional 
case [lOJ, it can be shown that SO (r, r') is a function of 
only one operator (i V - 2ieA/l1c)~ and consequently the 
solutions of equations (2) and (4) will be the wave func­
tions of the electron motion in the field Hz = H sin B. 
Choosing A in the form Ax = Hx sin Band Ay = 0, we 
obtain 

S'· 2ieH sin 8 , , 
A(s)ds= (x+x )(Y-y), 

lie (5) 

{ 2eH sin 8 [ 1 ]} [ ( 2eH sin 8 ] 'I,] ~(r)=exp lie iXoY -2:(x-xo)' H" (x-xo) lie 

where Hn(x) are Hermite polynomials and the solutions 
(5) are degenerate with respect to the parameter Xc. 

Substitution of (5) in (2) and (4) yields 

InT,=~ ~_ s. 
T ~ lOll 1-lis.l2nT't ' 

s.= T(-1)" J~exp[(-2Iwl +~- 2illoHsgnw)-P-
liv. p 't liv. 

(6) 

_ eHsin8 ']L (eHSin8 ') 
2lie p " lie p, 

where Ln(x) are Laguerre polynomials and T = Z/VF' 

In the case of pure superconductors, using the di­
gamma function l/i(x) and changing over to the momen­
tum presentation -;; with respect to the variable p, we 
obtain from (6) 

In~= lic(-1)" S~:7'd9'cxp(- :7"lIe )L (~), 
T neHsinO 2eHsin8 .. eHsinO 

o 

+U'VF 

\' dQ {( 1 , Q + 2!10H) ,( 1 )} x Re ~ (302vF2 _ ri2)' , IJl :2 + I 4nT - 1Jl:2 ' 
-.J'I'F 

(7) 
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3. INHOMOGENEOUS STATE AND ANISOTROPY OF 
HC2 IN PURE LSJI AT ZERO TEMPERATURE 

To change over to the temperature T = 0, we use the 
asymptotic digamma function. Then, after integrating 
with respect to n, Eq. (7) takes the form 

(-1)" Inh = jdxe-%L,,(2X)In [1 + (1- :h)"'] 

lloH 
h=--, 

~(O) 

o 

Hc20 
ct= I 

H p n'2sin8 
H,,, = 2e~'(O) , 

eliv; 

where In y = C is the Euler constant. 

(B) 

(9) 

Equation (B) at a given a determines the dependence 
of h on the number of the Landau orbit n, and the field 
HC2 corresponds to the maximum of the function hn 
with respect to the discrete variable n. At small a, the 
maximum of hn is reached at n = 0, and the dependence 
hC2(a) at a« 1 can be obtained from the equation 

In (h/Ct.) + (2In2+ 1)r.h-C=O. (10) 

From (10) we obtain at HC20« Hp the value HC2(.l) = HC20. 

The numerically obtained plots of hn(a) at a >0.5 
for n from 0 to 6 are shown in Fig. 1, from which it is 
seen that at a > 1.25 the solutions for .:l(r) correspond­
ing to HC2 are functions of excited Landau orbits. The 
solid curve in Fig. 1 corresponds to the maximum (at a 
given a) value of hn and it yields the function hC2(a). 
As a - 00, we have hC2 - 1 in accordance with the re­
sults obtained in [lJ, and according to the data for n:5 12 
the value nmax, which determines hC2' increases 
linearly with increasing a, or, more accurately speak­
ing, nmax coincides approximately with the integer part 
of the quantity a/LB. The function HC2(B) can now be 
obtained from (9), (10), and Fig. 1. The inhomogeneous 
state (n~ 1) is realized at an angle B < Bc 
= sin-l(Hc20/3.14Hp). 

Thus, whereas in a three-dimensional isotropic su­
perconductor the inhomogeneous state can be realized 
only at sufficiently large value of HC20/Hp (Z2)[llJ, in 
LSJI the inhomogeneous state is realized at small val-
ues of HC20/Hp, but in a narrow angle interval B~Hc20/Hp. 
The dependence of HC2 on B in LSJI is characterized by 
two features connected with the realization of the in­
homogeneous state, namely the sharp increase of HC2 
(by an approximate factor 1.5) when B decreases from 
Bc to zero, and a nonmonotonic dependence of HC2 on B 
at B < Bc. The presence of weak oscillations in the plot 

8,g 

8,' 

6.7 

o z q i I IQ .. 

FIG, I. Plots of HC2/y21Ip and hn against the parameter c< at 
zero temperature 
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of HC2 against e is due to the fact that when the angle e 
decreases from ec to zero a transition to higher Landau 
orbits takes place in the system (see Fig. 1). However, 
the appearance of oscillations in the plot of HC2 against 
e can apparently be observed only in superconductors 
with not too small values of HC20/Hp. 

We can now justify the validity of the quasiclassical 
approximation used above. Since the paramagnetic ef­
fect only decreases HC2 , it follows that HC2 < HC20/ sin e 
and at T »T~/tF the condition (3) is indeed satisfied. 

4. THE TEMPERATURE DEPENDENCE OF He2 (11) 
IN PURE LSJI 

For a field parallel to the layers (sin e - 0), the 
dependence of A(r) on the coordinates is of the form 
exp(LI'x), and Eq. (7) will go over into 

Equation (11) determines the dependence of H on:!', 
and HC2(1I) corresponds to the maximum of this func­
tion with respect to the variable .":1'. 

Let us find first the asymptotic form of HC2( II) at 
T« Tf.!' We introduce the dimensionless variables 
w=n;2A(0), P=:!'VF/2A(0), and f=1TT/A(O). The de­
pendence of h on p at T = 0 was obtained earlier (ll , 

and is determined from the equation 

h'+ Ih'-p'l ~1/2(1+p'). (12) 

The maximum of h is reached at p = 1, and, as seen 
from (12), the function h(p) is not analytic in the vicin­
ity of this point. One can therefore expect the dependence 
of hC2( II) on T to be likewise nonanalytic as T - O. We 
use the following integral representation for the digamma 
function Cl2J 

1 S ydy lJl(x)=lnx---2 
2.r (y2 + x') (e2., - 1) . 

o 

(13) 

After substituting (13) in (11), we obtain an equation that 
determines the dependence of h on p and t: 

t' t-' dt" 1 ~~' 
f(h, p) = - ~ - - -2 dx x 

n ..'c,(1-w')"[I'+(h+p,,)'] no 

-+;1 d", 2 -1:' d", ": xdx(e'"X -1t' 
X~,(l_"")" lx' + (It + pw)'] + -n Re ~,(-1---(-')2-)"~-x2-'-+'-[-'/,-+-'--i-(h-+.....:.c.P-j)-/2-'t""'I" 

f(h, p)= ~S+l doo , In 12h + 2pool = {In[h + (h' - p,)'I,], 
n (1- 00') I, Inp, 

-\ 

h;;;. p, 

p>h. 

(14) 

The integration with respect to w in (14) can be car­
ried out exactly; however, the expressions obtained 
after integration are cumbersome, and we shall not 
present them here. An analysis of these expressions 
shows that at t« 1 the dependence of h on p in the hp 
plane intersects the line h = P and continues to move 
upward,Le., ah/ap>O at Ih-pl«t«1. Therefore the 
maximum of h with respect to the variable p is reached 
at p > h either in the region p - h - t, or in the region 
p - n »t. In the former case 1 - h - p/2 , and in the latter 
case higher values of h are reached. Indeed, at p - h 
== z »t we obtain 

h(z t)= 1- z - E. l ' Z-'I, 
, 12' 

Finding the maximum of h(z, t) with respect to the 
var iable z, we obtain at t« 1 
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( 15) 

( 512 ) 'I, 12( 512 ) -'1, _, 
Zmo,= 241' , Pmox=l- 12 24 I", 

712 ( 5 1'2 ) -'I, 
h,,(li)~hm==l-24 24 1"'. 

( 16) 

It is seen from (16) that zmax» r at t« 1 in accord­
ance with the assumption made above. The condition 
Zmax »t is satisfied more accurately at (288 t/25)'/7 
« 1, and in this temperature region the asymptotic 
form (16) is valid. 

The dependence of hC2(11) on t = T/Tc was investi­
gated earlier (ll for t close to unity. In the region of 
intermediate values of t, the quantity hC2( II) can be 
obtained only numerically. (To carry out numerical 
calculations it is more convenient to use in place of 
Eq. (11) with the digamma function an equation with 
summation over frequencies, and to integrate with re­
spect to . .!".) The dependence of HC2(11) on t is shown 
in Fig. 2, which also shows the temperature dependence 
of the parameter p of the inhomogeneity of the state. 
From Fig. 2 it is seen that, in agreement with the re­
sults of (3J, the inhomogeneous state is realized at 
T<0.55Tc · 

5. DEPENDENCE OF He2 (1) ON THE TEMPERATURE 
AND ON THE DEGREE OF PURITY OF THE CRYSTALS 

Usually HC2(1) «Hp, and in this case the paramag­
netic effect can be neglected when HC2(11) is calculated. 
We then obtain from (6) at n= 0 

1 ±oo. 1 In.-'''<p (a) ] 
In· - ----T- 1: [ 12k+ 11 l-,k'I'<p(a)' 

11=_00 

tI2k+ll+A It ,,=eltv.'H,,(-1..) 
a ~ Ji'I' 1.= 2nT,1;'" 2n'cT.' 

(17) 

<p(a)= 1-;eo' ( 1- 1~ j e-x'dx). 
, 

Like Helfand and Werthamer (1OJ, we plot h* 
=li/(-dIi/dth-l against t, where (-dIi/dth-l is the 
derivative of Ii with respect to t in the temperature 
region where the interaction of the layers still remains 
of the Josephson type, i.e., in the region 1» 1 - t 
»ti/ T 1 Tc. Owing to the quasi -two-dimensional charac­
ter, we have 

( dn. ) [ n'A (1 A ) (1 -. & t~t=2A' -4-- 1P '2+2 +1P 2)] . (18) 

The results of the numerical calculation are shown 
in Fig. 3, from which it is seen that h*(t) in LSJI is 
lower the smaller X. In the isotropic three-dimensional 
case (10J the situation is reversed, and h*(t) is smaller 
the larger X. At T = 0, with accuracy no worse than 3%, 
the plot of HC2(1) against X is approximated by the 
formula 

H,,(-1..) =H,20(1 + 1,11.) 

for Xo:S 6. 

6. TYPE OF PHASE TRANSITION AT He2 
IN DIRTY LSJI 

(19) 

We consider first the case of dirty LSJI (l « ~o) with­
out allowance for spin-orbit scattering. We can then 
show that the inhomogeneous state is not realized in the 
limit of dirty LSJI. Indeed, if we wish to regard the 
transition from the normal state into the superconduct-
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FIG. 2. Dependence of hC2(Ii) and of the inhomogeneity parameter 
p on the temperature. 

FIG. 3. Dependence of h * on the temperature and on the mean 
free path. 

ing state as a second-order transition, then we obtain 
for the determination of HC2 the equation [13] 

{ 1 [1 D(d2 4e'H" ') In--Re1\l -+--- -----. x sin 8 
t 2 2nT d:J;' e' 

+ i:;~]+1\l(4)}L'l(x)=o, 
(20) 

where D = VFZ/2 is the coefficient of diffusion inside the 
layer. Taking for A(x) the solution corresponding to 
the Landau orbit with quantum number n, we obtain 
from (20) 

In~=Re1\l[~+(n+~) DeHsin8 + iJl.oH]_1\l(~). (21) 
t 2 2 nT 2nT 2 

It is seen from (21) that the maximum field is reached 
at n = 0, and that the inhomogeneous state is impossible 
in dirty LSJI. It is clear that this conclusion does not 
change if we also take the spin-orbit scattering into 
account. 

In accordance with Maki's results [14], the transition 
from the normal state to the superconducting state at 
small 8 and at low temperatures may turn out to be of 
first order. In the analysis of the situation, we take into 
account also the spin-orbit scattering, in analogy with 
the procedure used for an isotropic three-dimensional 
superconductor by Werthamer, Helfand, and Hohen­
berg [15]. In dirty LSJI with a spin-orbit scattering 
time T2 » T, we obtain for HC2 the equation 

I 1 fi{ 1 [12k+11+ 1i+ (aTilt» ]-'} 
n t = 1- 12k+11 - t 12k+11 +(1i+A .. )!t ' II __ DO 

(22) 

1i= eDH"sinH 
ncTe ' 

1 
A.o= nTc"h 1 

/-Ioe a=---. eDsin8 
(23) 

Equation (22) coincides fully with Eq. (28) from [15], 

except that the expressions for 11, <li, and ASo are dif­
ferent. An analysis of (22) at T = 0 [15] shows that at 
ASO < A~o = 0.5139 the transition from the normal state 
into the superconducting state turns out to be a second­
order transition at <li < <lic and a first-order transition 
at o! > o!c, where 

a, = [1 + 1,5891.'0/1.,,') / [i-A.o/A,o'l. (24) 

At O! = <lic we obtain Hg2 = Hp(0.5 + 0.795Aso/A~0), and for 
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smaller <li we obtain the field H~ <Hg2. At ASo~ A§O, the 
transition to the superconducting state is a second-order 
transition regardless of the value of <li and HC2 ~ Hp as 
sin 8-0. 

The case of nonzero temperatures at ASO = 0 was con­
sidered by St. James et al. 13], and the results obtained 
there make it possible to draw the boundary between 
the regions of the first- and second-order transitions 
on the 8, T plane. Thus, in dirty LSJI with not too 
strong a spin-orbit scattering one can observe, at low 
temperatures, the replacement of a second-order 
transition by a first-order transition as the direction 
of the magnetic field approaches the parallel direc-
tion. For small t and ASO' this replacement occurs at 
an angle sin 8'" MoC/ eD. 

7. ANALYSIS OF EXPERIMENTAL DATA 
FOR TaS2(Py)y. 

From measurements of the electronic specific heat 
at low-temperatures [16] we can obtain the density of 
states, since the term linear in the temperature in the 
specific heat f3 is connected with the density of states 
N(O) by the relation 

where kB is Boltzmann's constant. The quantity f3 
=(8.9±0.04) mJ/mole"K2 yields N((i)",1034 erg- 1 cm-3 

(molecular weight 285, density 4.1 g/cm3 [7]). Now, 
knowing the lower bound of the resistivity P1 across 
the layers [8], we can obtain an upper bound of 0/T1, 
using the relation 

(25) 

1! DJ. = 'fJ./ d' = 2e'pJ.N(O), (26) 

where d is the distance between layers, equal to 12 A 
for TaS2(Pyh12' From P1 > 60-cm (at temperatures be­
low 1O"K) we obtain 0/T1 <0.17"K. Comparing this es­
timate with the value Tc = 3.25"K, we verify that the 
condition (1) is satisfied in TaS2(Pyh12 at least for tem­
peratures 1 - T/Tc > 3 x 10- 4 and, consequently, the in­
teraction of the layers is of the Josephson type at prac­
tically all the temperatures. 

We note that the value of 0/ T1 can be obtained by 
measuring the field HCl( II) , for in accordance with the 
results of [1] we have 

A ,_ me' 
L - 4n:N 8ez ' 

where s(x) is the Riemann function and AL and Aj are 
the respective depths of penetration of the field per­
pendicular and parallel to the layers. 

The values of the coherence length ~o and the mean 
free path 1 inside the layer can be obtained if we know 
(in addition to N(O) and Tel the resistance PII along 
the layers and the critical field Hc(l). When ~o and Z 
are determined from the equations 

Iso = liy 1./( _!!:.) 
n'e'PIIN(O)T, ' dt t~, H,,(.1.) 

and the quantities A, h*, and (-dli/dth-1 are defined 
in Sec. 5. 

(28) 

The measured values of PII and HC2(1) for TaS2(Pyh12 
are given by Morris and Coleman in [17]. Unfortunately, 
during the course of the measurements with one and the 
same crystal, the value of PII varied in the course of 
time from 10-5 O-cm at the start of the experiment to 
6 x 10- 5 O-cm at the end. Apparently, the measure-
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ments of HC2(1) at T = 2"K are among the earliest ones, value when the field H was increased above HC2 at 
since they yield the largest value of 1. We can there- small 8 and at T = 2.84 "K. This variation of the resis-
fore take for the crystal at the start of the experiments tance with the field is apparently connected with the 
Hc2(1) = 1.4 kOe and PII = 10-5 O-cm at T = 2"K. In this superconducting fluctuations above HC2' The paramag-
case we obtain with the aid of (28) ~o = 4.4 X 10-6 cm, 1 = 3.5 netic effect facilitates the appearance (owing to the fluc-
x 10-6 cm, and VF = 1.1 x 107 cm/sec. Inasmuch as in the tuations) of superconducting regions with characteristic 
quasi-two-dimensional case1) we have N(O) = m/27Td, we dimensions on the order of n vF/ /-LoH (it is precisely for 
get for the effective mass the value m = 9 x 10-27 g and this reason that an inhomogeneous state is realized in 
kF=108 cm- 1. pure LSJI at T<0.55Tc and small 8). Therefore the in-

The carrier density n is connected with kF by the fluence of the fluctuations on the conductivity above 
relation n=ki-'/2rrd, and for TaS2(Pyh/2 we obtain HC2 (but below Tc) should be stronger than above Tc · 

n= 1022 cm-3. If each Ta atom gives one electron to the We consider now the data for HC2(8) at T = 1.4"K. 
conduction band, then the electron density should be of At this temperature we have HC2(1) = 4.9 kOe, and for 
the order of 0.85X 1022 cm-3. According to the results of this value of the field we obtain 1 = 10-6 cm. Obviously, 
Thompson, Gamble, and Koehler [18J, the carrier density at such a small mean free path and at a temperature 
in TaS2 at T<20"K is about 1.5xl022 cm-3. In TaS2(Pyh/2, T=0.43Tc the inhomogeneous state is not realized. 
the concentration of the conducting electrons should be We apply the theory of dirty LSJI to this case. Then, 
somewhat more than half of this value, since the volume according to the results of Sec. 6 and the book by St. 
per Ta atom in this material is twice as large as in James et al. [131, for angles 8'? 2° the transition from 
TaS2 and since, according to the results of [19J, pyridine the normal state to the superconducting state is a 
(Py) adds approximately an additional 0.25 electron to second-order transition. The calculated theoretical 
the conduction band, increasing the carrier density by values of Hb(8)/Hb(1) for the angles 8~ 6° turn 
approximately 0.12x 1022 cm- 3. The good agreement of out to be in this case lower than the experimental ones 
all these estimates for n shows that the values of ~o (they differ by factors 3.3, 2.5, and 1.5 for the respec-
and 1 presented above are not far from the real ones. tive angles 2°,4°, and 6°). This difference can appar­

Thus, in the study of Morris and Coleman [17J, the 
TaS2(Pyh/2 crystal was of intermediate purity at the 
start of the measurements (A = 1.1), but by the end of the 
experiments it must be regarded already as a dirty 
superconductor (A'" 4-6). Since the spin-orbit scattering 
is weaker by at least 2 orders of magnitude than the usual 
scattering, it follows that ASo < 0.05, and the spin-orbit 
scattering for the investigated samples is immaterial. 
Therefore, when the field direction approaches parallel 
(8.s 2°) and at temperatures T« T c' the re should be 
realized below HC2 , depending on the degree of purity 
of the crystal, either an inhomogeneous state or else a 
first-order transition from the normal state to the 
superconducting state [20,21J. 

Morris and Coleman [17J measured the anisotropy of 
HC2 at 2.84 and 1.4"K. In the former case the tempera­
ture is close to Tc (t=0.88), the transition from the 
normal state to the superconducting state is a second­
order transition, and in accordance with the results 
of [lJ the dependence of HC2 on 8 is given by the ex-
pression 

1 + 2x' -(1 + 4x')'" 

2x' sin' 8 

2"T,(1- I)'" 
JI.'2 (II) = ---==-

~o Y7\;(3) 

(29) 

At T=2.84"K, the value of HC2 at 8=4° is -7 kOe, 
and HC2(1) = 0.5 kOe (according to the results of Sec. 5, 
the value HC2(1) = 1.4 kOe at T = 2"K corresponds to a 
field Hdl)=0.45 kOe at T=2.84"K). From (29) we ob­
tain HC2( II) = 36.2 kOe, and for the angles 8::::: 4 ° we have 
x«1 and Hb(8)/Hb(1)::::I/sin28. At 8=3 and 2°we 
obtain from (29) for the same ratio the values 315 and 
560, respectively, whereas the experimental values 
are 335 and 530. 

Thus, the agreement between the theoretical re­
sults [1] and the experimental data [17J for T=2.84"K 
is good, and confirms the premise that the interaction 
of the layers in TaS2(Pyh12 is of the Josephson type. 
We note that Morris and Coleman [17J have observed a 
very slow approach of the resistance to the normal 
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ently be attributed to the uncertainty in the experimen­
tal determination of HC2( 8) at small 8, owing to the 
weak and nonmonotonic growth of the resistance with in­
creasing magnetic field above HC2' At 8 = 0 and 
T = 1.4 "K, the transition to the superconducting state 
from the normal state should be a first-order transi­
tion and should occur in a field -0.9Hp= 54 kOe. Yet 
experimentally, at 8 = 0, the resistance amounts to only 
a small fraction of the resistance in the normal state, 
even in fields that are 2.5 times larger than Hp=60 
kOe. This effect is possibly connected with the realiza­
tion of a metastable state. At T = 0, the metastable 
superconducting state with a homogeneous order param­
eter can be preserved in fields H ~ Vi Hp [22J. The re­
gion of metastable states with an inhomogeneous order 
parameter is apparently even broader. 

In conclusion, the author thanks the participants in V. 
L. Ginzburg's seminar, and also A. 1. Larkin for a 
useful discussion of the work. 

I)We note that according to [I] the critical temperature Tc in LSJI is 
determined by the density of states N(O) = m/2rra, where a is the 
thickness of the conducting layer. 
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