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A general expression for the critical superconducting transition temperature 1;, is obtained on the 
basis of the Eliashberg equations for superconductors with strong coupling and by employing a 
simple approximation of the gap in the form of a steplike alternating function. It is shown that in 
the derivation of the familiar McMillan formula for Te , some important renormalization terms 
containing an essential functional dependence of Te on the shape of the phonon spectrum were 
either lost in the argument of the exponential function, or were incorrectly evaluated. Consequently 
the formula does not describe correctly the behavior of 1;, in the presence of low-frequency peaks in 
the phonon state density. It is shown within the model of a phonon spectrum consisting of two 
Einstein peaks that upon decrease of frequency w, of one of the peaks Tc passes through a 
maximum, and then decreases together with the effective coupling constant as w,~O. In other words, 
upon "softening" of the lattice (e.g., near the phase transition) Tc may not increase but rather 
decrease. 

1. INTRODUCTION 

At the present time, there have been a number of re
searches devoted to the effect of the features of the pho
non spectrum of metals on the critical temperature of 
the superconducting transition Tc. In these works, the 
starting point for the analYSis of the experimental re
sults has usually been the well-known formula of 
McMillan:(lJ 

e [ 1.04(1+1.)] 
T, = -1.-4-5 exp - ~-fL--" (:-'-1--'+-O;:-.-"fj2~A;:-) , (1.1) 

where A is the constant of the electron-phonon inter
action, jJ.* the Coulomb "pseudopotential," and e the 
Debye temperature. 

Equation (1.1) was obtained by McMillan in two stages. 
First, by means of a simple approximation of the gap by 
a step-like test function, which changes sign at the limit
ing frequency of the phonon spectrum wma~, the equa
tions of strong coupling theory were solved 2,3J as T ~Tc, 
and an approximate analytic expression was introduced 
for the critical temperature:(lJ 

(1.2) 

where 

a(w) is the characteristic function of the electron
phonon interaction, and F(w) is the phonon state density. 
Then Eq. (1.2) was reconciled, by choosing the constant 
coefficients, with the results of the numerical solution 
of the equation for the gap, which was obtained by use 
of the phonon state density of niobium. It was assumed 
that (/(w) = const, and the contribution from the low
frequency region of the spectrum, as far as w = 100° K, 
was not taken into account, i.e., it was implicitly as
sumed that all the phonon frequencies that are essential 
in a 2 (w)F(w) satisfy the condition w»Tc. 

However, it must be emphasized that some unjustified 
approximations were made in the derivation of Eq. (1.2), 
as a consequence of which there was an incorrect re
normalization of the effective coupling constant. There-
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fore Eq. (1.1), which was used in (lJ for the analysis of 
the experimental data, leads to incorrect empirical val
ues of A and jJ. * and, as will be shown below, improp
erly describes the behavior of Tc when low-frequency 
branches appear in the phonon spectrum of supercon
ductors, 

Even in (lJ, an assumption was made which has far
reaching consequences. McMillan assumed that one 
could substitute the mean frequency (w) [Eq. (3)] as the 
pre-exponential factor in Eq. (1.1) in place of the Debye 
temperature e ,so that the following relation is obtained for 
Tc in place of (1.1) for the case of niobium (see (4J): 

(1.4) 

On the other hand, according to (lJ, the electron
phonon interaction constant can be represented in the 
form 

Om., dw const 
A=2 S -cx'(w)F(w)""--

(] W <(02.) 
(1.5) 

II)max (o)max d 
<w 2 ) = S dw (j)cx'(w)F(w) / S ~cx2(w)F(w). 

" , w 
(1.6) 

Starting from Eq. (1.4), and making the apprOXimate 
substitution (w 2) ~ (W)2 in (1.5), McMillan showed(l] that 
T c has a maximum as a function of (w), and calculated 
the values of Tfax for various classes of supercon
ducting materials, 

Later, Dynes(4,5] analyzed a large number of experi
mental data and came to the conclusion that Eq. (1.4) 
much more accurately describes the dependence of Tc 
on the form of the function a 2(r.t1)F(w) and on jJ.* for 
various superconductors than Eq. (1.1). The reason for 
this will be made clear later on, and we note here only 
that the replacement of e in the pre-exponential factor 
by <w) has no rigorous justification, 

In the present research, a simple approximation of 
the gap by an alternating-sign step function is used for 
the solution of the Eliashberg equations. (2J This function 
passes through zero at the point Wo (the frequency Wo 

is generally not equal to wmax). As a result, a more 
accurate formula is obtained for the calculation of the 
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critical temperature, which is valid in practice for any 
relation between T c and the characteristic frequencies 
of the phonon spectrum, provided that We is much greater 
than Tc. It is shown that, within the framework of a 
model in which the phonon spectrum consists of two Ein
stein frequencies Wl and W2, when the frequency of at 
least one of the peaks of the phonon state density is de
creased the critical temperature reaches a maximum 
and then falls off; the maximum value of T c can be much 
lower than Tfflax computed from the formulas of 
McMillan. [ll 

2. FORMULA FOR THE CRITICAL TEMPERATURE 

We shall start out from the set of equations of 
Eliashberg[21 for superconductors with strong coupling 
as T -Tc, with account taken of the Coulomb repulsion: 

1 ~ Om" 

Mw}"" oo[l-Z\oo) l=T S dB S dva.'(v)F(v} 
, . 

X {[th(_B ) +Clh(~)][ P P 
21', 21', B + V + 00 B -j- V - 00 

-[th(_e)-cth(~)][ P - P ]}'(2.1) 
"21", 21", - B + V + 00 - B + V - 00 ' 

1 ~ d -. 
C(oo) = -Z-'(oo) S --':C(e) S dva.'(v)F(v) 

2 0 e 0 

x {[th(_B ) +cth(_V )][ P +-P -1 
21, 21", e+v+oo e+,.-oo 

+[lh(_e )-cth(_V )][ P +_~P ]} 
21', 21', -8 + \" + (,j --, -j- Y - "' 

-N(O)U,Z-'(oo) S de C(e)th (_e_). 
o e 2T, 

(2.2) 

Here N(O) is the normal density of the electron states 
at the Fermi level. Uc =Vc[1+N(0)Vc In(Etf/wclt1 is 
the intermediate Coulomb pseudopotential, 1 V c is the 
matrix element of the screened Coulomb interaction, aver
aged over the Fermi surface, Wc is the cutoff frequency, 
which lies in the range Wmax «wc« EF, and EF is the 
Fermi energy. (In writing down (2.1) and (2.2), just as 
in [ll, we do not take into account attenuation effects, 
and all the integrals are taken in the sense of the prin
Cipal value.) 

If we replace coth(v/2Te) in (2.2) by unity, which corre
sponds to a neglect of the thermal phonons, and set 
tanh( E/2T cl = 1 in integrals which do not contain log
arithmic Singularities, then Eq. (2.2) is materially 
simplified (see [31): 

00 d mll'\<lX 

C(oo)=Z-'(oo) S~C(e)th(_e_) S dva.'(v)F(v) 
o e 2Tc 0 

(2.3) 
x[ P + P ]-N(O)U,Z-'(oo)SdBC(e)th(_e_). 

e + v + 00 e + v - uj " e 2T, 

as W - 0, Eq. (2.3) for the gap takes the form 

J. ~ de ( e) 2 .m" dv ~ de 
C(O)=-S-C(e)th -, --, - S -a.2 (v)F(v)S --C(e) 

Z(O) 0 e 21, Z(O) 0 V • e+v 

(2.4) 
N(O)U'S·'de () (e). --- -C e th -

Z(O) , e 2T, ' 

• 2
omS" dv .. ( )"() Z(O) I' [1 /(00)] A == - a- v l' V , = 1m '---

o V w_u (0 

(2.5) 

At the same time, the asymptotic form of Eq. (2.3) as 
W -00 is 

, N(O) u, "'s de ( e ) C(oo)= --- -C(e)th - . 
Z(oo) • e 2T, 

(2.6) 
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By analogy with [11 , we approximate the gap C(w) by a 
step-like test function 

C,(oo)= { Ll., 
- Ll~, 

0<00<00. 

W>Wo 
(2.7) 

where the value of We is not yet specified/) but it is 
assumed that the condition We »Tc is satisfied. 

If we also set coth (v/2T cl:::: tanh( E/2Tcl:::: 1 in (2.1) 
(the accuracy of such an approximation will be discussed 
in detail below, in Sec. 3), we then obtain the limiting re
lations for the normal self-energy part: 

where 

{ -1.00, 
/.(00) = _ I.<v')/oo, 

00 ..... 0 
00 ..... 00 

(2.8a) 
(2.8b) 

1i,l1lUl:( Wm(l% d 
<V') "" S dvva.'(v)F(v) / S _v_a.'(v)F(v). (2.9) 

, • v 

Thus, in accord with (2.1) and (2.5), we have Z(0)=1+A 
and Z(OO) = 1. 

As a result, we arrive at the following set of homo
geneous linear equations relative to ~ and ~ (cf. [1]): 

(1 +A)Ll. = Ll.[ I.ln( l.~~oo.) -A. ]-Ll~(1+A~); (2.10) 

(2.11) 

where 

N(O)U, N(O) V, 

>t' = 1 + N(O) U,ln(oo,/ooo) 1 + N(O) V,ln(Ep/oo.) 
(2.12) 

(IIIM% d 

1..=2 ~ -7-a.2 (v)F(v)ln(1+ ~'), (2.13) 

.~. d 
1.00 = 2 S ~a.'(v)F(v)ln (1+2...). (2.14) 

o '\" Wo 

From the condition of solvability of the set (2.10) and 
(2.11), we obtain an exponential formula for the critical 
temperature of the superconducting transition: 

1+1.+),.. ] 
1.-11'(1+I.~) . 

(2.15) 

Comparing (2.15) with the results of McMillan/1] we 
see that the argument of the exponential of (1.2) does 
not contain the term Xc,2) and the quantity <w>Vwmax 
is obtained from Aoo under the condition We = W max » v 
with account taken of only the first term in the expansion 
of the logarithm under the integral sign in (2.14). The 
absence of Xc in (1.2) (or in (1.1» corresponds to the 
neglect of the effects of retardation of the electron
phonon interaction in the most important region of en
ergies 0 < E < We, i.e., to the substitution of a constant 
for the kernel of the integral equation (2.3) in this re
gion. As we shall see, this is entirely invalid even in 
the case in which all the characteristic frequencies of 
the phonon spectrum are much greater than T c, inas
much as Xc is a quantity of the same order as A. If 
there are low-frequency peaks in the phonon state den
sity, then the term Xc becomes dominant, and the value 
of Tc is essentially determined by the ratio Xc/A. 

Up to this point, we have not specified the quantity 
We, in the choice of which there is considerable leeway. 
Thus, for example, we can set We = W max, as is done 
in [1,7]. However, it is more natural to define, in accord 
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with (2.7), the quantity Wo, as the point when the sign of 
the gap reverses, where C(wo) = O. Then we get from 
(2.3) the following equation for finding Wo: 

j de C(e)th (~) T'dv a,'(v)F(v) [ p + p ] 
(j B 2Tc 0 8 + V + (1)0 8 + V - Wo 

(2.16) 
I"" de ( 8 ) =N(O)U, -C(e)th - . 
o 8 2T" 

Unfortunately, it is not possible to find self-consistent 
solutions of Eq. (2.16) within the framework of the 
simplest approximation (2.7). However, the frequency 
Wo can be estimated approximately if we use the method 
of Zubarev[Sl and choose as the first iteration for the 
gap C(w) the kernel of the integral equation(2.3), taken at 
the point E = O. Then Wo is determined from the condition 

I dva,'(v)F{v) [_P_+_P_] - 11' (ro,) = 0, (2.17) 
o v+(t}o 'V-Wo 

(For the estimate, we can limit ourselves to qualitative 
consideration of the Coulomb interaction of the elec
trons, introducing the true pseudopotential Il * in the 
last term of Eq. (2.3) by cutting off the upper limit of 
the integration at the frequency wo.) It is easy to see 
that when so determined, the frequency Wo never van
ishes, although it depends essentially on the shape of the 
phonon spectrum (roughly speaking, Wo lies close to the 
"center of gravity" of the function a 2(v)F(v)). 

Finally, we note that the expression (2.15) can for
mally be represented as 

[ 1+1. ] 
T, = 1.14toexp - ( )' 

1.-11' l+A~ (2.18) 

where 

to = OJ, exp [ - -A ---11-' -( ~-' +-A-~-:-J (2.19) 

In this notation, the argument of the exponential in (2.18) 
becomes much closer to those in formulas (1.1), (1.2) 
or (1.4) of McMillan; however, the pseudopotential fac
tor w is materially different from 0, wmax or (w). 

3. FORMULA FOR THE CRITICAL TEMPERATURE IN 
THE PRESENCE OF LOW·FREQUENCY 
SINGULARITIES IN THE PHONON SPECTRUM 

The case of the existence of low-frequency peaks in 
the phonon spectrum3) requires special conSideration, 
inasmuch as it is impossible to set tanh( E/2T c) 
= coth(v/2Tc) = 1 beforehand in Eq. (2.1), and also to use 
for the gap the Simplified equation (2.3) in place of the 
exact equation (2.2). 

We first consider the expression (2.1) for the normal 
self-energy part fo(w). It is easy to show that the terms 
proportional to coth( v/2T cl, do not make a contribution 
to fo(w) in integration with respect to E from 0 to 00. 
Therefore (2.1) can be transformed to 

~ Om., P P 
fo(ro)=Idxxthx I dva,'(v)F(v) [-,--. ---] 

o 0 X~_V+2 X 2 _V_2 

1 I~ dx omf", I x'-v+, I =--P -- dva, (v)F(v)ln --- , 
2 0 ch2 x ·0 X 2 _V_2 

(3.1) 

v±=(v±OJ)/2T,. 

Integration with respect to x in (3.1) can be carried out 
exactly if we conSider the following relation (see the 
Appendix) 
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I~ dx [( 1 v,. )] P --lnlx'-v,.'1 =2 Inn+Re1jl -+i- , 
o eh' x 2 n 

(3.2) 

where l/J is the logarithmic derivative of the r func
tion, As a result, we get for fo(w) 

Om.. 1 1 
Io(OJ)=- I dva,'(v)F(v) [Re1jl(z-+i ~)-Re,p(2+<-)]' (3.3) 

It then follows that as w - 0 the function takes the form 

[ 010(01) ] 
10(OJ)""-ro --- ~-('lA(T,), 

a{t) w=o 
(3.4) 

where 

A(T,)=-~ J dva.'(v)F(v)Im1jl'(~+i2'YT ) (3.5) 
nl, 0 2 n , 

(here l/J' is the first derivative of the l/J function). Under 
the condition v» 1TT c' we can make use of the well
known asymptotic form (see [lOll 

( 1 V) 2nl', ([ 2nl', ]') Im1jl' -+i-- ""---+U -- , 
2 2nT, v v 

(3.6) 

by virtue of which we obtain A(Tc) '" A, so that (3.4) goes 
over into the relation (2 .8a). 

In the range of energies w »wo, the following asymp
totic expansion is valid (see [lOl): 

( 1 . V,.) (OJ) v. ([ v ] ') 1{e1jJ ;;;-+'7 ""In uti; ±-;;;-i""U -;;;- , (3.7) 

whence it is seen that the expression (3.3) reduces to 
(2.8b) in this limiting case. 

We now concern ourselves with the solution of the 
exact equation for the gap (2.2). If we stay as before 
within the framework of approximations (2.7) for C(w), 
then in the limit of small v particular attention must be 
paid to the calculation of the integration of terms con
taining tanh(E/2Tc) with respect to E in the range 
0< E <Woo 

( OJ') 1 I OJ,' - v' I ~ dx ""In - --In --- -I-Inx 
21', 2 (2T,)' 0 eh' x 

(3.8) 

+~pJ~ ":::"'In Ix'- (~)'I· 
2 ,eh'x 21', 

(Here the upper limit wo/2T c »1 is replaced approxi
mately by 00.) 

Carrying out calculations similar to those that led 
to Eq. (2.15), in Sec. 2, with account taken of the relation 
(3.2), we get the following transcendental equation for Tc: 

(3.9) 

where 
om .. d ' 

Ao(T.)= I -':::"'a,'(v)F(v) {In 11- OJ~'I +2In(-i-) 
o v v .... nTc 

- 2 Re1jJ (~+ i~) +In I OJ, +v I cth (';:-)}; (3.10) 
2 2nT c Wo - \ I .... T,. 

·~f' dv {I v' I 1 ro, + v 1 (V)} A~(T,)= -. a,'(v)F(v) In 1--, +In ---=-: cth - . 
'0 '\ • (Do Wo \ 2T.~ 

(3.11) 
Under the condition v/1TTc »1, the quantity Ao(Tcl goes 
over into ~,and Aoo(Tcl is identical with Aoo, i.e., Eq. 
(3.9) reduces to Eq. (2.15). 
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4. CRITICAL TEMPERATURE IN THE PHONON 
SPECTRUM MODEL WITH TWO EINSTEIN PEAKS 

The calculation of Tc from Eq. (2.15) or (3.9) can be 
carried out only in the case in which the explicit depen
dence of the function a 2(v)F(v) on v is known. In the 
general case, this function is of the formll] 

d'k d/k' / d'k 
a'(v)F(v)= S- S-,--, ~ M:"oJ~(v-6)'-",j) S-. 

:;, v, t>, Up .(2n) 4 s, v'-
(4.1) 

where Mkk' ,j = (2MNwk-k', jr1l2gj(k, k') is the matrix 
element of the electron-phonon interaction, gj(k, k') 
= (klek-k' ,jVU I k') is the matrix element of the electron
ion interaction, wk-k' ,j and ek-k' ,j are the frequency 
and polarization vector of a phonon with momentum 
k- k' and polarization j, and vF is the Fermi velocity 
of tlie electrons (integration in (4.1) is carried out over 
the Fermi surface). As was shown in [1], the first mo
ment of the function a 2(v)F(v) does not depend on the 
phonon frequencies: 

Om.. N(O) 
S dvva'(v)F(v)=-~,(g/>=const. (4.2) . ~ ~ 

To analyze the behavior of Tc when the low-frequency 
peaks appear in the phonon state density, we choose a 
simple spectrum model in the form of two Einstein fre
quencies (cf. with [6,12]): 

2 r./n 2 

a' (v)F(v) = La/(v) (v _ 6)',), + r .. "" 1: a/tv) Il(v - 6),) (4.3) 
i_t· 1_1 

(the latter is valid under the condition Wi» ri, where 
ri is the width of the peak). In this case, in contrast 
to [6] (see also [ll), we consider in (4.3) the dependence 
of a 2 (v) on v, which is especially important in the 
presence of low-frequency peaks.4) We note that the 
approximation ai(v) = const, made in [6], does not allow 
us to satisfy the exact condition (4.2). 

Within the framework of the Einstein spectrum 
model, we have, in accord with (4.1), 

, 
1: '1, = 1. 
i= 1 

(4.4) 

Calculating the first moment of Eq. (4.3), with allowance 
for (4.4), and comparing it with (4.2), we find the dimen
sionless parameter (3: 

N(O) 1: 2 
~=-- (g,>. 

MWm= 
(4.5) 

With the help of the relations (4.3) and (4.4), we can re
duce the parameters A, Ao, Ace, which appear in Eq. 
(2.15), to the following form: 

A"" tA'=~ t'1.(6):=)', 
i_I i=t 

f, ( W mo, ) 2 I Wo I A, = ~ f7 1"], ~ In 1 + -;;;: , (4.6) 

The quantities 11.,11.0 and 11.00 , which appear in Eq. (3.9), 
can be represented in similar fashion. 

Greatest interest attaches to the problem of the ef
fect of the location of the peak of the phonon state den
sity in the low-frequency region on the temperature of 
the superconducting transition. With this aim in view, 
the value of Tc/wmax was calculated from Eqs. (2.15) 
and (3.9) for the Einstein spectrum (4.3) as a function 
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Dependence of T cl wmax on W'; 
wmax, calculated in various approxi
mations for w2/wmax = 0.8 and 171 = 
0.3. The curves I and 2 were computed 
in accord with Eqs. (2.15) and (3.9), 
respectively for i3 = 1 with Wo = wmax, 
while curves 3 and 4 were done in ac
cord with Eq. (2.15) for i3 = 1 and i3 = 
0.2 respectively, with Wo from (2.17). 
Curve I is computed from Eq. (1.1) at 
i3 = 1, and curves II and III, from Eq. 
(1.4) at i3 = 1 and i3 = 0.2, respectively. 

OJIl 

11,12 

D,1J8 

,r;r 

I',-"<"~~:: ::'-':'''-'0.'. __ ' _, __ 

!l (U .~i,~' ali /l.Ji 

w1/wmax 

of the ratio wJwmax for various values of the parame
ters (3, Wo, 1-<12 and 7)1 (the coefficient 7)2 is determined 
from the normalization condition: 7)1 + 7)2 = 1) and for 
fJ.*(Wmax) =0.13 (here fJ.*(I.tJmax) is the value of the 
Coulomb pseudo-potential at Wo = '.tJ max). 

The figure shows the results of the calculation of 
Tc/wmax as a function of wJwmax for w2/wmax=0.8 
and 7)1 = 0.3. Curves 1 and 2 were plotted from Eqs. 
(2.15) and (3.9), respectively, for the case (3= 1 and 
at the fixed frequency Wo = wmax, while curves 3 and 
4 were computed from Eq. (2.15) for (3= 1 and (3=0.2, 
respectively, with a "floating" pre-exponential factor 
1-<10 determined from Eq. (2.17) and dependent on the lo
cation of the peak wJwmax. It is seen that as wJwmax 
decreases all the Tc/wmax curves pass through a maxi
mum (the temperature corrections, made with use of 
Eq. (3.9), and the corrections associated with improved 
choice of the pre-exponential factor in accord with (2.17), 
are not always small and in a number of cases, lead to a 
considerable reduction in the maximum value of the 
ratio Tc/wmax). 

For comparison, the figure shows curves I and II 
calculated from Eqs. (1.1) and (1.4), respectively, for 
the same values of the parameters ((3 = 1, fJ. * = 0.13, 
wiwmax=0.8 and 7)1=0.3) and with use of the ratio 
w/w max = 0.84 for niobium, and also curve III, calcu
lated from (1.4) for (3 = 0.2. As we see, the behavior of 
curve I in the range of small wJwmax differs signifi
cantly from the behavior of curves 1-3. 

Thus, in the presence of low-frequency peaks in the 
phonon spectrum of the superconductor, Eq. (1.1) with a 
constant pre-exponential factor 6 certainly yields in
correct results. At the same time, curves II and III are 
qualitatively correct plots of the dependence of 
Tc/r-<lmax on wJwmax for the simple reason that the 
mean frequency (w) introduced in [ll, which is defined 
by the relation (1.3) and which enters as a pre-exponen
tial factor in (1.4), tends to zero as wJwmax - 0 for 
the phonon spectrum model (4.3) under consideration.5) 

The much better agreement of Eq. (1.4) with experiment 
(in comparison with Eq. (1.1)), already noted in [4,5], is 
connected with just this rather fortuitous circumstance. 
Nevertheless, the region of applicability of Eq. (1.4) is 
very limited, since it is obtained from (1.1) by simple 
replacement of 6/1.45 by (w)/1.20 in the pre-exponential 
factor; this replacement is valid only for the phonon 
spectrum of niobium. Moreover, in (1.4), just as in the 
original formula (1.1) of McMillan, the term Ao, which 
depends materially on the shape of the function (l(v)F(v), 
is in practice lost from the argument of the exponential 
(the coefficient 1.04 cannot compensate for the absence 
of Ao ~ A) and the term Aoo is replaced by the constant 
0.62 A (see (2.15)). Therefore, in the case of supercon-
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ductors for which the essential role is played by the 
interaction of electrons with low-frequency phonons, 
Eq. (1.4) leads to an overestimate of Tc (see, for ex
ample, curves II and 2 of the figure), although in the 
weak coupling limit, when {3« 1, this error can be 
small (see curves III and 4 in the drawing). 

5. CONCLUSION 

In the previous sections, expressions were obtained 
for the determination of the critical temperature of the 
superconducting transition Tc on the basis of the 
Eliashberg equations[2l for superconductors with strong 
coupling and with the help of a simple approximation of 
the gap C(w) by a step-like alternating function (see 
Eqs. (2.15) and (3.9)). These equations depend on the 
form of the function a 2(I')F(I') that characterizes the 
intensity of the electron-phonon interaction, and on the 
value of the averaged screened Coulomb interaction be
tween the electrons N( O)V c, which enters via the pseudo
potential Jl * . 

In Sec. 4, these general expressions were analyzed 
for the particular model of a phonon spectrum in the 
shape of two Einstein branches and it was shown that 
the appearance of a sharp peak in the function a 2(I')F(I') 
in the low frequency region 1'« w max does not lead to 
an increase in T c in all cases but only at a definite ratio 
of the parameters. If we consider the dependence of Tc 
only on the location of the low-frequency peak Wl in the 
phonon spectrum, disregarding, for simplicity, any 
change in the other parameters of the problem, then it 
turns out that in the final analysis, the shift of this peak 
to zero frequency6l leads to a weakening of the supercon
ductivity. This result casts doubts on the widespread 
opinion that "softening" of the lattice always leads to 
an increase in Tc , and that such an increase is limited 
only by the loss of stability of the crystal lattice. Of 
course, for the final settlement of this question, we need 
to study other, more realistic models of the phonon 
spectrum with a smooth accumulation of phonons in the 
region of low frequencies, and also to study the effect 
of such factors as the width of the peak, the damping of 
the phonons as a consequence of anharmonicity, and 
so on. 

In conclusion, we express our sincere gratitude to B. 
T. Gellikman, Yu. A. Izyumov, Yu. V. Kopaev, V. I. 
Makarov, E. G. Maksimov, I. I. Fal'ko and D. I. Khomskil 
for discussion of the research and a number of useful 
comments, and V. V. Dyakin for valued mathematical 
discussions. 

APPENDIX 

In theoretical papers on superconductivity, one fre
quently encounters the integral 

wJ dx . 
P -~In lx' - a'l, 

o ch:!.x 

however, so far as we know, it has not yet been computed 
exactly. For the calculation of this integral, we repre
sent it in the form of a sum: 

p j ~Inlx'-a'i =zj ~lnx+~P wJ~lnI1_~I. 
, ch'x , ch'x 2 _ooch'x x' 

(A.1) 

The first of these integrals is equal to (see [lll) 

W dx 1 
J -. Inx=lnn+¢(-). 
o ch'x 2 

(A.2) 
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The second integral can be calculated by means of a 
contour that is closed in the upper half-plane, since the 
integral over the large semicircle approaches zero: 

I J c~: z In 11 - :: II ~ I J dz In 11 - ;: II ~ :!..In 11 + ~: 1- o. 
• CR (A.3) 

The integrals over the semicircles of small radius 
r - 0 around the points z '" 0, ±a also a:>proach zero. 
Then the residues at the poles of second order 
z '" i(n + 'l;;hr give 

W dx I a' I dz I a'i P S -In 1-- ="'-In 1--
_00 ch2 X x 2 j' ch2 Z Z2 

= -2 ~ ( 1 +.>-.,...,..,..1_,-
~ n + '/, + ia/n n + '/, - ia/n n :.J (A.4) 
n~O 

= 2 [ ¢ (-} + i : ) + ¢ ( .;- - i : ) - 2¢ ( ~ )] , 

whence it follows with account of (A.2) that 

P Ws ~ln Ix'-a'i =2Inn+.p (~+i.!:..) 
o ch' x 2 n (A.5) 

+¢(+-i :)-2[lnn+Re.p(~ +i :)]. 

Note added in proof, July 27,1973. Recently, we were made aware 
of the work of Allen (P. B. Allen, Solid St. Commun. 12,379 (1973)), 
in which arguments concerning the negative effect of low-frequency 
phonons on superconductivity are also advanced. 

I)To avoid confusion, we note that in [I] the limiting frequency of the 
phonons was denoted by Woo Here, in the general case, Wo 0/= wmax ' 

2)Evidently, the existence of the term Ao in the argument of the expo
nential was first noted by Leavens and Carbotte; [7] however, without 
any justification, they cut off the interaction of the electrons with the 
phonons at the frequency W '" Wmax (the limiting frequency of the 
phonons Wmax was denoted by Wc in [']). Because of this, they lost 
the Coulomb-pseudopotential renormalization determined by Aoo. 

3) Anomalies in the tunnel density of states in Nb2 Sn were experimentally 
observed [9] in the frequency range v - (2-4)Tc. 

4)It was assumed in [12] that Wi ~ T c, and only the temperature cor
. rections -(Tclwi)2 were taken into account. 
S)We note that with the help of the relations (3.18) and (2.19) one can 

also regard the decrease of Tc as WI -> 0 formally as the result of the 
approach of the pre-exponential factor w to zero. However, the physi
cal meaning of the falloff in Tc upon appearance of low-frequency 
peaks in the phonon state density lies in the decrease of the effective 
coupling constant Aeff '" [A -11*(1 + Xoo)] /0 + A + Ao). 

6)Such a situation can take place, in particular, close to a phase transition 
of the lattice from one crystalline modification to another. 
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