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The thermal conductivity K, electric conductivity fT, and thermo-emf a of perfect 
[p(3000K)/p(4.2°K) "" 650-680] massive bismuth crystals with characteristic dimensions d:5 0.6 cm 
and length 1;::::6 cm are investigated between 1.3 and 7°K. It is shown that the magnitude and 
temperature dependences of the kinetic coefficients depend essentially on the characteristic 
dimensions of the sample and on the qualit:t of its surface. A K( T) dependence stronger than cubic 
and observed at temperatures below the thermal conductivity maximum can be attributed to the 
appearance of a hydrodynamic situation in the phonon system evoked by frequent normal collisions 
between phonons. Thermo-emf measurements in massive and sufficiently perfect crystals show that 
a( T) grows exponentially with diminishing temperature, in analogy with K( T). This indicates the 
appearance of a new drag mechanism, viz., phonon-phonon carrier drag produced as a result of 
frequent normal collisions between phonons at temperatures for which the exponentially increasing 
thermal phonon drift velocity becomes comparable to the drift velocity of long-wave phonons 
interacting with the carriers. The dependence of the electric resistance of bismuth on temperature 
and sample size may be expressed by the formula p = Po(d) + p(T); the first term rapidly increases 
with decrease of d and then levels out; the second term weakly depends on the size. A discussion of 
the dependence p( d) observed is carried out within the framework of the diffusion size-effect theory. 

1. INTRODUCTION 

Transport processes in bismuth are being extensively 
investigated in various laboratories. The great interest 
in its properties is quite understandable. Bismuth is a 
semimetal with small free-carrier density (~10-5 per 
atom) and has a low Debye temperature C:" 1200 K); there 
is no isotopic scattering in it, and the chemical purity 
of the experimental batches is quite high (~lO-'% of im­
purities in accordance with the official specifications). 
All this makes it possible to investigate the excitation 
relaxation processes in the phonon and electron systems 
and to study thoroughly the character of the interaction 
between them. 

The electronic properties of bismuth at low tempera­
tures have been investigated in sufficient detail [1). At 
the same time, characteristics of practical importance 
such as the thermal conductivity, the electric conductiv­
ity, and the thermoelectric power of bismuth crystals at 
temperatures below 4.20 K have been less investigated 
both experimentally and theoretically. 

Thus, the thermal conductivity K was investigated at 
helium temperatures in samples of apprOximately equal 
dimensions (cross section area S :::.:; 0.1 cm2 ) and ap­
proximately equal quality [2-5) (a detailed review of the 
results of these investigations is given in[6)); it was 
shown that at T < 20° K the principal role in the thermal 
conductivity of bismuth is played by phonons. The con­
tribution of the electronic component, down to 1.3° K, 
does not exceed several percent, and the temperature 
dependence of K (T) is close to that observed in typical 
dielectrics. 

However, the study of the thermal conductivity of 
bismuth at helium temperatures cannot be regarded as 
complete. In fact, the following problems are encoun­
tered: 

1) The effective phonon mean free path leff at the 
lowest temperatures, calculated from the measured 
thermal conductivity of the better samples, turned out 
to be several times smaller than the characteristic 
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dimensions of the samples, and no direct data have been 
obtained on the effect of the dimensions on the sample 
thermal conductivity. 

2) The oscillations of K(H) in strong transverse mag­
netic fields indicate that phonon-electron scattering 
affects the thermal conductivity of bismuth at tempera­
tures below TK max' 

3) The mean free path in normal phonon-phonon colli­
sions is ln « d at T R< TKmax, as follows from the esti­
mates given in[3). In such a situation, Poiseuil flow of 
the phonon gas can occur in a sufficiently pure and bulky 
dielectric sample, and can lead to an appreciable in­
crease of the thermal conductivity and to a change of its 
temperature dependence at temperatures below the max­
imum of the thermal conductivity [7-10) ; that is to say, if 
the phonon-electron interaction is small, one should ex­
pect the appearance of a hydrodynamic mechanism in 
the thermal conductivity of perfect bismuth samples with 
characteristic dimensions of the order of 1 cm. 

A number of questions arise also in the study of the 
thermoelectric power (X due to phonon dragging and of 
the electric conductivity K of bismuth at helium tempera­
tures. For example, in [11), in an estimate of the maxi­
mum of (x, it was assumed that the phonon mean free 
path is limited by phonon scattering from carriers and 
not from the sample boundaries. Although for some 
orientations the obtained values of O'max were close to 
the experimentally observed ones, for other orientations 
they differed even in sign [12) • 

The nature of the size effect in the electric conductiv­
ity of bismuth, which is observed in high-grade samples 
as well as in samples with defects, remains unclear. 

To solve these problems it is necessary to investigate 
experimentally the influence of the dimensions, of the 
quality of the crystal structure, and of the surface prop­
erties on the kinetic coefficients of sufficiently perfect 
bulky bismuth samples. Preliminary measurements 
performed by us on different samples with characteristic 
dimensions 0.25 and 0.6 cm in the temperature interval 

Copyright © 1974 American Institute of Physics 357 



1.3-7° K have shown that the dimensions of the samples 
and the quality of the crystal structure have a significant 
effect on the values and temperature dependences of K, 
a, and a[l3,14J. As a result of the strong anisotropy of 
the bismuth properties, however, it is difficult to obtain 
quantitative estimates from measurements performed 
on different samples; it was therefore necessary to de­
velop a procedure for obtaining perfect samples and for 
measuring the influence of the dimensions and the sur­
face quality on the properties of one and the same 
sample. 

The results reported here were obtained with sam­
ples grown by zone melting of free standing cylindrical 
blanks in deep vacuum (~ 10-6 Torr). (The sample prep­
aration procedure will be described in detail separately.) 
The sample dimensions were decreased during the 
course of the investigations by etching in concentrated 
nitric acid. The initial sample was oval in cross sec­
tion with characteristic dimensions 0.4 x 0.6 cm and 
length 1 R< 6 cm, and had a mirror-smooth surface. The 
first etching removed a 'thin surface layer (the cross­
section area changed by less than 5%). The surface then 
became dull in appearance and revealed readily crystal 
facets that made it possible to assess the Single-crystal 
character of the sample. . 

That the initial samples were of high grade is evi­
denced by the ratio of the resistances measured at room 
and heliwn temperatures: y = p (300° K)/ (4.2° K) 
R< 650-680 (correspondingly p(300° K)/p (T - 0) ;::: 2000). 

The sample was placed on an insulating substrate 
inside a vacuum chamber in a cryostat. The carbon 
thermometers, the current and potential leads, the 
heaters, and the copper cold finger were soldered to the 
sample with easy-melting solder. The thermometers and 
the potential contacts were placed in the central part, at 
distances ~2 cm from the ends of the sample. When the 
heaters and thermometers were mounted, the sample 
was placed horizontally on an insulating substrate made 
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FIG. I. Dependence of the thennal conductivity of perfect samples 
on the temperature and on the characteristic dimensions. Sample Bi2: C3 

axis inclined -450 to the sample axis, Curve I-initial sample, d = 0.51 
cm; 2-after light etching of the surface, same dimensions; 3-d = 0.45 
cm; 4-d = 0.39 cm; 5-d = 0.33 cm; 6-d = 0.30 cm; 7-d = 0.26 cm. 
Sample Bi4: the orientation differs somewhat from the orientation of 
Bi2; curve I-initial sample; d = 0.48 cm; 2-after light etching of the sur­
face; 3-d = 0.37 cm; 4-d = 0.34 cm; 5-d = 0.27 cm; 6-d = 0.19 cm; 
7-d = 0.15 cm. 
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of a segment of thin-wall stainless tube and covered with 
a thin layer of epoxy resin. To prevent thermal shock 
due to soldering, the sample, and the substrate were 
smoothly heated to a temperature close to the melting 
point of Wood's alloy. As shown by control measure­
ments, the results obtained by repeated soldering were 
reproducible, i.e., accurate soldering did not affect the 
sample quality significantly. 

The measurements were performed by a standard 
method using an R-308 potentiometer. The thermometer 
calibration curves were calculated by least squares with 
a computer [15J. Below 4.20 K, the thermometers were 
calibrated against He4 vapor pressure. To establish the 
temperature scale above 4.20 K, we used the supercon­
ducting transition point of pure lead. The temperature 
drop along the sample usually amounted to ~ 0.010 K, so 
that the error in the measurement of .6. T did not exceed 
2%. The current flowing through the sample during the 
resistance measurement was 100-300 mA, and the ac­
curacy with which p was measured at the lowest tem­
perature was ~ 4% and increased with increasing tem­
perature and with decreasing sample cross section. The 
external magnetic field did not exceed -;; 0.3 Oe and its 
influence on the properties of the samples was neglected 
in this study. 

2. THERMAL CONDUCTIVITY 

As indicated in the review [6J, the thermal conductiv­
ity of the better of the previously investigated samples 
reached a maximwn with decreasing temperature at 
T R< 3.6-4.20 K (K ax R< 15-20 W/cm-deg), and then 
decreased in nearlY cubic fashion, like T2 • 7 ;t. 0.2. The re­
sults of the measurements of the thermal conductivity of 
the two best samples investigated by us, with different 
orientations, are shown in Fig. 1. 

The upper curves correspond to a sample with mirror 
finish while the curves that follow illustrate the change 
in the thermal conductivity following removal of a thin 
surface layer by etChing (dull surface). This is followed 
in turn by the change of the temperature variation of the 
thermal conductivity of the same sample following a de­
crease in its characteristic dimensions (the surfaces of 
all the etched samples were similar in appearance). The 
thermal conductivity of a perfect bulky sample increases 
exponentially with decreasing temperature, reaching a 
maximwn at T R< 3.40 K, beyond which it decreases again. 
The maximwn thermal conductivity (Kmax R< 40 W/cm­
de g) is double the thermal conductivity of the better of 
the samples described in the literature[eJ, and the posi­
tion of the maximwn is shifted towards lower tempera­
tures. Etching of the surface layer leads to a decrease 
of K and increases somewhat the slope of the low-tem­
perature branch of the K (T) curve. In the interval 
1.5-2.40 K, the K(T) dependence is stronger than cubic 
and is close to K ex:. T3.5;t. 0.1, which agrees qualitatively 
with the results of[5J and our preliminary observa­
tions[7]. After subsequent etching, the value of K at 
T = 1.40 K decreases in approximate proportion to the 
mean diameter d of the sample (defined as v'd1d2 , where 
d1 and d2 are the largest and smallest cross-section 
diameters), and the poSition of the maximum shifts 
towards higher temperatures. (A decrease of d from 
~0.5 to 0.1 cm changes the position of the maximwn by 
0.60 K.) 

We have indicated above that in the working interval 
the thermal conductivity of bismuth is determined mainly 
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by the lattice component. According to our measurements 
and the data of[S], the contribution of the carriers to the 
heat transfer is less than 1 % at T 2: 2° K and less than 
10% at T ~ 1.3°K. Thus, the phonon conductivity at 
T ;::: 2° K practically coincides with the total measured 
conductivity, and below 2° K, after subtracting the elec­
tronic thermal conductivity, the low-temperature branch 
of the phonon conductivity is steeper than that shown in 
Fig. 1. 

Neglecting in the qualitative treatment the difference 
between the phonon and total thermal conductivity, it is 
convenient to examine the behavior of the effective phonon 
mean free path Zeff, determined from the kinetic relation 
K = (1/3)Cs Zeff, whence 

leff = 3x I Cs, (1) 

where C ~ 5.5 X 10-5 T3[J/cm3deg4] is the phonon specific 
heat in the Debye approximation and s ~ 1.1 X 105 cm/sec 
is the average speed of sound in bismuth. The plots of 
Zeff for the same samples as before as shown in Fig. 2. 

Above 4.5° K, the value of Zeff decreases exponentially 
with increasing temperatures, i.e., the principal role in 
the thermal conductivity of perfect samples is played by 
phonon-phonon proc~f!ses with Umklapp (U-processes), 
ZU ~ 6.3 x 10-5 E33/T [cm] for sample Bi2 and ZU ~ 5 
x 10-5 E40/T [cm] for Bi4, and is practically independent 
of the sample dimensions. Below 4° K, the magnitude and 
temperature dependence of Zeff is noticeably influenced 
by the change of the sample dimensions and of its sur­
face quality (Fig. 3). For example, at the lowest tem­
peratures we have Zeff ~ 0.7 and 0.9 cm for the initial 
samples with characteristic dimensions d ~ 0.51 and 
0.48 cm, respectively, and decreases to 0.3 and 0.45 cm 
after light etching of the surface layer. 

The decrease of Zeff to less than one-half following 
light etching of the mirror surface can be naturally at­
tributed to the decrease of the degree of specular scat­
tering of the phonons by the boundary. The coefficient p 
of specular scattering of the phonons by the boundary 
can be estimated from the simple relation[l6] 

tff. teff 1 + p 
spee= diff' 1-p . (2) 

From this we have for the surface of a bismuth sample 
grown in vacuum p ~ 0.3-0.4 at T ~ l.4°K. It was as­
sumed in the estimate that the thermal resistance is due 
to scattering of the phonons by the sample boundary (as 
is evidenced by the practically linear zeff(d) dependence 
for the etched samples), and that etching makes the sur­
face completely diffusing. 

As shown by the preliminary investigations [14 J, in 
less perfect bismuth crystals phonon scattering by 
crystal-structure defects can become Significant. Thus, 
introduction of ~ 107 cm -2 dislocations into a sample with 
the same dimensions would reduce Zeff to half its value 
at the same temperature, and would lead to a weaker de­
pendence of zeff on the characteristic dimensions and on 
the temperature. 

From the plots shown in Fig. 2 it is evident that as 
the temperature drops Zeff reaches a maximum at 
T ~ 2.5° K, after which it decreases smoothly (in etched 
samples we have Zeff ex TO.s ± 0.1), flattening out at 
T::; 1.5°K. The presence of a maximum on the Zeff(T) 
curve distinguishes significantly the behavior of this 
curve from that observed in less perfect samples [3,4]. , 
To explain this phenomenon, it is useful to determine the 
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FIG. 3. Dependence of [eff (d) 
at T = I. 40 K on the characteristic 
dimensions for samples Bi2 and 
Bi4. The plot of [eff (d) for sample 
BiS with initial d = 0.26 cm is 
shown for comparison. 
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relation between different phonon mean free paths and 
the sample dimensions. The mean free path ZU, which is 
determined by Umklapp processes and governs the be­
havior of the high temperature branch of the K (T) curve, 
increases exponentially with decreasing temperature, so 
that below TKmax we have zU 2: d. The phonon mean 
free path in normal colliSions, ZN, can be estimated from 
the published data at ZN ~ 0.4T-4 [cm][3] or ZN 
~ 3T-4 [cm][l7]. In either variant, at T ;::: 2.5°K the 
mean free path ZN is much smaller than d and becomes 
comparable with the characteristic dimensions of the 
sample at T ~ 1-1.5° K. This means that at T ~ TK ax 
the hydrodynamic situation is in the phonon system[ij 
is described by 

(3) 

and frequent normal phonon-phonon collisions can 
greatly influence the magnitude and temperature de­
pendence of sufficiently perfect and bulky samples in a 
temperature interval near TKmax• 

In order for Poiseuil flow of the phonon gas to set in, 
it is necessary and sufficient to satisfy the condition[8] 

(4) 

where ZR is the effective mean free path of the phonons 
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in the volume of the sample without allowance for the 
N-collisions. If additional volume scattering (lpi) is 
present besides the phonon-phonon scattering, say by 
the structure defects, then (IR)-1 = (lU)-1 + r~, in ac-
cordance with the Mathiessen rule. pI 

When conditions (4) are satisfied we have leff 
= 5d2 /32IN , i.e., the effective phonon mean free path can 
greatly exceed the characteristic dimension of the sam­
pIe, and its dependence on the dimensions and on the 
temperature, which is expected for conditions of devel­
oped hydrodynamic flow of the phonon gas, takes the 
form leff 0: d2 T4[a,9J. When the temperature or the char­
acteristic dimension is appreciably decreased, the first 
condition of (4) can be violated, and the Poiseuil flow of 
the phonon gas gives way to a Knudsen flow (at IN »d 
we get correspondingly leff - d), which is indeed usually 
observed in the thermal conductivity of perfect dielectric 
crystals with characteristic dimensions on the order of 
several millimeters (so far, the conditions (4) could be 
satisfied and Poiseuil f~ow observed in pure form only 
in perfect solid-helium crystals of diameter 
d ~ 0.25 cm[lDJ ). Unfortunately, the'problem of the be­
havior of leff(T) in gradual transition from Poiseuil 
flow to Knudsen flow cannot be solved in general form 
by the methods used in[S,9J, and the method proposed 
in [9J for numerically integrating the Callaway integrals 
is based on an arbitrarily chosen switching function 
describing the decrease of the contribution of the hydro­
dynamic term to the thermal conductivity with decreasing 
ratio WIN. We hope to calculate numerically the behav­
ior of the thermal conductivity in the transition regime 
in the general case, but in the present paper, for a quali­
tative description of the phenomenon, it is convenient to 
use the modified Mathiessen rule: 

(5) 

where the first term describe the contribution of phonon 
scattering by the sample boundaries and the second des­
cribes exchange scattering with loss of quasimomentum. 

In the limiting cases IN « d and ZN »d, expression 
(5) coincides with the generally accepted formulas. 

It is seen from (5) that when the hydrodynamic situa­
tion (3) sets in, even volume scattering of the phonons by 
the crystal-lattice structure or by the carriers, which 
may be negligible in the Knudsen limit, is capable of 
greatly altering Zeff, i.e., of decreasing noticeably the 
velocity of the hydrodynamic flow of the phonon gas, 
owing to viscous losses in the phonon system. 

To explain the role of different mechanisms in the 
thermal conductivity of perfect bismuth crystals at tem­
peratures close to the maximum of thermal conductivity, 
let us list briefly the presently available experimental 
facts: 

1) The Zeff(T) curve has a maximum, thus distinguish­
ing it from the leff plots of typical perfect dielectrics, 
in which the free path increases weakly with decreasing 
temperature at T < TKmax , and approaches d asymp­
totically. 

2) At T ~ 2.5° K, the conditions (3) are satisfied, with 
ZN 0: 1/T4 and the free path IN becoming comparable 
with d at T ~ 1-1.5° K. 

3) The dependence of I eff on the characteristic 
dimensions of the sample is close to linear at T = 1.4° K, 
Le., the principal role in the development of the thermal 
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resistance is played by phonon scattering from the sam­
pIe boundaries, but the observed oscillations of the lat­
tice thermal conductivity in strong transverse magnetic 
fields (the oscillation amplitude is of the order of sev­
eral percent at H = 5 kOe and T ::; 2° K) indicate that it 
is necessary to take phonon scattering by carriers into 
account. 

The foregoing facts offer evidence that a hydrody­
namic situation is produced in perfect bismuth samples 
at temperatures near the maximum thermal conductivity, 
but an appreciable increase in the phonon drift by heat 
flow through the sample is prevented by the additional 
scattering of the phonons by the carriers. 

Using (5), we were able to estimate the effective 
phonon mean free path Zpe for phonon-carrier scatter­
ing from the results of the thermal-conductivity meas­
urements, and obtained ZDr ~ 2 cm at T = 2° K (if we as­
sume in accordance with1 7J that ZN ~ 3T4 cm). This 
estimate will be useful to us later in the discussion of 
the results of measurements of the thermoelectric 
power. 

The conclusion that a hydrodynamic situation is pro­
duced in bulky perfect bismuth crystals, which we have 
drawn on the basis of the results of the preliminary in­
vestigations[7J, is confirmed also by recent observa­
tions of second sound, i.e., of weakly damped high-fre­
quency temperature waves in perfect crystals [17J, for 
the existence of which it suffices to satisfy the condi­
tions (3). 

3. THERMOELECTRIC POWER 

The dependence of the thermoelectric power a of 
samples Bi2 and Bi4 on the temperature, dimensions, 
and surface quality is illustrated in Figs. 4 and 5. 

We see that the thermoelectric power has a maxi­
mum at T ~ 2.2-2.8° K. The maximum value of a, the 
pOSition of the maximum, and the slope of the high-tem­
perature branch of a(T) vary greatly from sample to 
sample; with decreasing characteristic dimensions and 
degree of specularity of the surface, the maximum drops 
(from ~70 p.V/deg for large (d = 0.5 cm) perfect samples 
with partially specular surface to ~ 2 0 p. V /deg for etched 
samples with characteristic dimension d ~ 0.2 cm), the 
pOSition of the maximum shifts towards higher tempera­
tures, and the exponential growth of the thermoelectric 
power gives way to a weaker power-law growth. In the 
low-temperature region (at T < T ), the tempera-amax 
ture dependence of a(T) remains practically unchanged 
with changing sample dimensions, and stays close to 
a 0: T 1 - 1• 5 • 

After the first etching, amax decreases by almost 
one-half (Fig. 5). With subsequent etching thermoelectric 
power first decreases and then increases slightly (at 
d = 0.32 and 0.28 cm for samples Bi2 and Bi4), and then 
starts to decrease again. 

Let us discuss the temperature dependence of a, as 
observed in our experiments. The expression for the 
thermoelectric power due to phonon dragging of carriers 
of one sign is [18J 

k m·s2 'tp a 

a=-----
e kT 'Te P ' 

(6) 

where k is Boltzmann's constant, e and m* are the 
charge and effective mass of the carriers, s is the speed 
of sound, Tp is the effective relaxation time of the 
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FIG. 5. Dependence of the maxi­
mum thermoelectric power on the 
characteristic dimensions for three 
bismuth samples. 

phonons that determine the dragging, and -rt> is the re­
laxation time for carrier scattering by ph050ns. In the 
presence of several groups of carriers, the expression 
for the total thermoelectric power is 

(7) 

where ai and at are the partial thermoelectric powers 
and the conductivities of the individual groups. It is 
shown in[19] that Tp in (6) should be taken to be the 

effective relaxation time of the phonons interacting with 
the carriers. If the characteristic momenta of the 
thermal phonons qT greatly exceed the characteristic 
dimensions 2PF of the Fermi surface, then by virtue of 
the conservation laws the carriers can interact only with 
phonons of less-than-thermal velocity (i.e., with longer 
wavelengths), and Tp can differ noticeably from the 
thermal-phonon relaxation time that determines the 
thermal conductivity. 

In bismuth, the smallest dimensions of the electron 
and hole Fermi surfaces are 5 x 10-22 and 15 x 10-22 
g-cm/sec, and the characteristic momentum of the 
thermal phonon is qT = 10 x 10-'22 g /cm/sec at 10 K. 
Thus, at T <: 10 K the phonons in bismuth (just as in 
semiconductors for which formula (6) is valid) can be 
conveniently divided into two groups: long-wave (inter­
acting with the carriers) and thermal. The interaction 
between the groups is effected by the normal collisions. 
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Allowance for his interaction can lead, as will be shown 
below, to a considerable change of the temperature de­
pendence of a (to the onset of phonon-phonon dragging 
of the carrierst20J ) in comparison with that predicted 
by the simple model[18] in perfect and sufficiently bulky 
samples. 

A temperature gradient along the sample produces a 
constant heat flux proportional to the drift velOCity vT 
of the thermal phonons (v T ex: T R, where T R is the 
thermal-phonon relaxation time), and K ex: TR. The 
thermoelectric power is determined by the drift velocity 
of the long-wave phonons, which is conveniently repre­
sented in the form of the velocity of the group of long­
wave phonons relative to the thermal phonons, 
ve ex: TfT, and the thermal-phonon velocity vT' At high 
temperatures the phonons are scattered in the main by 
one another; if the relaxation time TR is small (low 
thermal conductivity), the normal collisions between 
the groups of phonons lead to a loss of the summary 
quasimomentum of the system of long-wave phonons, i.e., 
to a decrease of their drift velocity (the drift velocity of 
the thermal phonons can be neglected), and thermoelec­
tric power is determined by the effective relaxation time 
T NT in the scattering of long-wave phonons by the 
th~rmal phonons in accordance with [ 19J • 

In sufficiently perfect and bulky samples, where T R 
increases exponentially with increasing temperature, 
the drift velocity of the thermal phonons can become 
comparable with or even exceed the drift velocity of the 
long-wave phonons (owing to the deceleration of the lat­
ter by the carriers). In this case, if the N-collisions be­
tween phonons belonging to different groups are fre­
quent, Ta = TNT + TR, and if the second term is pre-p e 
dominant, the customarily observed power-law depen-
dence gives way to an exponential dependence: from (6) 
it follows that 

k m·,'",.Nr+",H 

a: - e kT "'.' 
(8) 

Judging from the thermal conductivity of our samples, 
the mean free path of the phonons scattered by carriers 
at 2° K is lpe ,::; 2 cm. Since only long-wave phonons in­
teract witli the carriers, their path length for scattering 
by carriers is several times smaller than the mean 
free path, i.e., the long-wave phonons are slowed down 
appreciably by the carriers. 

Thus, the considerable increase of a max of the sam­
ples investigated by us, in comparison with the better 
of the previously reported ones 1 12 ], and the observed 
change of the temperature dependence of the high-tem­
perature branch of the a(T) curve with decreasing 
dimensions can be attributed to the appearance of a new 
mechanism, namely phonon-phonon dragging of the car­
riers. 

The maximum attainable thermoelectric power a ax 
for samples of given dimensions, and the behavior of 
a(T) at temperatures below the maximum, are deter­
mined by the relation between T d = d /s and the scatter­
ing time T~e of the long-wave plionons by the carriers, 
01'1. the one hand, and the relative contribution of the 
phonon-phonon mechanism, on the other. If at low tem­
peratures under phonon-phonon dragging conditions the 
thermal phonons are scattered mainly by the boundaries 
and the relaxation times of the electrons and holes on 
the phonons are nearly equal, i.e., T ep ~ Thp (and in 
accordance with the data given in the next section we 
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have 7 ep <X Tl.~, we have in accordance with (8) 

a <X 7ft/T7 ep <X To. 67!: coincides with the relaxation 
time fhat determines the thermal conductivity. Under 
conditions of developed hydrodynamic phonon-gas flow, 
this would lead to a strong (0: T4• 6) a(T) dependence at 
temperatures below the maximum of the thermoelectric 
power, but in our samples, as indicated earlier, 
7 0: TO.5, i.e., the expected dependence should be 
sgmewhat stronger than linear, in qualitative agreement 
with the results of our experiments. 

4. ELECTRIC CONDUCTIVITY 

We did not compensate for the earth's magnetic field 
during the measurements of the electric conductivity, 
but estimates performed with the aid of Kohler's rule 
and the experimental data of [5], obtained with samples 
of nearly equal quality, a field of intensity 0.3 Oe in­
creases the resistance of samples having a resistivity 
;:::; 0.1 fJ.n-cm by not more than 3-4%, so that the influ­
ence of the field can be· neglected in a qualitative analy­
sis. 

The dependence of the electric resistivity on the 
temperature and on the characteristic dimensions of 
the investigated samples is shown in Fig. 6 and 7. We 
see that when the surface quality changes, and when 
dimensions are subsequently changed, the resistivity of 
the samples increases in the entire investigated tem­
perature interval, but the slope of the curves changes 
little, i.e., the dependence of the resistance on the tem­
perature and on the characteristic dimensions can be 
represented in the form 

p(d, T) =p,(d) + p(T). (9) 

The temperature dependence of p(T) is usually repre­
sented analytically in the form p(T) = bTn, and the co­
efficients po and b are determined assuming a fixed ex­
ponent n. Thus, n = 2 was assumed in [21] and in our 
paper [14] • In the present paper we determined Po, b, 
and n from the experimental values of p(d, T) by least 
squares . with a computer. For the investigated samples, 
the minimum rms deviation (~0.5-1%) is obtained at 
n = 1. 6 ± 0.1. Substitution of n = 2 nearly doubles this 
deviation, i.e., the temperature dependence of the re­
sistivity in the investigated temperature interval is 
close to 

(10) 

the mean values of bfor samples Bi2, Bi4, and Bi5 are 
respectively 0.012, 0.013, and 0.015 if p is expressed in 
fJ.n-cm. When the characteristic dimensions of samples 
Bi2 and Bi4 is decreased, the coefficient b increases 
approximately 10%. 

Figure 7 shows the dependence of the conductivity of 
the characteristics dimensions of the investigated sam­
pIes at two fixed temperatures. We see that the initial 
rapid decrease of a with decreasing dimensions gives 
way to a slower decrease. 

A similar behavior of a(d) in bismuth was observed 
in a number of investigations [22-25] of samples that dif­
fered from one another both in quality and in orientation. 
Various mechanisms were proposed to explain the ob­
served dependence[23-25], but the authors themselves 
admitted that the explanations could not be reconciled 
with the experimental results even qualitatively. 

The most satisfactory description of the observed de­
pendence of the electric conductivity on the dimensions 
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FIG. 6. Effect of sample dimensions on the electric conductivity; 
the curves are labled as in Fig. I; curve I for Bi5 corresponds to a par­
tially specular surface; the remaining results were obtained with etched 
samples having average dimensions 0.26 (1), 0.26 (2), 0.16 (3), 0.13 
(4), and 0.07 cm (5). 
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FIG. 7. Dependence of the electric conductivity on the sample di­
mensions at two temperatures: .-sample Bi2, O-Bi4, A-Bi5. 

can be obtained, in our opinion, within the framework of 
the model of the diffusion size effect [26], the gist of 
which consists in the following. 

In very thin samples, the electric resistance is due 
mainly to carrier scattering by the crystal surface, i.e., 
a ~ d. With increasing characteristic dimensions d, the 
intervalley collisions of the carriers in the volume of a 
perfect crystal, with characteristic relaxation time T, 
may become infrequent (d « vFT) while the intravaelley 
collisions are quite frequent (l «d). If the probability 
of the intervalley collisions on the surface is small, then 
transverse gradients are produced in the concentrations 
of carriers belonging to different valleys, and as a re­
sult the effective conductivity at 1 « d « vFT turns out 
to be independent of the sample dimensions. With fur­
ther increase of d, when the carrier trajectory in the 
sample (~d2Il) becomes comparable in length with vFT, 
the intervalley collisions in the surface lead to a vanish­
ing of the transverse gradients. At d ~ ,fZvFT = L the 
conductivity is obviously independent of the sample di­
mensions. 

Thus, under conditions when the diffusion size effect 
appears, the dependence of the electric conductivity on 
the sample dimensions can h~ve two plateaus (at d ~ L 
and Z « d «L). If the conductivities on these plateaus 
differ strongly, then the a(d) dependence in the transi-
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tion region d R< L may turn out to be quite ~trong. (In 
bismuth the ratio of the conductivities on the plateau, 
according to estimates[28J , can reach 25 for certain 
orientations. ) 

Allowance for the contribution of the intervalley scat­
tering of the carriers on the surface does not change the 
value of the conductivity of a sample with large dimen­
sions, but can come strongly into play in the intermed­
iate region 1 < d < L, but the qualitative picture of the 
behavior of a(d) remains unchanged. 

Calculation of the diffusion size effect in bismuth on 
the basis of the equations obtained in[27J was carried 
out in [28J . The results obtained in our experiments on 
the a(d), and also experiments by others, do not permit a 
detailed quantitative comparison with the calculation 
of[28J, but the observed experimental a(d) agrees quali­
tatively with the theoretical one. 

As seen from the plot (Figs. 6 and 7), the conductivity 
of the investigated samples decreases strongly after 
etching a thin surface layer. Within the framework of 
the diffusion size effect this fact can be attributed either 
to a decrease of the probability of the intervalley scat­
tering by the surface, or an increase in the diffuseness 
of the surface relative to the intravalley scattering of 
the carriers, in the case when the sample dimension d 
does not greatly exceed l. 

5. CONCLUSION 

The main results of our investigations are as follows: 

1. The thermal conductivity of perfect bismuth sam­
pIes at temperatures below the maximum is determined 
mainly by the scattering of phonons by the sample boun­
daries. An influence of the surface quality on the thermal 
conductivity of the samples has been observed. The co­
efficient of specular scattering of phonons by the sur­
face of molten samples is p ~ 0.3. 

2. The stronger than cubic temperature dependence 
of the thermal conductivity in this temperature interval 
is due to the influence of frequent normal collisions be­
tween the phonons, which lead to the occurrence of the 
hydrodynamic situation in the thermal conductivity[8J . 
The velOCity of the hydrodynamic viscous flow of the 
phonons in bismuth is small in comparison with the 
velocity observed by us earlier in crystals of solid 
helium [lOJ, owing to the additional scattering of the 
phonons by the carriers in the volume of the sample, 
which increases the viscous loss in the phonon system. 

3. The exponential growth of the thermoelectric 
power due to phonon dragging of the carriers in perfect 
and sufficiently bulky initial samples, when the tem­
perature is decreased in the interval 7-30 K, is due to 
the appearance of a new quantum effect, namely phonon­
phonon dragging of the carriers [20J . With decreasing 
characteristic dimensions of the sample, the exponential 
slope of the a(T) curve gives way to a weaker power-law 
slope, which can be attributed to a decrease in the con­
tribution of the phonon-phonon dragging. 

4. A size effect in the thermoelectric power was ob­
served, namely, a max decreases slightly with decreas­
ing characteristic dimensions, after which it practically 
flattens out. A detailed explanation of this effect calls 
for a quantitative analysis of the relations between the 
roles of the different phonon scattering mechanisms, but 
it is qualitatively clear that the weak dependence of the 
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thermoelectric power of bismuth at T ='" 2.50 K on the 
dimensions of samples with characteristic dimensions 
2-3 mm can be attributed to the influence of a stronger 
scattering of the long-wave phonons by the carriers than 
in the case of the thermal conductivity (the expression 
for the thermal conductivity contains the time of scatter­
ing by the carriers, averaged over all the phonons) and 
to the transition from the phonon-phonon mechanism of 
carrier dragging to the ordinary phonon mechanism. 

As seen from the results and their discussion, the 
study of the question of the behavior of the thermoelec­
tric power of perfect single crystals of bismuth at hel­
ium temperatures is of interest from the point of view of 
constructing a theory of the processes of mutual drag­
ging of quasiparticles in perfect bulky crystals at low 
temperatures. 

5. We have shown that the electric conductivity of 
bismuth at helium temperatures depends essentially not 
only on the chemical purity but also on the dimensions 
of the samples, the quality of the surface, and the per­
fection of the crystal structure of the samples. Unlike 
usual metals, the quality of the structure can greatly 
influence the electric conductivity of bismuth samples 
at low temperatures (the cross section for the scattering 
of electrons by defects in bismuth is approximately 104 

times larger than in normal metals[14J ), so that the 
chemical purity of the material cannot be assessed 
uniquely from the ratio p(300° K)/p(4.2° K) of the resis­
tances at room and helium temperatures. 

6. The observed dependence of the electric conductiv­
ity on the dimensions of perfect samples with charac­
teristic dimensions of several millimeters can be ex­
plained most fully within the framework of the theory of 
the diffusion size effect[2B,27J. The conditions for the 
scattering of the electrons by the boundary have been 
seen to influence the electric conductivity of samples in 
the region of the diffusion size effect. 

The size-effect phenomena described above, with the 
exception of the dependence of the electric conductivity 
on the dimensions, were observed by us in bismuth for 
the first time. 
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