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Interaction between optically oriented electrons and lattice nuclei in semiconductors is considered. 
Possible mechanisms of spin relaxation of electrons localized on shallow donors and also the effect of 
a longitudinal magnetic field on this relaxation are considered. Dynamic polarization of nuclei by 
electrons leads to the appearance of an effective magnetic field which acts on the electron spin and is 
due to hyperfine interaction. By enhancing or weakening the effect of the external magnetic field on 
the electron spin relaxation, this field affects the stationary degree of their orientation. Resonant 
alteration of electron orientation under nuclear-magnetic-resonance conditions caused by variation of 
the magnitude and direction of the nuclear effective magnetic field strength is also considered. The 
theory describes satisfactorily the main experimental results on optical orientation of electron and 
nuclear spins. 

1. INTRODUCTION 
During the optical orientation of electrons in semi­

conductors [1, 2J, dynamic polarization of the lattice 
nuclei [lJ occurs, which affects in turn the orientation of 
the electrons and~ because of this, can be detected by 
optical methods l3J . In our previous paper[4 J we con­
sidered the hyperfine interaction of optically oriented 
electrons captured by impurity centers with the 
nuclei of these centers. Under such conditions the mag­
netic field created at an electron by the randomly 
oriented spin of the nucleus leads to the depolarization 
of the electron. An external magnetic field parallel to 
the orienting light beam decreases the rate of depolari­
zation by disrupting the coupling between the spins of 
the electrons and nuclei. The depolarizing action of the 
nuclei also depends on the degree of order of the nu­
clear spins. Such order arises because of the dynamic 
polarization of the nuclei by the electrons. Any action 
on the nuclear spins (e.g., NMR) therefore leads to a 
change in the degree of orientation of the electrons. 

In the present paper we consider the situation corre­
sponding to the experiments of Ekimov and Safarov[3,5 J, 
in which the optical orientation was effected in a 
GaxAll-xAs solid solution, in which all the nuclei of the 
host lattice possess spin. Under the conditions of these 
experiments electrons thrown into the conduction band 
by the circularly polarized light are apparently rapidly 
captured by shallow donor centers. The region of local­
ization of an electron encompasses a large number 
(~l05) of lattice nuclei. This situation is essentially 
different from the conditions considered previouslyl4J, 
in which each electron interacts with only one nucleus. 
Indeed, unpolarized nuclei now create only a weak fluc­
tuational magnetic field at the electron. On dynamic 
polarization of the nuclei, however, a strong field ap­
pears, whic h can reach several kOe. It is this field 
which is the main reason for the influence of the nu­
clear polarization on the electron spin. 

In the presence of an external magnetic field, the 
action of the nuclear field on the electron spin is weak­
ened or strengthened. Even A if the hyperfine interac­
tion is not the main mechanism of the electron spin re­
laxation, but the spin relaxation time depends on the 
magnetic field, on polarization of the nuclei this time 
will be lengthened or shortened, depending on whether 
the mean spin of the nucleus and the magnetic field are 
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parallel or antiparallel. For polarization of the nuclei 
by the electrons the mean electron and nuclear spins 
are found to be parallel. Thus, the degree of polariza­
tion of the electrons will depend on the relative orienta­
tion of the external magnetic field and the mean electron 
spin. This asymmetry is in fact observed [5]. Under 
NMR conditions the magnitude and direction of the 
nuclear field change, and this leads to the resonance 
change in the orientation of the electrons that was ob­
served by Ekimov and Safarov[3,5 J using the degree of 
polarization of the luminescence. 

In Secs. 2 and 3 we consider the possible mechanisms 
of spin relaxation of electrons localized at shallow 
donors, and also the effect of this relaxation of a longi­
tudinal magnetic field. An increase of the spin orienta­
tion in an external magnetic field, indicating the exist­
ence of such an effect, has been observed cperiment­
ally[5,6J. 

Any spin relaxation mechanism can be interpreted as 
the action of random local magnetic fields acting on the 
electron spin. The nature of the effect of an external 
longitudinal magnetic field on the relaxation depends 
essentially on the value of the correlation time charac­
terizing the rate of change of the local fields. If the 
correlation time is long compared with the period of 
precession of the electron spin in the local field, an ex­
ternal field will slow down the spin relaxation consid­
erably as soon as it becomes greater than the local 
field. In the opposite case, dynamic averaging of the 
local fields occurs and there will be a noticeable slow­
ing-down of the spin relaxation in the external field 
only when the period of precession of the spin in this 
field is comparable with the correlation time. 

The correlation time of the local field is, in any case, 
not longer than the time of an electron jump from one 
donor to another, Both the estimates and the experi­
mental data of[5 J are evidence that dynamic averaging 
of the local fields does in fact occur. Only this case is 
considered in the present paper. 

In Sec. 4 and 5, we consider the dynamic polarization 
of nuclei by oriented electrons, leading to the appear­
ance of an additional effecti ve magnetic field acting on 
the electron spin. The stationary orientation of the 
electrons is calculated as a function of the external 
magnetic field. In Sec. 6 the change in the degree of 
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orientation during nuclear magnetic resonance is dis­
cussed. 

The main experimental results of[5 J are well de­
scribed on the basis of the picture proposed here of 
optical orientation in a system of interesting electrons 
and nuclear spins. 

2. THE LOCAL MAGNETIC FIELDS ACTING ON 
THE ELECTRON SPIN 

A characteristic of the spin relaxatio"l of localized 
electrons is that the orientation of the spins of such 
electrons is very sensitive to the local magnetic fields 
in the crystal. We shall discuss two possible reasons 
for the existence of such fields: the hyperfine interac­
tion with the lattice nuclei and the exchange interaction 
with the holes bound to the acceptors in p-type semi­
conductors. We shall estimate the magnitude of the 
local fields due to these interactions. 

Owing to the hyperfine interaction with the lattice 
nuclei, a localized electron spin is acted upon by the 
effective magnetic field 

(1) 

where Jl 0 is the Bohr magneton, g is the g-factor, Vo 
is the volume of a unit cell, lji( rn) is the value of the 
"effecti ve-mass method" wavefunction (describing the 
state of the electron at the donor) at the site of the n-th 
nucleus, In is the spin of this nucleus, and An is the 
constant of the hyperfine interaction of the electron with 
the n-th nucleus; this constant takes the same value for 
nuclei of the same type occupying equi valent positions 
in the lattice. If the nuclear spins are not ordered, we 
find for the mean square effective field 

He'=(I-I,g)-'-' Aa'I.U.+l). 
- v L 

8"a' (2 ) 

Here the summation is performed over the nuclei in one 
unit cell, and a is the donor radius. In calculating (2) 
we have taken the electron wave function in the form 

(3 ) 

For the following, the value of the precession fre­
quency of the electron spin in the random field of the 
nuclei, Wc = Jlog(H~ ).v'2/ti, is important. For a shallow 
donor in gallium arsenide, an estimate gives Wc ~ 5 
X 108 sec-I. For 2 > g > 0.5 [7,8 J, this corresponds to a 
magnetic field between 30 and 100 Oe I). 

We now proceed to an estimate of the effective mag­
netic fields due to the exchange interaction of a localized 
electron with the holes at the acceptors. This interac­
tion has the form [9J 

Vexch = ~J(/, 

where J is the angular-momentum operator of the hole, 
(J are the Pauli matrices, and tl. is a constant depending 
on the overlap of the electron and hole wave functions . If 
the acceptor radius is much smaller than the donor 
radius, the effective magnetic field acting on the elec­
tron spin and due to the exchange interaction with an 
acceptor situated at a distance r can be estimated as 
follows: 

(4) 

where tl. ex is the magnitude of the exchange splitting in 
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the exciton. The mean square field can be obtained by 
averaging over the sitting of the nearest acceptor. For 
NAa 3 « 1, where NA is the c;oncentration of acceptors, 
we obtain (for J = %) 

(5) 

For most semiconductors, the quantity tl. ex is not 
known. Roughly estimating tl.ex ~ 10-5 - 10-4 eV for an 
acceptor concentration of NA = 10 16 cm -3, we find Wc 
~ 10 9 - 10lD sec-I. 

Thus, the local magnetic fie Ids due to the holes are 
somewhat greater than the fields of the nuclei. How­
ever, the spin relaxation of the electrons depends not 
only on the magnitude of the random field, but also on 
its rate of change. If we denote the characteristic time 
of variation of the effective magnetic field by y - \ the 
spin relaxation time will be of the order of TS ~ y/w~ 
(dynamic averaging-it is assumed that Wc /y « 1). 

If Wc is determined by the hyperfine interaction, in 
view of the slow change of the spin state of the nuclei 
it can be assumed that the variation of the effective 
field is associated with electron hops between donors, 
and y-I is the time an electron spends at one donor 2). 
But in the case of exchange interaction with the holes 
there is also another reason for the variation of the ef­
fective magnetic field, viz., the spin relaxation of the 
holes. Because of the very strong spin-orbit coupling 
in the valence band, the spin relaxation time of the 
holes can be so short that it is this time which will de­
termine the quantity y-I in this case. The electron spin 
relaxation due to the exchange interaction with the holes 
will then be strongly suppressed. 

Along with the factors considered above, there may 
also be other causes of spin relaxation of the localized 
electrons. If, e.g., the electron spends an appreciable 
fraction of its time in excited states with non-zero 
orbital angular momentum, the spin-orbit interaction 
may be such a cause. Paramagnetic impurities can also 
playa role, if their concentration is sufficiently large. 
In all cases, the important parameters determining the 
relaxation are the magnitude of the effective local mag­
netic field Hc and the correlation time y-I characteriz­
ing the rate of change of this field with time. 

3. SPIN RELAXATION OF THE ELECTRONS AND 
ITS DEPENDENCE ON THE MAGNETIC FIELD 

We consider the longitudinal spin relaxation of elec­
trons in a magnetic field Hc (t) varying randomly in 
time, in the presence of a constant external field Ho. 
The probability per unit time of a spin flip is given by 
the expression[llJ 

1 (I-Ig)' ~ W= 2 -it Re Sexp(-iQ,'t)(H,_(O)H,+('t»d't. , (6) 

where S1 e = JlogHo/Ii is the precession frequency of the 
electron spin in the external field (which is assumed to 
be along the z-axis), Hc- = Hcx - iHcy , and the angu­
lar brackets denote averaging over all realizations of 
the random field. 

In the following, we shall use the simplest model for 
the field correlation function, putting 

(7) 

where H21 = % H2, H2 is the mean square of the ran­
dom field, and y fs th~ inverse correlation time of the 
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random field. The factor exp(-iO'T) takes into account 
the regular variation of the random field in time, due 
to the precession of the spins of the holes and nuclei or 
of the orbital angular momenta in the external magnetic 
field (~I > 0 if the direction of this precession is op­
posite to the direction of precession of a free-electron 
spin). 

Substituting (7) into the expression (6) and introduc­
ing the electron spin relaxation time Ts = (2Wf\ we 
find 

2 w,'l 
3 l' +(n. + n/)" (8) 

(9 ) 

If the relaxation occurs at the nuclei, then ~' « ~e. 
It can be seen from expression (8) that the spin relaxa­
tion time begins to depend on the external magnetic 
field when the period of precession of the spin in this 
field becomes of the order of or smaller than the char­
acteristic correlation time of the random field. For 
~e =~' = 0, we have T~l = 13W~Y-\ which reflects the 
dynamic averaging of the local fields. Formula (8) is 
valid of YT s » 1, i.e., if the spin relaxation during the 
correlation time is insignificant. This restriction is 
associated with the use of the perturbation-theory 
formula (6). 

The simple dependence T s (Ha) given by formula (8) 
is based on the assumption (7). In fact, this dependence 
can be more complicated, since the values of yare 
different for donors with different environments, and 
TSI is determined by the average of the expression (8) 
over a certain distribution of values of y. Formula (8) 
was derived as if the random fields were classical. The 
same result is also obtained for TS in a quantum­
mechanical treatment. The quantum generalization of 
the method used here is given in the following section 
in an application to the spin relaxation of the nuclei. 

4. EFFECT OF THE ELECTRONS ON THE SPIN 
STATE OF THE NUCLEI 

We shall find the change in the spin state of the 
nuclei due to the hyperfine interaction with the electrons, 
taking into account the possible spin orientation of the 
electrons. We write the Hamiltonian of the interaction 
of a nucleus with the electrons in the form 

(10) 

where Jl I and I are the magnetic moment and spin op­
erator of the nucleus, and 

- 16n ~ -
H.=--[ Ilo J 6(rn-R)Sn 

3 ..;....: (11) 

is the operator of the magnetic field due to the electrons 
and acting on the nucleus; rn and Sn are the coordi­
nates and spin of the n-the electron, and R is the posi­
tion of the nucleus Under consideration. 

The probability W Jl ,j.J.-I of a transition of the nucleus 
from the Zeeman sublevel Jl to the sublevel j.J.-l per 
unit time is given by an expression analogous to (6): 

(12) 

Here we are explicitly taking into account the quantum 
characterAof the field lIs, by taking HS(T) to be the 
operator Hs in the interaction picture. We have 
neglected the Zeeman energy of the nucleus in the mag-
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netic field, assuming that the important values of T in 
the integral (12) are those such that Wa T « 1, where 
Wa is the nuclear spin precession frequency. The angu­
lar brackets denote averaging over the states of the 
electron subsystem. 

Taking (11) into account, we can write the integral 
occurring in formula (12) in the form 

Rej d.u'i.-(o)ii.+(.p= (16;(')'(+_8)K1 (R,n,), (13 ) 
o 

where S is the mean value of the projection of the elec­
tron spin along the direction of the magnetic field, and 

K1 (R, w)= Re S du'·'<p(R, O)p(R, .». (14) 
o 

Here p (R, T) is the operator, in the interaction picture, 
of the electron density 

p(R)= ,E6(r" -R) 

at the given nucleus. The quantity Kl can be expressed 
in terms of the fluctuation spectrum of the electron 
density at the nucleus. We introduce the function 

K(R, w)={Re I dTe'·'<p(R, O)p(R, T)+ p(R, .)p(R,O». (15) 

Then[12] , 

K1 (R,w)=exp ( _ ~;) [Ch (;;)] _1 K(R,w), 

where T is the temperature in energy units. Finally, 
we find a general formula for the transition probability: 

W •. H = (8n;;t)' (I + Il) (I -Il + 1)K(R, n,) (1 + 28T ) (1- 28). (16) 

Here ST = -72tanh (line/2T) is the thermodynamic 
equilibrium value of the projection of the electron spin 
along the direction of the magnetic fie ld. 

In an analogous way, we find for the probability of 
the reverse transition 

The probabilities of the direct and reverse transitions 
differ by the factors (1 ± 2ST) (1 ± 2S). This difference 
exists if the spin orientation of the electrons is not the 
thermodynamic equilibrium orientation, and leads in 
this case to orientation of the nuclear spins. 

The condition for the applicability of formulas (16) 
and (17) is that the probability of a change of nuclear 
spin during the correlation time of the electron density 
be small compared with unity. These. formulas are 
valid irrespecti ve of the nature of the orbital states of 
the electrons. 

If the electrons are localized at donors we can as­
sume, as in formula (7), that 

1, - A _ 

2<p(R, O)p(R,.) + p(R, .)p(R, 0»= Flu(R) l'po'1jl'(r)exp(··"( •• ), 

(18) 

Here F is the degree of occupation of the donor, u( R) 
is the Bloch amplitude at the site of the given nucleus, 
normalized in the volume Va of the unit cell, Ij!(r) is 
the "effective-mass method" wave-function of the 
electron at the donor (formula (3», r is the distance 
from the nucleus to the nearest donor center, and y~l 
is the time that the electron stays at one donor, which 
coincides with the correlation time, introduced in Sec. 
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3, of the random nuc lear field acting on the electron 
spin. 

Using formula (18), we find 

w'(rJ-r. 
W.,.,±1 = (I 'F!!) (,l ±!! + 1)F -;--+" ,(1 'F 28T ) (1 ± 28). ,. .'. 

A Vo w(r)= ___ e-2 "o 

21i na' • 

(19 ) 

(20) 

where w( r) is the precession frequency of the nuclear 
spin in the magnetic field created by the localized­
electron spin as a result of the contact hyperfine inter­
action, and A is the hyperfine interaction constant. 

The change in the populations of the Zeeman nuclear 
sublevels as a result of the interaction with the elec­
trons is described by the equations 

dill .. & = - (W.".+I + w.,,<-t) $., + W.+ I,.Ill.+I,.+t + W._t,.$._I,._I, (21) 

where q,/l/l is a diagonal element of the spin density 
matrix of the nuclei (the population of sublevel /l). If 
the other factors influencing the nuclear spin are unim­
portant, the stationary distribution of the populations 
4>tJ./l can be obtained by equating the right-hand side of 
Eq. (21) to zero. Using formulas (16) and (17), we find 
that, in the stationary state, 

( IiQ. 1 + 28) 
x=1 --+In-- , 

T 1-28 

(22) 

(23 ) 

where Z = ~ exp (/lx/I) is a normalization factor. The 
/l 

mean value (Iz ) of the projection of the nuclear spin 
along the direction of the magnetic field is 

(I.> = IB1(x), (24) 

where BI(x) is the Brillouin function[13). If we intro­
duce the electron spin temperature Ts , the second 
term in formula (23) can be written as -fine/Ts ' 

Formula (24) describes the well-known dynamic 
polarization of nuclei due to a difference between the 
spin temperature of the electrons and the lattice tem­
perature. Under conditions of optical orientation of the 
electrons, the first term in (23) is usually small com­
pared with the second. Figure 1 shows the dependence 
of the stationary degree of orientation of the nuclei on 
the degree of orientation of the electrons, as obtained 
from formulas (23) and (24) with neglect of the quantity 
nne/To 

We shall now obtain an equation describing the change 
of nuclear orientation with time. Multiplying Eq. (21) 
by /l and summing, we obtain 

d(/,) ~ --= cIl .. (W •.• +t-W •.• - t ). 
dt 

Using expressions (16) and (17) for W, we can rewrite 
this equation in the form 

!,Or-------,... 

<1,>/1 
I 

I 

U.5~~ 
D,5 ,1.0 

zs 

FIG. I. Limiting nuclear polarization 
as a function of the degree of orientation 
of the electrons (2S) according to formu­
la (24) with M1e ~ T: I-I = Y2; 2-1 = 
3/2. 
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d (I,) 1 ( ,:x; ) --=--- (/,)-(/J. )th- , 
dt T,,(r) 2l (25) 

where Ii = I~ + Iy, and the longitudinal nuclear spin 
relaxation time Tle( r) due to the interaction with the 
electrons is given by the formula 

_1 _= 2 ( 8n!!0!!1 )' K(R Q ) (1- 488 ) (26) 
Tt,(r) 3/1i ' , T • 

If we assume that the electrons are localized at the 
donors and use the approximation (18), then 

_,1_=2F w'(rJ-r. (1-488) (27) 
T,,(r) ,.' + Q.' T • 

In particular, for S = 0, the formula (27) gives the 
longitudinal relaxation time of the nuclei positioned 
near the donor, due to the unoriented electrons situated 
at this donor. We shall estimate Tie in zero magnetic 
field for the nuclei lying in the region of localization of 
the electron (r« a). Putting Ye ~ 10lD sec-1 and w(O) 
~ 10 6 sec-t, for F = 10-3 we obtain the value Tle(O) 
~ 5 sec. 

We shall make several comments concerning Eq. 
(25). The quantity (Ii), which itself varies in the or­
ientation process, appears in this equation. While the 
degree of polarization of the nuclei remains small, we 
can put Ii = 731(1 + 1). For an arbitrary degree of 
polarization of the nuclei, we can express (Ii) in terms 
of (Iz ) by using the concept of a nuclear spin tempera­
ture [11). 

In Eq. (25) the diffusion of the nuclear magnetization 
as a result of the spin-spin interaction of the nuclei has 
not been taken into account. Neglect of the diffusion is 
justified if the time Tie is much shorter than the time 
of diffusion over the donor radius a. The diffusion co­
efficient D ~ 10-13 cm 2sec-1[11), so that the diffusion 
time a 2/D ~ 10 sec (for a shallow donor in GaAs, 
a ,- 10-6 cm). For Tele(O)>> a 2/D, the diffusion will 
lead to rapid equalization of the degree of orientation 
in the region of the donor. The stationary degree of 
orientation of the nuclei will then depend essentially on 
their rate of spin relaxation at the paramagnetic centers 
(which, in particular, can be neutral acceptors). If the 
donor concentration is so great that the orientation has 
time to diffuse over the distance between donors in the 
time Tle( 0), a uniform distribution of nuclear spins is 
established. In this case, the quantity Ti~(r) in Eq. 
(25) must be averaged over all positions of nuclei of a 
given type and a term responsible for the relaxation at 
the paramagnetic impurities must be added to the right­
hand side of this equation. Then, putting fine IT « S 
and assuming the nuclear polarization to be small, we 
obtain 

d <I,) 1 [ 4 ] 1 --=-_ (/,)--81(1+1) --, <I,), 
& T" 3 ~ 

(28) 

Here, 

(29) 

Here T~ is the nuclear spin relaxation time due to spin 
diffusion to the paramagnetic centers [11). This time, 
generally speaking, can depend on the intensity of the 
exciting light, since the electrons thrown into the con­
duction band can create new paramagnetic centers by 
being captured at deep traps. In addition, the electrons 
can influence the spin re laxation of the existing centers, 
thereby altering their effectiveness as a source of spin 
relaxation of the nuclei. 
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As can be seen from Eq. (28), the total longitudinal 
relaxation time of the nuclear spins is 

T, = (1/T,.+1/T,')-', 

and the stationary degree of orientation is given by the 
formula 

<I,> = '/,1(1 + 1) (T, / T,,)S, 

which is applicable so long as (Iz ) « 1. 

(30) 

5. EFFECT OF THE POLARIZED NUCLEI ON THE 
SPIN ORIENTATION OF THE ELECTRONS 

The polarization of the nuclei arising as a result of 
their interaction with the oriented electrons changes, 
in its turn, the spin orientation of the electrons. This 
change can be due to two factors. Firstly, commensu­
rately with the appearance of the nuclear polarization, 
the magnitude of the random (transverse) magnetic 
field created by the nuclear spins as a result of the 
hyperfine interaction decreases. Therefore, the elec­
tron spin relaxation due to this interaction will decrease. 
If the contact interaction (10) is the only cause of 
longitudinal nuclear relaxation, the transfer of spin 
from the electron system to the nuclear system ceases 
after the stationary nuclear orientation (24) is reached. 
This is connected with the fact that the interaction (10) 
conserves the total spin of the electrons and nuclei, so 
that if the nuclear spin has attained its stationary value 
spin relaxation of the electrons at the nuclei cannot 
proceed. 

The second factor causing a change in the electron 
spin relaxation on polarization of the nuclei is the ap­
pearance in this case of a regular longitudinal magnetic 
field arising from the oriented nuclei and acting on the 
electron spins. According to the results of Sec. 3, this 
field, when combined with the external field, will change 
the rate of spin relaxation of the electrons even in those 
cases when the hyperfine interaction is not the direct 
cause of this relaxation. If all the nuclei in the region 
occupied by the electron at the donor were completely 
oriented, the effective magnetic field HN would be of 
order AI/Ilog. This field can be of order 104 Oe 3). 

Therefore, even for negligible polarization of the nuclei, 
the effective field HN can be found to be important. 

We shall consider the role of this field in more de­
tail, assuming the first of the factors enumerated above 
to be unimportant (i.e., assuming that the polarization 
of the nuclei is small «Iz) « 1) or that the electron 
spin relaxes mainly away from the nuclei). Allowance 
for the effect of the regular effective field of the polar­
ized nuclei on the electron spin relaxation reduces in 
this case to replacing the quantity ~e in formula (8) 
(and also in formula (27)) by the quantity Ilo g I Ho + HN I, 
where Ho is the external magnetic field. Then the spin 
relaxation time TS will be determined by the formula 

~=~~[1+ ( H'+1]HN )'] -', 

". 3 1 Hy (31) 
Hy = 'Y[/lo(g + g') ]-', 1] = g / (g + g'), g' = Q' / /loHo. 

The regular nuclear field HN is determined by averag­
ing the expression (1): 

HN=(/log)-'vo .EhjJ(rn) !'An <In). (32) 

For relaxation at the nuclei, we can take g' = 0; if the 
relaxation is due to the holes, g' is the g-factor of a 
hole; if the r~laxation occurs because of the spin-orbit 
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interaction, then g' = 2mo/m, where mo is the free­
electron mass and m is the effective mass. 

In the stationary state the preferred orientation of 
the nuclear spins coincides with the electron spin 
orientation, so that the direction of HN is determined 
by the sign of the circular polarization of the exciting 
light. Thus, in a magnetic field the rate of spin relaxa­
tion of the electrons and, consequently, their stationary 
degree of orientation depend on the sign of the circular 
polarization of the light. 

The stationary value of S (the mean z-component of 
the electron spin) will be greater when the preferred 
spin orientation of the electrons thrown into the conduc­
tion band coincides with the direction of the external 
magnetic field Ho. The expression for S has the form 

(33 ) 

where So is the initial value of S, which is determined 
by the degree of polarization of the light, the selection 
rules, and the relaxation processes which can occur 
during the time of thermalization of the electrons [2J, and 
T is the electron lifetime. 

In the case under consideration, formula (33) is in 
fact an equation for S, since the nuclear field HN ap­
pearing in the expression (31) for T s depends on the 
degree of orientation of the electrons. This dependence 
can be established easily in two opposite limiting cases. 

1. The polarization of the nuclei is maximum. This 
case can be realized if the time of diffusion of a nuclear 
spin over the donor radius is greater than the time TIe 
occurring in formula (25). In this case, the polarization 
of the nuclei is given by formula (24). Substituting (24) 
into (32), we obtain 

(34) 

where the summation is taken over all the nuclei in the 
unit cell. The formulas (31)-(34) determine the station­
ary value of S as a function of the external magnetic 
field. 

For small values of Sand ST « S, the BrHlouin 
function in formula (34) can be replaced by the first 
term of its expansion ill powers of S: 

BI(x) ='/,8(1+1). 

As can be seen from Fig. 1. this expansion gives an 
error of less than 10% up to S = 0.2. Finally, Eq. (33) 
for S takes in this case the form 

(35) 

where T s( 0) is the electron spin relaxation time in the 
absence of the magnetic field (i.e., of both the external 
and nuclear fields), 

~ = 4[3/lo(g+ g') ]-' L,Aol.(I. + 1). (36) 

Figure 2 shows the dependences S(Ho) following from 
formula (35), for So parallel to Ho and for So antiparal­
leI to Ho• 

We recall that when the nuclei attained their maxi­
mum polarization (24), the relaxation of the electron 
spin at the nuc lei ceases. Therefore, in the case under 
consideration the time TS is determined by other relax­
ation mechanis ms. 
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FIG. 2. Dependence, obtained from formula (35), of the electron 
spin orientation on the external longitudinal magnetic field Ho. The 
dashed curves are constructed with neglect of the nuclear field (J3 = 0). 
The curves I are for So parallel to Ho, and the curves 2 for So anti­
parallel to Ho. a~T/Ts(O) = 24, IlSofHy = 5; b~T/Ts(O) = 3, IlSo/Hy = 
2.5; C~T/TS(O) = 3, IlSo/Hoy = 10. In the case (c) with So antiparallel to 
Ho, in a certajn range of fields Eq.(35) has three solutions, of which 
one corresponds to an unstable state (the dotted curve). 

2. The nuclear polarization is much smaller than the 
maximum. In this case, according to formula (30), the 
orientation of the nuclei is proportional to that of the 
electrons. Then, 

HN=4(3fL,g)-'~ A./.(/.+1) (~) S (37) 
~ Tie 0. 

and, as before, the equation for S can be written in the 
form (35), but with the expression for {3 (36) replaced 
by an analogous expression in which there is an addi­
tional factor (Tl/Tle)a in the summand. In this case, 
the quantity (3 can itself depend on the magnetic field. 
The dependences S( Ho) obtained in experiment[5 J are 
c lose to that de picted in Fig. 2a. 

The polarization of the nuclei by the electrons pro­
ceeds fairly slowly. According to the model proposed 
here, immediately after the exciting circularly polar­
ized light is switched on, the electron spin orientation 
takes a value corresponding to the dashed curve in Fig. 
2. Then, commensurately with the polarization of the 
nuclei, which proceeds with a characteristic time T1, 
the electron orientation should tend to a value corre­
sponding to the upper or lower curve of Fig. 2, depend­
ing on the relative orientation of So and Ho. In the 
experiments ofl5J, inertial effects with characteristic 
time of order 10 sec were observed in the establishment 
of the luminescence polarization. However, the reasons 
for the essential difference between these effects in the 
parallel and antiparallel orientations of So and Ho re­
main unclear. 

6. EFFECT OF NUCLEAR MAGNETIC 
RESONANCE ON THE ELECTRON SPIN 
ORIENTATION 

During the action of a radio-frequency (RF) field on 
the spins of the polarized nuclei, the effective magnetic 
field acting on the electron spins changes in both magni­
tude and direction. This can explain the experimentally 
observed(3,5 J change (reflecting the change of orienta-
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FIG. 3. a~ The magnetic field Ht acting on 
the nuclei in the rotating coordinate frame; 
b~the combined magnetic field H + H", acting 
on an electron in the case H~ II Ht . '" I ·tl: ~~ f' ! 

II, 

b 

tion of the electrons under NMR conditions) of the 
luminescence polarization. Typical NMR frequencies 
are small compared with the inverse electron lifetime 
T-1, so that even in resonance conditions the effective 
regular field of the nuclei acts as a static field on the 
electron spin. 

In NMR conditions, the nuclear field HN is no longer 
parallel to So. The combined field Ho + HN will thus 
make a certain angle () with So. In sufficiently high 
fields, when 

fL,glH, + HNI > fi(1/ 'C + 11 'C,), 

in stationary conditions only the component of the elec­
tron spin along the direction of the combined field is 
conserved. This component will be expressed by 
formula (33), with the quantity So replaced by Socos (). 
In order to obtain the desired stationary value S of the 
component of the spin along the direction of So, we must 
introduce a further factor cos (). Thus, 

(38) 

cos' 8 (39) 

Here H is the sum of the external field and the fields of 
all the nuclei for which the RF field is not equal to the 
resonance field; Ha is the field of the nuclei (of type a) 
whic h are in NMR conditions; Ha II and Hal are the 
components of Ha along and perpendicular to the ex­
ternal field Ho. 

We shall consider the nature of the variation of the 
nuclear field Ha under NMR conditions. Since the field 
Ha is proportional to the mean spin (Iu > of the nuclei 
of type a, we can make use of the well-known picture of 
the behavior of a nuclear spin in solids[llJ. This behav­
ior is usually described by means of the concept of the 
spin temperature in the rotating coordinate frame[ll,15 J 

Let the coordinate frame rotate about the direction 
of the constant magnetic fie ld Ho (the z axis) with the 
frequency W of the RF field. In this frame, the nuclei 
are acted upon by a static magnetic field Ht with com­
ponents Ho - H* along the z axis and H 1 in the xy 
plane, where H* = -nwIa/iJ.a and H1 is the amplitude of 
the RF field (cf. Fig. 3a). On passage through the reso­
nance, the direction of the field Ht is rotated through 
180°. In the following we shall assume that the charac­
teristic time of variation of the field Ht is much longer 
than the transverse relaxation time T 2 • In addition, we 
shall confine ourselves to treating the case of a strong 
RF field, much greater than the local field determining' 
the width of the unsaturated NMR line. Then the charac­
ter of the variation of the field Ha is easily described [llJ 

in two limiting cases. 
1. Adiabatically fast passage (the time of passage 

throu h the resonance is shorter than the longitudinal 
relaxation time T 1). In this case, the mean spin Iu , 
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and with it the field Ha , remains unchanged in magni­
tude and rotates together with the field Ht, remaining 
all the time parallel or antiparallel to it, depending on 
the initial orientation. If we assume for definiteness that 
the quantity w - Wo changes from positive to negative 
values on passage through the resonance, then 

Cil-Cil. 0, 
H. II = «Cil_Cil.)'+O,')",H.o, H'1-= «w-wo)'+Q,')'" Hao , (40) 

where Wo is the resonance frequency for the type of 
nucleus under consideration in the field Ho; n 1 

= iJ.aHdfiIa; Ha 0 is the component of the nuclear field 
along the direction of Ho before passage through the 
resonance and far from resonance. 

2. Slow passage. In this case, a stationary value of 
the nuclear field. independent of the initial conditions, is 
established for each vaiue of the field Ht. The projec­
tion of the vector Ha on the direction of the field Ht 
equals the quantity Hao cos cp (cp is the angle between 
Ho and Ht), and the projections of the vector HQ on a 
plane perpendicular to Ht are equal to zero. Then, 

H = (Cil-Cilo)' H H _ Q,(ro-roo) H 
<H (w _ wo)' +. 0,' .0, <1- - (w _ wo)' + Q,' aO. (41) 

We can assume that the value of Hao in formulas (41) is 
the same as in formulas (40), if the mean electron spin 
(which determines the pumping for the nuclear spin) 
changes little during the NMR. 

The formulas (38)-(41) describe the effect of NMR 
on the spin orientation of the electrons. This effect is 
associated with the variation of the combined field 
H + Ha during NMR (Fig. 3b) and is determined by two 
factors. First, the RF field leads to the appearance of 
a nuclear-field component perpendicular to So, and this 
component reduces the electron orientation. Thus, the 
factor cos 2e in formula (38) changes. For small values 
of Ha, we can put cos 2e = 1 - H~l./H2. For fast pas­
sage, the dependence of the quantity H&l. on the reso­
nance detuning is described by a Lorentzian contour. A 
characteristic feature of slow passage is the vanishing 
of Hal. at resonance. 

Secondly, the change in the magnitude of the combined 
field during NMR leads to a change of the time TS' If, 
e.g., So and Ho are antiparallel, then before the passage 
the nuclear field is opposite in direction to the external 
field. During fast passage, the field Ha is rotated and 
the combined field increases monotonically from the 
value H - Hao to the value H + Hao, leading to an in­
crease of Ts and to an increase of spin orientation. 
During slow passage, the combined field and, conse­
quently, TS first increase, reaching a maximum at 
resonance (where Ha = 0), and then decrease to their 
original values. 

The nature of the change of electron orientation dur­
ing NMR, as obtained from the above treatment, is in 
complete agreement with the results of the experiment 
of[5]. 

Above, we have been interested in the projection S 
of the mean electron spin along the direction of Ho. We 
remark that the perpendicular component which appears 
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in NMR conditions rotates with the RF-field frequency 
w. This should lead to oscillations of the luminescence 
polarization in observations at an angle to Ho. 

We are grateful to A. I. Ekimov and B. I. Safarov for 
communicating the experimental data before publication, 
and for useful discussions. 

I)In a paper of Haraldson and Ribbing [8] it was remarked that the 
large EPR line-width in gallium arsenide (-100 Oe) may be due, at 
least partially, to the hyperfine interaction of the electron at the 
donor with the lattice nuclei. 

2)This time is somewhat shorter than the hopping time determining 
the hopping conductivity. The experimental data on the hopping 
conductivity in GaAs (cf., e.g., the survey by Shklovskil [~O]) make 
it possible to estimate the magnitude of'Y:'Y-IOIO-IOI~ sec'l for a 
donor concentration ND = 1016 cm-3 and temperature 4°K. 

3)We considered earlier [14] the effects due to this field which arise on 
dynamic polarization of the nuclei. 
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