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The contribution of electron-electron collisions to the resistance of pure metals at low temperatures 
is determined. It is shown that due to compensation of Coulomb repulsion of electrons and their 
attraction due to virtual phonon exchange, the effective interaction between the electrons is 
appreciably decreased. Consequently, the contribution of electron-electron collisions to the res.istance 
of a number of metals is proportional to T6 in a broad temperature range (and not to T2 as 
predicted by the Landau-Pomeranchuk theory; T is the metal temperature). 

1. As first shown by Bloch [lJ, the resistance of a 
metal, due to electron interaction with the lattice vibra
tion, is proportional to T 5 (T is the temperature). On 
the other hand, as shown by Landau and Pomeranchuk[2J, 
the resistance due to the scattering of electrons by 
electrons, should be proportional to T2. The principal 
role at low temperatures should therefore be played not 
by electron-phonon interactions, but by electron-elec
tron interaction. Yet the T2 law is not confirmed as a 
rule in experiments on pure metals at low tempera
tures l3J . 

The Landau-Pomeranchuk approach is quite general 
and makes use only of the circumstance that the elec
trons of the metal constitute a degenerate Fermi sys
tem, and the effective interaction between them is de
scribed by a potential that depends on the coordinate. It 
is therefore clear that there should exist a mechanism 
that suppresses the T2 law for the resitance of metals. 
We show in this paper that this mechanism can be the 
mutual cancellation of the Coulomb repulsion of the 
electrons by their attraction due to phonon exchange. 

It is known that total cancellation of the Coulomb re
pulsion of the electrons by their attraction due to pho
non exchange takes place at low energy transfers in the 
jellium model. The jellium model therefore results, as 
will be shown below, in a T6 law for metal resistance 
due to electron-electron interaction. In the more 
realistic pseudopotential interaction there is only par
tial cancellation. In this model the T6 law should hold 
for temperatures down to T ~ 1O-2~D (®D is the Debye 
temperature), and the Landau-Pomeranchuk law for 
resistance should hold at lower temperatures. 

2. The effective matrix element of the electron
electron interaction can be represented in the form 

M(1.2; 3.4) =4ne'/q'e(q, w), (1) 

where E( q, w) is the dielectric constant of the metal as 
a function of the momentum transfer fiq = Pl - P3 = P4 
- P2 and of the energy transfer hw = 101 - 103 (Pl, P2 
and P3, P4 are the electron momenta before and after 
scattering, Ei:= E(Pi) is the electron energy). 

Knowing the matrix element, we can write down the 
electron-electron collision integral: 

- n,n,(l- n,) (1- n,)}6(e, + e, - e, - e,), 
(2) 

where ni:= n( Pi) is the electron distribution function. 
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The temperature dependence of the collision integral, 
and hence of the resistance, is determined essentially 
by the character of the matrix element, and the T2 law 
for the resistance corresponds to the assumption that 
the matrix element M( 1, 2; 3, 4) does not depend on the 
energy transfer liwo It is just this situation which ob
tains obviously, in the case of an interaction described 
by a potential that depends only on the coordinates. 

Allowance for the possibility of phonon exchange be
tween the electrons leads to a dependence of M( 1,2; 
3, 4) on the energy transfer, and this alters significantly 
the temperature dependence of the collision integral. To 
elucidate this circumstance, we consider first the 
simplest model, the jellium model[4 J, in which E(q, w) 
is given by 

e(q, w) = 1 + l/(aq)' - Q//w', 

where a is the screening radius and 0i is the ion 
plasma frequency, 

a' = BF / 6ne'n" Q: = 4ne'Zn, / Mi 

(3) 

(EF is the Fermi energy, ne is the electron density, Z 
is the valence, and Mi is the ion mass). This formula is 
valid of w « qVF and fiw « EF (VF is the limiting 
Fermi velocity). 

Substituting (3) in (1), we represent the matrix ele
ment of the electron-electron interaction in the form 

where 

M(1.2; 3.4) = Mo(1.2; 3.4) F(q, w), 

4ne' 
Mo(1.2;3.4)= q'+a-z ' 

w' 
F(q,w)= Z '()' w -w, q 

(4) 

ws(q) is the frequency of a phonon with wave vector q 
ahd fiq = Pl - P3 is the momentum transfer. 

The quantity Mo( 1, 2; 3, 4) coincides with the matrix 
element describing screened Coulomb interaction, while 
the factor F describes the attenuation of the effective 
interaction between the electrons at low energy trans
fers, an attenuation due to cancellation of the Coulomb 
repulsion by the attraction due to virtual-phonon ex
change. 

To calculate the collision integral it is necessary to 
substitute (4) in (2) and assume that only small energy 
transfe rs, nw ~ T, are significant. If the function F 
were equal to unity, we would obtain the well known T2 
law for the collision integral, and hence also for the re
sistance. But at small energy transfers the function F 
is significantly different from unity. Assuming typical 
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momentum transfer values nq "" 2PF (PF is the Fermi 
momentum), we obtain for the function F at nw « l!;)D: 

F(q, w) = - (hw/e D )'. 

Thus, at low energy transfers the effective electron
electron interaction is attraction (and not repulsion as 
without allowance for phonon exchange), and the inter
action intensity is decreased by a factor (~D/nw )2. As a 
result, an additional factor (T/® D)4 appears in the 
expression for the collision integral. 

Solving the kinetic equation 

eEviJn/iJe = (iJn/iJt), 

with the collision integral (2) (E is the electric field), 
we easily obtain the electron current and calculate the 
electric conductivity a of the metal, due to the electron
electron collisions. As a result we obtain 

e'n, he" (aD )' 
0=677 T ' (5) 

where ~ is a numerical factor of the order of unity. 

We see that the contribution of the electron-electron 
collisions to the resistance of a normal model should 
decrease in the jellium model at low temperatures not 
like T2 but like TB. 

3. The TB law obtained in the preceding section for' 
the resistance is a result of the fact that the dielectric 
constant behaves in the jellium model like w· 2 as 
w - O. This be ha vior of the die lectric constant is in 
turn the consequence of the assumption, on which the 
jellium model is based, that all three types of elemen
tary interactions in the system (electron-electron-ion, 
and ion-ion) can be regarded as classical Coulomb in
teractions. Actually, however, allowance for quantum 
effects causes the matrix elements of the elementary 
interactions to differ from one another and to differ 
from Vc(q) = 41Te 2/ q2[5,B). As a result, the dielectric 
constant has a pole not at w2 = 0 but at w2 = wi(q), 
where wA(q) is a certain frequency different from 
zero. The effective matrix element of the electron
electron interaction is determined as before by formula 
(4), in which the factor F(q, w) must be substituted in 
the form 

y 14.10" 110.,12.5.10.,17.2.10·,110·,12.10-' 16.5.10"[10" 16.10" 

temperature region the resistance should be smaller by 
a factor (l!;) DI® A)4 than called for by the Landau
Pomeranchuk theory. 

2) Metals with ® A ~ ® D. In these metals, the effec
ti ve matrix element of the electron-electron interaction 
is of the same order as that of the Coulomb interaction 
at all temperatures. The resistance of a pure sample 
should behave at low temperatures in accord with the 
Landau-Pomeranchuk law. 

4. We shall show now that the inequality ® A « ® D 
does indeed hold for a number of metals in the pseudo
potential model, which (for metals with ion dimensions 
small in comparison with the lattice constant) is a more 
realistic model than the jellium model. We use for this 
purpose the following formulas for the frequencies 
ws(q) and WA(q)[4): 

WA'(q) = Q; - Vo-'(q) Iv(q) I', 

w.'(q) = WA'(q) +Iv(q) 1'/ V,(q)e,(q, 0), 
(7) 

where v( q) is the amplitude of the electron-phonon in
teraction and Ee(q, 0) = 1 + (aq)"2 (we disregard the 
influence of Umklapp processes). In the pseudopotential 
model, in which one starts with an electron-ion interac
tion in the form 

V(r) = -e'Z/r+ ~Ii(r), 

the quantity v(q) is given byl5] 
4nie'Z' ( Zn, ) 'f, ( ~q') 

v(q)=--- -- 1---. 
q M, 4ne'Z 

Substituting (9) in (7) and assuming that nq = 2pF, we 
obtain 

(8 ) 

(9 ) 

(10) 

where ® A = nOi and Y = j:lPF I 1Te 2n 2. The values of Y 
for a number of metals are listed in the table (the data 
for the parameters {3 and PF were taken from[5)). 

The authors thank R. N. Gurzhi and S. V. Peletmin-
F(q, w) = (w' - WA'(q»/(w 2 - w.'(q)). (6) ski! for a discussion. 

An important role in the calculation of the resistance 
is played by the behavior of the factor F at nq ~ 2PF 
and nw .~ T. Introducing the temperature ® A 
~ nWA(h- l 2PF), we see that two types of metals are 
possible in principle: 

1) Metals with ~ A « ® D. For these metals we can 
disregard wi in the numerator of (6) at temperatures 
® A « T « ~ D. The effective electron-electron colli
sions should therefore make a contribution proportional 
to TB to the resistance of the metal in this temperature 
region. The main effect g{)verning the resistance of such 
metals at ® A « T « ® D (of course, for very pure 
samples), is the electron scattering by phonons, which 
leads to Bloch's law a" ~ T5. At T« I!'JA, the Landau
Pomeranchuk law a" ~ T2 should hold, but even in this 
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