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The effect of a rotating magnetic field on nematic liquid crystals is studied. At certain rotation 
frequencies an effect is observed which is analogous to e1ectrohydrodynamic instability in a 
high-frequency electric field (a periodic distribution of orientations arises). The results are in 
agreement with the experimental ones. 1 

L In the recent experiments of Prost and Canet[1 J it 
was found that a periodic structure is established in the 
liquid crystal MBBA (metoxy-benzylidine-butyl-aniline) 
placed in a homogeneous magnetic field rotating with 
constant velocity. The rotation axis of the field coin­
cides with the orientation of the director vector on the 
boundary of the liquid crystal. The present paper is 
devoted to an explanation of this phenomenon. To this 
end, a solution is obtained for the corresponding equa­
tions of the hydrodynamics of a nematic liquid crystal 
(NLC). It is shown that the onset of a periodic structure 
is analogous to the e lectrohydrodynamic effect in the 
high-frequency case [2J (the onset of convecti ve instabil­
ity in an alternating electric field perpendicular to the 
orientation of the NLC on the surface of a flat layer). 
Therefore, at a given value of the field Ho, there is an 
upper limit of the frequency W2, at which the appear­
ance of the structure is observed (at high frequencies, 
the molecules cannot follow the variation of the field 
and there are no periodic sOlutions). Unlike the elec­
trohydrodynamic effect, however, the ionic conductivity 
of the NLC, which are good electrolytes, does not give 
rise in this case to instabilities in the low-frequency 
case (in particular, in the static case). There is there­
fore a lower limit W1 of the field rotation frequency in 
a magnetic field. 

The estimates obtained for MBBA are in good agree­
ment with the experimental results [1J. In addition, the 
problem is solved (in cylindrical geometry) with the 
rotation axis perpendicular to the orientation of the 
director vector on the boundary of the NLC. A quasi­
periodic radial structure is then produced (with a period 
that varies slowly with the distance from the center). 
The character of this structure depends essentially on 
the boundary condition at r = O. For simplicity, we con­
sider in detail the case when there is one disclination 
at the center. The existence of such a solution calls 
for a definite anisotropy of the elastic constants (see, 
for example,[3 1). It is possible to investigate in similar 
fashion also the case with two disclinations or when the 
solution is not planar and nonsingular. At a suitable 
value of the parameters, the quasiperiod is such that 
the sample should produce strong Bragg scattering in 
the visible region of the spectrum. 

The solutions of the two problems could actually 
overlap. However, in the view of the mathematical dif­
ficulties (nonlinear partial differential equations), we 
neglect the hydrodynamic flows in the solution of the 
problem with the rotation axis perpendicular to the 
initial orientation, and in the first part (rotation axis 
parallel to the orientation on the boundary) we do not 
take into account the change of the tangential velocity 
of rotation of the director over the NLC thickness. It is 
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legitimate to discard the hydrodynamic flows by virtue 
of the presence in liquid crystals of the small parame­
ter Jl = Kp!fj 2 (K is the modulus of elasticity, p is the 
density, andfj is the average viscosity). A typical 
value for MBBA is J.J. ~ 10'3. As to the radial depend­
ences, it is permissible to neglect them only when the 
threshold values are determined. Of course, all the 
results can be easily generalized to the inverse case, 
when there is a homogeneous time-invariant magnetic 
field and the NLC sample rotates. It should also be 
noted that the obtained fOrmulas can be used to deter­
mine the magnetic and viscoelastic characteristics of 
NLC. Of particular importance here is the variation of 
the threshold quantities as functions of the sample thick­
ness, and the presence of a critical thickness below 
which the effect is not observed at all. 

2. We consider a cylindrical vessel of radius R 
filled with a NLC. In the absence of a field we have (z 
is the cylinder axis and n is the director) 

Application of a magnetic field rotating in the xy 
plane 

Il, = 0, H. = lIo cos wt, Hy = Ho sin wt, 

changes the orientation. We seek a solution in the most 
general form: 

n, = cos e, n. = sin e cos 1jl, ny = sin e sin 1jl. (1) 

We note that, as will be shown below, an important 
role is played here by the non-planar character of the 
deviation from equilibrium orientation in the absence 
of a field. This distinguishes our problem immediately 
from the electrohydrodynamic effect, where allowance 
for the distortion in the yz plane leads to corrections 
of next order of smallness to the threshold quantities. 

By virtue of the symmetry of the problem, it is con­
venient to use not rectangular but cylindrical coordi­
nates r, cP, z. The system of electrodynamic equations 
in these coordinates is derived in the appendix. Taking 
(1) into account we have: 

The incompressibility condition 
au, 1 au, 
a;-+-;:-u, +a;:-=O (2 ) 

Vi are the velocity components. 

The Navier-Stokes equation 

au, ap a2u, 1 a' (u,r) 
P at= - a;- +~. az' + ~2 -;::--a,:z-, 

au, 1 0 (Pr) 1 a' (u,r) a'u, a'e 
p-=----+~,---+~,-+a2--· (3) at r ar r or (Jz' dl iJz ' 
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here P is the ordinary pressure, p is the density, and 
f3i and ai are suitable combinations of the viscosity co­
efficients (see the Appendix); the equations (3) have 
been linearized with respect to e (e « 1), a legitimate 
procedure when determining the threshold e = 0 of the 
stability of the solution (see be lOw). 

The equation of motion of the director: 

" [ a's a's] as avo "I.aH,8COs (oot-I/l)+K -+- =",(.-+",(.-.-, 
{Jz' {Jx' at iJz 

(4 ) 

Xa is the 'anisotropy of the diamagnetic susceptibility 
and Yl is the viscosity coefficient. (According to (A.11) 
of the appendix we have Yl = a 2 - a 3 ~ a 2.) 

By virtue of the nonplanar character of the deviation, 
it is necessary to write also an equation for the azi­
muthal angle </J. Neglecting the spatial derivatives of </J, 

the corresponding equation can be separated from the 
system (2)-(4) and assumes a particularly simple form: 

(5) 

Equation (5) also takes into account the fact that usually 
in NLC the friction coefficients satisfy the condition 
Yl + Y2 = O. As to the neglect of the coordinate depend­
ence of </J, this is permissible if the boundary layer is 
small relative to the entire thickness of the NLC. The 
size of the wall layer for the orientation of the direction 
vector can be estimated at 

(6 ) 

Under the experimental conditions [lJ the inequality 
h « R is satisfied with a large margin. This condition 
is the opposite of the inequality that ensures lineariza­
tion of the equations in (4). Whether such a procedure 
is valid depends on the parameters of the viscous wall 
layer 

"I.,H,' 11100. (7) 

We therefore get from (6) and (7) 

(8 ) 

Actually such a different behavior of </J and e is due to 
the fact that the corresponding equations contain differ­
ent velocity components. The angle e is determined by 
the normal velOCity component, which varies little in 
the wall layer. We can therefore stipulate satisfaction 
of the boundary condition VI = 0 on the boundary of the 
main layer of the liquid crystal. The condition e = 0 
is also satisfied with the same accuracy. On the other 
hand, the azimuthal angle </J is connected with the 
tangential components of the velocity. They vary 
rapidly in the wall layer [2] : 

v.-i'v.lh 

(r is the coordinate reckoned from the boundary and 
Vt is the velocity on the boundary of the main layer). 
Therefore </J behaves on the boundary of the main layer 
in free fashion, i.e., as if slippage were to be present. 

The solution of (5) depends on the ratio of the field­
rotation frequency to the parameter XaH~/ a 2. At 
W < xaHg/2a 2 we have 

1jl = oot + canst 

(the vector of the director moves together with the 
field). In the opposite case w > xaHg/2a2 we have 

I/l=w't; 

n [" dx ] -. 
00' = w --:;;- f oo't+ '/,sin2x 
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(9 ) 

(10 ) 

(11 ) 

(T == adXaH~). We have left out from (10) the oscillat­
ing terms, which are negligible at large t. 

The solution (10) corresponds to the presence of 
delay, i.e., the director vector rotates more slowly than 
the field. When (9) and (10) are substituted in (4), the 
entire dependence on the time drops out in the first 
case. We therefore have simply a static distortion of 
the orientation, which rotates stationarily about the z 
axis and is determined only by the value of the field Ho. 
On the other hand, in the presence of delay there are, 
in addition to the trivial solution, also solutions that 
depend on the time. Introducing the notation w - w', we 
can easily see that system ~2)-(4) is analogous to the 
equations obtained by Pikin 2] for the high-frequency 
electrohydrodynamic effect. It is necessary only to 
introduce in[2J the following change of notation: 

Now we can use directly the solution method developed 
by Pikin [2]. The only difference lies in the different 
orders of magnitude of the frequencies that determine 
the threshold values. It is therefore necessary to take 
into account the elasticity from the very onset when 
solving the hydrodynamic equations. Eliminating the 
velocity and pressure from (2)-(4), we obtain one equa­
tion for ae/az == T: 

a d'T () 0 {J' {)' a' 
ct,'at"a? - ct,at"[ PO:-(Ior' + oz'] - (~. + ~')Tz28r' 

0' {J' (J ij' ij' i)' - ~,~- ~'d?] T + "I., [PTt[ {Jr' +-;w] -(p, + ~,) az'or' 

{J" ()' {J'T {J'T 
-~, {Jr" - p, oz' ] [ H'T + K (oz' + dr' )] = 0, 

H' "" H,' cos' 6t. (12) 

The solution of (12) with the least distortion along the 
radius is 

where p = 1T/H. Substituting (13) in (12), we have for 
f( t) the equation 

a'i (JI 
au' +[1. + 1] + v(l + cos 2nu) ]a;-+[fLV(l + cos 2nu) 

(13 ) 

- 111] + 2nv sin 2nu lJ = O. (14) 

We have introduced here the notation 

n "1.,11,' n[ (p, + p.) p'g' + p,p' + p,g"] 
\'=2~' 11= p6(p'+q') , 

nct, g' K (p' + g') n Ot 
1.=---+11 1]= U=-. (15) 

po p' + q" ct,O n 

In order for Eq. (14) to have periodic solutions cor­
res ponding to the experimentally observed regime ll], it 
is necessary that at least one root of the characteristic 
equation be equal to unity. If only the moduli of the 
roots are equal to unity (the roots are complex), then 
there are no periodic solutions. In the general case, 
only a numerical solution is possible. We make use of 
the fact that the problem has several characteristic 
parameters with the dimension of frequency 

n "1..110' pp2 
(02.=---, ffio=-, 

2 ct, P 
(16) 

The frequency W2 does not depend on the dimensions of 
the sample and under the conditions of the experiment 
in [l] we have W2 ~ 1 sec-I. On the other hand the fre­
quencies Wo and w (the characteristic relaxation time 
of the structure) are determined in the main by the 
dimensions. Therefore, depending on the value R, dif-
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ferent cases are possible. If w 2 > wo, then the solution 
of (i4) corresponding to the periodic time dependence 
is determined by the condition II ~ IIC' The critical 
value of the parameter IIC in the frequency region 
<> > Wo is obtained numerically in analogy with (2J. In 
order of magnitude, (with accuracy 10%), IIC = 1. 

Thus, the condition for the presence of the periodic 
solution is <> 5 W2. On the other hand, in the region 
<> < Wo we need another solution method, since the 
series in powers of wo/<> diverges. We can qualita­
tively assume the coefficients >..and J.L to be suffic­
iently large and use a quasiclassical method[2J. Ac­
tually, there is no need for a strong inequality A, J.L 
» 1, since the series in powers of 1/>" converges and 
even the first correction term ~1/ 4lT2 >.. 2 is small. In the 
region <> < Wo we have 

1 2 [ , n' 
v, = -;- A - 7"" A (A - ft + '1) J' + -;- -,--...,--

2;J 16 A-ft+'l (17 ) 

Wo becomes larger than W 2 at sufficiently small radii 
R. We then have from (17) IIC > 1, and II is always 
smaller than IIC, so that there are no periodic solutions 
at all. When <> > W2, there are certainly no solutions of 
type (13). 

Thus, there are limits for the existence of periodic 
solutions. The lower limit W 1, corresponding to the 
delay condition (10), is approximately one-third as 
large as W2. This is observed with good accuracy un­
der the conditions of[lJ. In addition, the critical value 
of IIC determined from (17) depends on q (see Fig. a). 
Owing to the presence of the elasticity 1), the quantity 
IIC has two minima at q= 0 and q = qc (the period of 
the structure). With decreasing frequency, the minimum 
at qc rises, and at a certain w" the state with q = 0 
can become more favored energywise (see Fig. b). The 
quantity w" is determtned from (17): 

(18 ) 

The lower limit is determined by the larger of the quan­
tities w" and w d IT. 

We note in concluding this section that physically the 
analogy with the electrohydrodynamic effect becomes 
more obvious if we consider a rectangular vessel (with 
orientation parallel to the long axis) and a field whose 
direction changes jumpwise by 90" (rectangular pulses). 
In this case the equations for the different components 
of the vector of the director can be separated and are 
analogous [2J. 

3. We now consider the case when the orientation of 
the NLC on the boundary is tangential to the surface of 
the cylinder. As already noted in Sec. 1, we can neglect 
the hydrodynamic motion of the liquid crystal. We are 
left then only with the equation of motion of the director 
vector. We can therefore calculate now the radial de­
pendence of the azimuthal angle. We assume for sim­
plicity that the director vector is located at all times 
in a plane perpendicular to the cylinder axis (for this 
purpose it is necessary that the elastic constant corre­
sponding to the rotation (K22 ) be the smallest. We then 
ha ve only one equation for 1jJ: 
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iJ1/J .( 1 iJ1/J iJ'1/J ) 1 1:-=s' --+-- --sin2(IJl-wt). 
iJt r iJr iJr' 2 

Here ~ = (K/XaH5 )112 is the characteristic magnetic 
length. Were it not for the spatial derivatives in (19), 

(19 ) 

we would have solutions (9) and (10). However, the 
boundary condition 1jJ( R) = cp gives rise to a radial 
dependence. We note that in spite of the explicit depend­
ence of the boundary condition on the polar angle cp, 
neglect of the azimuthal dependence in (19) is legitimate. 
The reason is that in our approximation we deal only 
with the quantity 1jJ - cp. 

Significant deviations from the homogeneous case 
appear only when WT < Y2 (since T = IT/ w, the analysis 
of Sec. 2 is justified). In this case, if 

u'ljJ I iJr' » r-'olJl lor, 

then (19) coincides with the equation considered by 
de Gennes[4] for the planar problem. The solution can 
be sought in the form 

lJl=wt+l!!(r-vt). (20) 

This corresponds to the presence of a radial structure 
with a period 

L = nvl w. (21) 

The quantity L (or v) can be determined from energy 
considerations by equating the energy drawn from the 
magnetic field to the energy dissipated when the struc­
ture (20) moves. 

An important role, however, is played by the beha v­
ior at r = O. If there is only one disclination at the 
cente r, then, putting 

olJl I urI ,~, = 0, 

we obtain in analogy with(4] 

L=sln(stU,lrwn), if nwlw2<SiR, 

L = S'W2 I rwn, if nw I 00, > siR. 

(22) 

(23) 

If (22) is satisfied, then L » ~, and in the case (23) we 
have L < ~. At typical values of the parameters we have 
L ~ 1 J.L. In the opposite limiting case 

r-'iJlJl I iJr » o'lJl lor' 

we obtain a first-order equation that has no quasi­
periodic solutions. This however, is precisely the case 
realized when L »t Therefore, unlike the planar prob­
lem[4 J where both regimes (22) and (23) can exist, we 
have here a single condition for the quasiperiodic radial 
solutions 

ns I R < wi 00, < 1 I n. (24) 

In analogy with the foregoing, this can be regarded as a 
limitation on the value of the magnetic field Ho. At suf­
ficiently small sample dimensions, R < 1f2~, the condi­
tion (24) cannot be satisfied and no radial structure 
should be observed. 

The author is grateful to I. E. Dzyaloshinskii and to 
S. A. Pikin for a discussion of the work and for useful 
criticism. 

APPENDIX 

To derive the hydrodynamic equations in a cylindrical 
coordinate system, it is necessary to have the metric 
tensor 

8xa 8;rr:G 
g,,=-.-. 

iJy' iJy' 
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It has the following nonzero components: 

while the nonzero Christofel symbols are 

The components of the director in terms of the new 
coordinates are 

(A.I) 

n, ~ cos fl, n, ~ r sin8sin (¢ - <p), n, ~ sin Oeos(1j; - If). (A.3) 

Here 8 is the angular deviation of the director vector 
from the tangent to the cylinder, and '" is the azimuthal 
angle. In analogy, the components of the magnetic field 
are 

H,~Hocos(wt-<p), H,~Ho"sin(wt-<p), H3~O. (A.4) 

Differentiation is now carried out with the aid of (A.2), 
for example: 

v" i ~ av, / aYi - [,;'v •. (A.5) 

To obtain the Navier-Stokes equations, it is neces­
sary to calculate the corresponding forces 

Ji ~ - P" + 0.;, •. 
(Jk/ = (J.tnllnlAmjnmnj + (J.2nkNi + a3n,Nk 

+ a,A .. + a,n.~,Aji + a,n,n,A ... 

N, ~ on, / at + Vigiin" i + g"Wkin •• 

ill ~ 112 rot v, A'i ~ 112 (v" i + Vi. i). 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

After substituting (A.8)-(A.10) in (A.6), we obtain Eqs. 
(2) and (3) of the text, where account is taken of the 
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fact that Q: 1 = Q:3 = 0 (as is usual in NLC), and where we 
put 

p, ~ a, + I/,(a, + a,), ~,~ I!,(a, + a,). 

~3 ~ 1/,(-a2 + a, + a,), ~,~ 112 (-a2 + a, - a,). 
(A.10) 

Analogously, we obtain the equation of motion of the 
director vector. It is necessary also to use the defini­
tion of the friction moment: 

(A.H) 

g is the determinant of the metric tensor and eijk is a 
unit fully antisymmetrical tensor. 

Equations (4) and (5) are then obtained by equating 
(A.1) to the moment n x h exerted by the surrounding 
molecules, where h is the molecular field 

h ~ K~n - x,(Hn)H (A.12) 

(for a more detailed deri vation of the hydrodynamic 
equations see, e.g., [2) ). 
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