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A model is proposed for describing scattering of conduction electrons of a nonmagnetic metal by 
magnetic impurities at temperatures considerably below the Kondo temperature T K' Since at T - 0 
the impurity spin vanishes as a result of screening by the conductivity electrons it is suggested that 
at T < TK the picture is equivalent to inelastic scattering of electrons by nonmagnetic impurities 
with a localized level near the Fermi energy. The impurity part of the specific heat and magnetic 
susceptibility, conductivity, thermal conductivity and differential thermo-emf are found for such a 
model. Dependences of the superconducting transition temperature and energy gap at T = 0 on 
impurity concentration are derived. Interference between inelastic and potential scattering is taken 
into account in all cases. 

1. THE MODEL 

The effect of magnetic impurities on the properties of 
metals has been the subject of many investigations in 
recent years (see the review [4J). The unique character 
of the scattering of conduction electrons by such impuri
ties is attributed to the so-called Kondo effect/ 1- 4J 
wherein the temperature dependence of the resistance of 
a nontransition metal with a slight admixture of a transi
tion metal exhibits a minimum. This resistance mini
mum exists only in the case of antiferromagnetic inter
action of the electron with the impurity (when the ex
change integral I in the interaction energy -( 1/2)18 . (J 
is negative; 8 is the impurity spin and (J/2 is the 
spin of the conduction electron). At this sign of the in
teraction, however, the expression for the scattering 
amplitude has a pole at the Kondo temperature TK 
- EF exp(-2EF!3lz)[2,3J (EF is the Fermi energy and z 
is the number of conduction electrons per atom of the 
host metal). Strictly speaking, therefore, the expression 
is valid only at temperatures above TK. There is no 
rigorous theory for T < TK' 

In the cited papers, the impurity spin was assumed 
given. This model is obviously reasonable so long as 
the exchange interaction of the conduction electrons with 
the impurity is weak. When the Kondo temperature is 
approached, however, the scattering increases and this 
means that the interaction of the electron with the im
purity spin becomes strong. Since exchange does take 
place in fact between the conduction electrons and the 
electrons of the inner shells of the impurity atom, the 
very concept of a fixed impurity spin at low temperatures 
raises many doubts. The known experimental data (see, 
e.g., [5,6J) and practically all the theories (even though 
they cannot be regarded as rigorous) indicate that the 
impurity spin vanishes at low temperatures (it is some
times said to be "screened"). It is therefore more 
reasonable to use a model camable of describing the 
very formation of the impurity spin in the metal. The 
sim¥lest model of this type was proposed by Ander-
son. 7J The corresponding Hamiltonian is 

where p is the electron quasimomentum, a is the 

(1 ) 

spin, 2 npa is the nu~ber of electrons With~ mom~ntun: p, 
~p = p /2m - EF; m IS the electron mass; naa = daa + daa ; 
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daa is the operator for electron annihila~ion at a lo
calized level on the a-th impurity atom; ~a(r) is the 
annihilation operator of the conduction electron at the 
point r; ra is the coordinate of the a-th impurity 
atom; No is the density of the atoms of the host metal. 
Each impurity atom corresponds to a localized level 
with energy Ed < 0 (reckoned from the Fermi level). 
The term with U ensures satisfaction of Hund's rule 
(U + Ed > 0). The last term describes the exchange in
teraction that leads to a possible transition of a conduc
tion electron to a localized level and back. 

According to Anderson's estimates U - 10 eV and 
V' - 2 eV, so that the Hund term is not small and it is 
difficult to solve the problem with the Hamiltonian (1). 
To describe the system at very low temperatures, 
however, we can propose another model based on the 
fact that as T-O the impurity spin vanishes completely 
and can appear only in the form of a fluctuation. In this 
model the magnetic impurity atoms are represented as 
nonmagnetic impurities with localized levels near the 
Fermi energy. The conduction electrons can be inelas
tically scattered by these atoms. The Hamiltonian in 
this model is 

3l- Nfl = 2;~pnpa + 2j;dnaa + ,IV 2j(;P;(ra)da> + d;.IPa(ra)) 
pa a a r No a a (2) 

+ 2j~;P;(r)U(r-ra);Pa(r)d3r. 
aa 

It differs outwardly from (1) only in the absence of the 
Hund term'(the last term accounts for the usual poten
tial scattering). However, the quantities V and Ed in 
(2) do not coincide with the analogous coefficients of 
Anderson's Hamiltonian. It is proposed that at low tem
peratures the Anderson model is equivalent to the 
Hamiltonian (2) and the new coefficients are expressed 
in terms of the coefficients in (1). 

We assume V, I Ed I «EF and Ci = N/No « 1 (Ni is the 
concentration of the impurity atoms) and that the tem
perature is low enough (an exact criterion will be estab
lished later). The potential scattering is assumed for 
Simplicity to be isotropiC, i.e., U(r)=Uoo(r). Under 
these assumptions we calculate the main characteristics 
of the metal in the normal state, namely the specific heat, 
the magnetic susceptibility, the electric conductivity and 
the thermal conductivity. The results agree well with the 
experimental facts; this justifies the use of so simple a 
model. 

In the conclusion, we use the described model to 
analyze the influence of a transition-metal impurity on 
superconductivity at T« TK. 
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2. THE GREEN FUNCTIONS 

We use for the complete temperature Green functions 
the notation!) 

"" :r;c' 
(!j (X,X') ",-(Tirx)ij(x') )"'~ 

,..!:! a. t "~t' 
})a,b rf, f') '" -( Tda If) db (f') )= ==>-== = 

where x = (r, T) and T is the imaginary time. The zeroth 
Green functions 

(!!(O);:---+- ,5)(0);: _~ __ 

are respectively equal in the Fourier representation 
(wn ' p), to 

(!I(O) (wn, p) = (iw - sp) -t, ~;:'<Wn) = 6nb (iw" - Ed) -t, 

where wn=(2n+l)1TT. 

The matrix element of the potential interaction is 

and that of the exchange interaction is 
w cu,p .' 
-_ = v/YHo e'PTa 

a 

After averaging over the impurity positions, the mass 
operator contains diagrams with several crosses and 
(or) dashed lines due to one impurity atom. We shall 
join such crosses and dashed lines by dash-dot lines, 
e.g., 

/'-'-',-)( 1 ______ .... 

As usual (see Sec. 39 of [8]), diagrams with intersecting 
dash-dot lines can be neglected; then each diagram for 
the mass operator of the conduction electron :E(w, p) 
begins and ends with a cross or a dashed line pertaining 
to one impurity atom. Consequently 

-1 /-........... .,...-_.-. 

lI,t =D=-l,-+--~---+~+--L-~ 

The solution of this equation is 

~( )_ N, 1 {b 'b" + f(1-ibsignw)' } 
w, p - -;w- 1 + b' -! sign w iw _ Cd + if sign w ' 

where 
v = pom/.2rt', b = rtvUo, Ed = 1'd- bf, f:r 1(1 + b'), 

r = rtV V'I No = 3rtz V'I 4ep < V < eF, 

Po is the Fermi momentum. 

The imaginary part of the denominator of the retarded 
time-dependent Green function is 

_1_ ... _ Im~. =.!!..:.._1_{b,+f'(1- b')+2bf(W- Cd)} (3) 
2.,;(w) rtV 1+b' f'+(W-Cd)" 

Analogously, the Green function of the electron at the 
impurity level is 

--.--/ ............ 
"'==~:= = --~--+ _./~.-.-::.'-- +.....::::::-~~-

Le., 
( 4) 

3. SPECI FIC HEAT 

To calculate the specific heat it is convenient to use 
the fact that 
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~=N,<dc.+da.>= 2N,T \"1 ~n,.(w)e-'-' = 2N,{2T \"1 Re~(w)+~}, 
CUd L.J N+O ~ 2 

in addition, 
w w>o 

s=-!E.. 
aT' 

as 
c,=Tar, 

where n, S, and Cv are the specific thermodynamic 
potential, the specific entropy, and the specific heat. 

Thus, according to (4), 

as a \"1 Ed N, a ~s w 
-",,4N,-T ~ =--- dwth-
aEd aT _>0 (iw + if)' - E/ rti aT _~ 2T 

Ed .!'!.!..~S~ch-'~lnif-Ed+W. 
x (w+if)'-Ed' 2rti aT 2T 2T if+Ed+W 

In the case under consideration, when T« max{€d, r}, 
we can expand the logarithms in powers of wand ob
tain in first order in T 

!!....= -.!!:::...NT cdf . 
aCd 3' (E,' + P)' 

The correction to the specific heat is therefore 

2rt f 
~c,=~S=TNiT c/+P . ( 5) 

It follows from the results given below for the con
ductivity and the magnetic susceptibility that in the 
considered model max{€d, r} plays the role of the 
Kondo temperature TK' Therefore the specific heat 
per impurity atom is of the order of T/TK, Le., the 
impurity atoms are much more "effective" for the 
specific heat than the conduction electrons (the specific 
heat per conduction electron is of the order of Tl€F). 

4. MAGNETIC SUSCEPTIBILITY 

To find the static impurity \ susceptibility Xi we can 
calculate the magnetic moment Ma of one impurity 
atom in a weak homogeneous magnetic field H directed 
along the z axis. In such a field, the Green function 
of the d-electron is 

~n = (iw - Ed + agllH + if sign w) -t, 

where a= ±1 is the sign of the spin projection on tl.e z 
axis, g - 1 is the d-electron g factor, and }J. is the 
Bohr magneton 

Mn"" gfJ,<a>, 

M ... = gJ.t (d;d+ - '(LtL) = gilT] [~:\(w) - D_(w)) e-1'" = ...... 
= - 2g21l2HT] (iw- Ed + if sign wt· . . 

Accurate to second order in T we have: 

_ " 2f [1"':"~ f'-3e/ r] 
x' - N,g Il rt(f' + e/) 3 (f' + e/)' . 

for €d« r we have 

2 [ rt' T' x,=N,g'fJ,'- 1---] 
rtf 3 f' ' 

and for €d »r, 

N ,,2f[1+ ,T'] x,= ,gfJ,-- . rt-. 
3tEdz el 

Thus, as T-Q the quantity Xi tends to a constant 
equal to Nig2}J.2/e, where e-max{r, €~lr}, and the 
low-temperature criterion is 

T < max {iEdi, r}. 
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At high temperatures, as is well known, the impuri
ties produce the usual paramagnetic susceptibility 
Xi = Nig21J.2/3T. The existing experimental data corre
spond to a monotonic approach of Xi to a constant 
limit with decreasing temperature. It follows from (6) 
that another case is also pOSSible, namely X i(T) should 
have a maximum at r2 < 3Ed' 

5. THE KINETIC COEFFICIENTS 

An expression for the thermal conductivity K in 
terms of the complete Green functions of the conduction 
electrons was derived by Zittartz.[9] For our case, it 
takes the form 

1 
x = -T lim 00-1 ImP(oo + ill), 

w_o 

1 {}' d'p p 
P(iv) = --lim-S--T~ -II(p 00' p 00 _v)ei,(,w-.) 

6 ,_0 8'(' (2n)' ~ m' "~ , 

v = 2nnT, 

where II(PI, P2) are the Fourier components (PI and P2 
are 4- momenta) of 

i 
II(x - y, y -:r.') = -z(v. - V .. ).'_.@(x,y')@(y,x') 

T' 
= (2n)' I: S d'PI d'p, exp [ipl (x - y) + ip, (y - x') ] II (PI, p,) 

WI,WI 

(the bar denotes averaging over the impurity positions). 

Since the scattering is isotropic, the mean value of 
the product of two Green functions can be replaced in 
II(p, w; p, w-v) by the product of the mean values. In
deed, taking as an example the correction corresponding 
to the diagram 

,:w A ,;w-. f d'p' 2 -L,_\ = N, 12n)' Vo P'(!)Z(P'.J, 

we see that the integral with respect to the momenta 
causes this correction to vanish. Consequently 

1 8' d'p p' P(iv)=--lim-S---T~ @(p oo)@(p oo-v)e"('w-.) 
6 '_08,(' (2n)' m' ~' , 

(the averaging bar will henceforth be omitted). 

To calculate this expression, analogous expressions 
must be added to and subtracted from the Green func-

the kinetic equation. The same can be stated also con
cerning the formula for the determination of the static 
conductivity a (see, e.g., [3]): 

Ne' ~S doo 1:(00) 
0= 2m __ 2T ch'(oo/2T) ' (8) 

On the same basis we can use the relation obtained from 
the kinetic equation for the differential thermoelectric 
power QI: 

Ne ~S 00 doo '1'(00) 
aa =-;;;-__ (2n)' Ch'(0l/2T) , 

(9) 

After substituting the values of T from (3) in (7)-(9) we 
obtain 

where 

2m 1 (r - be,)' [ n' ( T ) '] 
p"" 0-1 = c, nvze' 1 + b' f' + el 1 - 3 r: ' 

(r - be,)' (f' + el) 
Tt' = r[r(1 + 3b') + 2be,], 

x-1 - c,~ 2m 1 (r- be,)' [1- 7n' (~)'] 
- • n' nvzT 1 + b' f' + e! 20 Tl 

a = _ 2n' ~(1 + b') r(e, + br) 
3 e (f' + el) (r - bed) 

=_2n'~ ~~, (1+b'), 
3 e ([ - b~,)[ (r - b~,)' + ~/] 

(10) 

(11) 

(12) 

The Lorentz number L == K/ aT depends on the temper-
ature: 

L(T)=- 1+- -n' [ n' ( T )'] 
3e' 60 Tl ' 

(13) 

Formulas (10)-(13) are accurate to the first terms of 
the expansion with respect to T, which is assumed to 
be small in the sense of 

T -< Tio max {Ie,!, r}, 

A curious case is Ed = 0, in which the "localized 
levellll in the Hamiltonian (2) lies exactly on the Fermi 
surface. Then 

2m [ n'(T)'] a=O, p=c,-- 1-- =-
nvze' 3 r 

2N,g'/l' [ n' ( T )' Xi =-_- 1--;::;- (1- 3b')] 
nl' 3 r ' 

2n T 
~c,=-N,=-, 

3 r 
tion,s @o, of the pur~ metal, which can be ,summed directly. In this case there exists for all the phenomena a Single 
Its Imagmary part IS equal to zero. The mtegral con- ~ , 
t " th d'ff @@ @ @ ( d ' t 't P'(')) temperature scale r, WhICh plays the role of the 
ammg e ,I, erenc,e - 0 0 we eSIgna e 1 ,IV "Kondo temperature." But then QI = 0 which does not 

converges qUite rapIdly and the order of summatIOn and 'th' t I th l' h " , , ,2/ 2 agree WI expenmen. n e genera case w en 
mtegratIO~ can be r~versed 2m I~ by replacmg p m Ed'" 0 it is impossible to introduce a single scale. 
under the mtegral SIgn by po/ m . As a result we get Formulas (12), (5), and (6) are quite similar to the re-

ImP(v+ill) = ImP'(v + ill), sults of Nagaoka[IO] 

where 

nN . I: P'(iv) =-T (200 - v)'[2v + -r-1(ioo)+ rl(ioo - iv) ]-1,. 
">0 m o<w<v 

N = zNo is the concentration of the conduction electrons. 
By changing in standard fashion from summation to in
tegration along a contour in the complex w plane we 
obtain 

(7) 

Expressio~ (7) coincides with the one obtained from 
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p=Ci~[1-~(~)'] , 
nvze' 3 ~ 

(14) 

and Kleinlll ] 

Xi=~ NiJ" [1-2,4(~)'], 
n TK TK 

Nagaoka derived (14) by using the Zubarev method in 
superconductivity to describe the binding of free elec
trons with magnetic impurities. Klein used the model 
of Takano and Ogawa, which is analogous to Gor'kov's 
method in superconductivity. The method by which 
Nagaoka obtained his results is not quite correct, but 
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his formulas agree well with experiment. Star[12l 
modified Nagaoka's formulas (and obtained better 
agreement with experiment)by introducing the empiri
cal reciprocal lifetime of the conduction electrons 

_t _ 2N. [A R ( ". CJ) - ill )] 't --- - e e -_.-
nv Cl)+ill ' 

where 0 is the phase shift of the potential scattering 
and .el is an energy parameter of the order of the 
Kondo temperature. In (5) there are three fitting 
parameters (A, 0, and .el). Star obtained from (15) 

2n' 1 T sin 26 
ct= 

3 e II A+cos26 ' 

2m [n' ( T )' 2 cos 26 ] p=c,--(A+cos26) 1-- - . , 
nve' 3 ti A + cos 26 

(15) 

which is quite similar to formulas (12) and (10), in 
which there are likewise three free parameters (r, E::d, 
and b). In Star's formula a vanishes if there is no po
tential scattering, and expression (12) vanishes only if 
Ed=O. 

The fundamental difference from our formulas is that 
ours are derived rigorously from the model (2), whereas 
the assumption concerning the scattering amplitude, on 
which the formulas of Nagaoka, Klein, and Star are based, 
does not follow from any macroscopic model. 

We see thus that the model proposed for the description 
of the magnetic impurities at low temperatures, in spite 
of its simplicity, gives good agreement with experiment. 

6. SUPERCONDUCTING STATE 

As is well known,[al the superconducting transition 
temperature T c is determined from the singularities 
of a vertex part of the type 

with zero entering 4-momentum. Accurate to first
order in WD/ E::F , this temperature is 

,,(1 + "F)-t, 

where A < 0 is the electron coupling constant, wD is 
the Debye frequency, 

d'k 
F=T L: S (2n),®(k)®(-k), (16) 

Iwl<WD 

and® is the Green's function of the electrons of the 
normal metal. 

In the presence of impurities it is necessary to 
average (16) over their positions, and we obtain for the 
quantity 

I k k' 

V :z:::: CJ(k,k')CJ(-k,-k)="(k)=~ 
k' ~ ~' 

(VK is the volume of the metal) the equation 

k p p' 

where 

In analoF with the procedure used by Abrikosov and 
Gor'kov,[13 we can neglect here diagrams with intersec
tions, and then the equation for II(k) takes the form 
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I1(k)=&(k)&(-k) [1+N.-t p:(Cl) I' S (:~, I1(p)]. p=(p,Cl). 

Solving this equation by integrating with respect to 
d3k/(21T) 3 , we obtain 

(17) 

where {;-1= 31TZ/4. It is seen from (17) that the influ
ence of the potential scattering reduces only to a re
normalization of E::d and r. 

From the equation 

l+AF=O 

it follows under the assumptions 

that 

where T cO=CY/1T)2wDe 1/ VA is the superconducting 
transition temperature of the pure metal, y= eC '" 1.78, 
and c is Euler's constant. 

If Ci{;E::Fr »E::ct, we have 

r 8d] -arctg- , 
ed r 

(18) 

T. [4'Y' ] -zl' 
-T "'" --'--T ,C,~8Fr = (constz)-zl', 

cO n cO 

(19) 

where x = Ci{; E::Fr /( E::ct + r 2 ). 

Abrikosov and Gor'kov, [13] who did not take the 
Kondo effect into account, found that there exists a cer
tain magnetic-impurity concentration at which Tc van
ishes. From (19) it follows that, owing to the screening 
of the impurity spin, Tc-O only asymptotically as 
x-co. 

All the derived formulas are value only at T« TK. 
Consequently, both (18) and (19) are meaningful at 
TcO«TK; on the other hand if Tco.GTK, then only (19) 
can be used, and furthermore only at concentrations 
such that T c « TK. 

To find the energy gap it is necessary to write down 
the system of fundamental equations of the supercon
ductor. 

Using the notation 

CJa/r.;r'J=-( T;a(J:)~(J:»=~ , (fa~(r,r') =< $..(r);/i»=~ 
\!l(O) .. ~,J'(O) .. -+-+ etc.' 

these equations take the form 

~=+--7+~+~+~+~ 

~=~+~+~+~+~ 

Nt~'Ef15ID=*+---~----t~+...('-+~+~+/-·";-~ , 

Similarly,[8l 

\\'ap + = gap\\'+, \\'ap = - gap\\', ®., = Il.p®, ga' = (-~ 6) ." 
(~20).' = -g.'~20, (~02)'P = g.'~02, (~tt).P = I\.,~tt. 
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In addition, if there is no external field we have in a 
homogeneous superconductor, after averaging over the 
impurity positions 

W(p) =W+(p), ~ .. (p) =~ .. (p), 

Taking all the foregoing into account and using the 
explicit expressions for the Green functions of the pure 
superconductor,[S] we obtain from the first two equations 

itil. + r 
(!J = - til.' + £" + a.' ' 

(20) 

where 

itil. = iro. - ~H·(ro.), a. =!l + ~ .. (ro.), r = £ - ~H', 

~H'(ro) +~H'(ro) =~H(ro), ~H'(-ro) = -~H'(ro), ~H'(-ro) =~H(ro), 

~ is the electron-pair density parameter 
(~= I AF(x, x')lx'-x)' 

After substituting (2) in the last two equations, we 
obtain the following system for the determination of 
;:;n and ~n: 

1lI.=ro.+-- ro.r+· [(r-be.)'+b'ro.'l c,~e, {- til. } 
1 + b' 1'til.' + n.' 

X{e.' + r' + ro.' + 2rro.IlI./1' til.' + a.'}-', (21) 

an = !l + c,te, .a. (r - be.)' + b'ro.l . 

1 + b' 'IX.' + til.' e.' + r' + ro.· + 2rro.til.l1' Ill.' + an' 

Just as in [13], the gap in the energy spectrum is de
termined by the positive frequency W at which an 
imaginary component appears for the first time in the 
Fourier components of the retarded time-dependent 
Green functions GR(P, w) and iFR(P, w) (at T=O) which 
are obtained from (!J and W by making the transitions 
iWH-+w + iii and T-O. From (21) we can obtain (on go
ing to the time representation by making the substitu
tions iWn-w, iWn-w, and ~n-~) the relation 

~=~ [1 + f. (a - !l.) 1'1- til'/a' ]-' (22) 
!l. a . (r - be.)' - b'ro' 

(Ao is the value of ~ at T=O). The start of the spec
trum is given by the maximum real value of W at real 
W and ~. It is seen from (22) that this maximum is 
equal to Ao. Thus, the energy gap in the spectrum coin
cides with ~o, which characterizes the density of the 
"condensate ," in contrast to the case of unscreened 
magnetic impurities (see [13]). 

We can determine Ao, just as in [13], from the relation 

155 Sov. Phys . .JETP, Vol. 38, No.1, January 1974 

!l.. 1 1 
In-=Jdx f---] 

!l.. • Un + u' 1'1 + x' '. 

where 

~oo is the value of Ao in the pure metal. 

Assuming ~oo« max{r, Ed}, we can calculate the in
tegral in the limiting cases: 
c,~epr <: r' + e.'.: 

!l. c,te,r [I 21'r' + e.' r e. ] In-"" ---- n -arctg- , 
!lOt e.' + r' e!l.. e. r 

In ~ "" _ ~ c,~e,r In 4c,te,r 
!l.. 2 e.'. + r' ~..' 

We see that the limiting functions Ao(Ci) are similar 
to the functions Tc(Ci) (see (18) and (19)). 

The author thanks A. A. Abrikosov for suggesting the 
problem and for all-out help with the work. 

l)The spin indices can be omitted, since all the interactions are spin-con
serving. 
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