Thermal expansion of thulium in the 2–300 °K temperature range

N. S. Petrenko and V. P. Popov

Khar'kov State University (Submitted February 14, 1973) Zh. Eksp. Teor. Fiz. 65, 249–251 (July 1973)

The thermal expansion of Tm (\sim 99.9% purity) is investigated by the dilatometric technique at low temperatures. The anomalies in the thermal expansion observed at 56, 32, and 10 °K can be ascribed to magnetic transformations at these temperatures.

The thermal expansion of Tm at temperatures below 90° K was not investigated before. Yet according to neutron-diffraction studies [1,2] it is precisely in this temperature that unique magnetic transformations occur in Tm. Consequently a study of the thermophysical properties of this rare-earth metal at low temperatures is of considerable interest.

Neutron diffraction studies [1,2] have shown that Tm goes over at 56°K from a paramagnetic into an antiferromagnetic state with a complex developed structure of the "static longitudinal spin wave" type (LSW). This structure is preserved down to 38°K. Below 38°K, a unique antiphase-domain structure is produced and can be described in first order as an alternation of magnetic moments oriented parallel and antiparallel to the c axis. For each four moments parallel to the c axis there are three antiparallel moments. This gives grounds for assuming that Tm is ferrimagnetic in this temperature region. At the same time, a ferromagnetic component in the magnetic structure of Tm was observed at $32^{\circ} K^{\lfloor 2 \rfloor}$. An investigation of a number of physical properties of polycrystalline Tm (specific heat^[3], magnetic susceptibility^[4], resistivity^[5]) has revealed the presence of anomalies at approximately the same temperatures.

The purpose of the present paper is to study the thermal expansion of Tm in the temperature interval $2-300^{\circ}$ K. To measure the relative elongations ($\Delta L/L$) of the sample we used a procedure that did not differ in principle from that described earlier^[6]. The error in the measurement of $\Delta L/L$ was $\leq 2\%$ in the entire temperature interval. The temperature was measured with a copper-ZLZh-999 thermocouple (in the interval $2-25^{\circ}$ K) with accuracy $\pm 0.2^{\circ}$ K, and with a platinum resistance thermometer (in the interval $15-300^{\circ}$ K) with accuracy 0.01° K. The investigations were performed on polycrystalline Tm (grade "0") of purity $\sim 99.9\%$. The sample was a plane-parallel plate measuring $1 \times 2 \times 50$ mm.

The measurement results are shown in the figure. In the paramagnetic region ($T > 56^{\circ}$ K), the thermal expansion has a normal character, although the coefficient of thermal expansion is lower than that of most previously investigated heavy rare-earth metals.

We call attention first to the anomaly observed at 56° K (T_N). The presence of an inflection on the $\Delta L/L$ = f(T) curve and the negative λ anomaly of the linear-expansion coefficient α (upper insert¹) are typical of second order phase transitions. The sign of the anomaly indicates, that in accordance with the Landau theory of phase transitions^[7] we have $\Delta \alpha = (\Delta c_p / VT) dT/dp$ and the transition temperature should decrease following hydrostatic compression. Incidentally, a negative value

of dT_N/dp is typical of transitions observed in all other heavy rare-earth metals^[8]. The change in the $\Delta L/L$ = f(T) curve at 32°K (see the lower insert) confirms that a magnetic transformation LSW—antiphase domain structure takes place at this temperature. The jump of α at this temperature is ~ (6 ± 0.6) × 10⁻⁷ (see the upper insert). The measurement accuracy, however, is insufficient for a reliable assessment of the character of the phase transition at this temperature.

The change in the sign of the thermal-expansion coefficient α at 10°K is very instructive and confirms the assumption, previously based on magnetic measurement data^[9], that the spin orientation becomes further realigned at this temperature. We note that no changes were observed in the specific heat of Tm^[10] at 10°K.

In conclusion, the authors thank B. G. Lazarev and V. I. Khotkevich for useful advice and an interesting discussion, and L. P. Popova for help with the measurements.

¹W. C. Koehler, J. W. Cable, E. O. Wollan and M. K. Wilkinson, Phys. Rev. **126**, 1672, 1962.

- ² T. O. Brun, S. K. Sinha, N. Wakabayashi, G. H. Lander, L. R. Edwards and F. H. Spedding, Phys. Rev. **B1**, 1251, 1970.
- ³ L. D. Jennings, E. Hill and F. H. Spedding, J. Chem. Phys. **34**, 2082, 1961.

¹⁾The data were obtained by graphically differentiating the $\Delta L/L = f(T)$ curve.

- ⁴ F. J. Jelinek, E. D. Hill and B. C. Gerstein, J. Phys. Chem. Sol. 26, 1475, 1965.
- ⁵ N. V. Volkenshteĭn and L. M. Noskova, Proceedings (Trudy), Inst. of Metal Physics, USSR Acad. Sci., No. 27, Sverdlovsk, 1968, p. 130.
- ⁶V. P. Lebedev, A. A. Mamaluĭ, V. A. Pervakov, N. S. Petrenko, V. P. Popov, and V. I. Khotkevich, Ukr. Fiz. Zh. 14, 747 (1969). N. S. Petrenko and S. F. Kravchenko, Prib. Tekh. Eksp. No. 3, 262 (1973).
- ⁷ L. D. Landau and E. M. Lifshitz, Statisticheskaya fizika (Statistical Physics), Fizmatgiz, 1964) [Addison-Wesley, 1969].
- ⁸ K. P. Belov, M. A. Belyanchikova, R. Z. Levitin, and S. A. Nikitin, Redkozemel'nye ferro- i antiferromagnetiki (Rare-earth Ferro- and Antiferromagnets), Nauka, 1965.
- ⁹N. Perakis and F. Kern, Phys. Kondens. Materie 4, 247, 1965.
- ¹⁰O. V. Löunasmaa and L. J. Sundström, Phys. Rev. 150, 399, 1966.

Translated by J. G. Adashko 27

.