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The amplification coefficient of electromagnetic and gravitational waves scattered by a rotating 
"black hole" whose gravitational field can be described by the Kerr metric is calculated. The 
condition of existence of the amplification effect is independent of the wave-field spin. The maximal 
magnitude of the effect rapidly increases with increase of the spin and is considerable for 
gravitational waves with a small multipolarity if the angular momentum of the "black hole" is close 
to the maximal value. The amplification coefficient is the same for all modes and this implies that 
the Kerr metric is stable with respect to generation of electromagnetic and gravitational waves. 

In view of the fact that the recently discovered dis
crete x-ray sources (of the Cyg X-I type) are, possibly; 
collapsars ("black holes"), the theoretical investigation 
of the phYSical processes that occur in the strong gravi
tational fields in the vicinity of such objects is quite es
sential. Of special interest are the processes leading to 
the extraction of energy from the rotating "black hole" 
owing to the decrease in its rotational energy and angu
lar momentum. 

The first such process, sUr~ested by Penrose [lJ and 
investigated by Christodoulou 2 ,is connected with the 
breakup into two parts of a particle that has flown into 
the exosphere of a rotating "black hole," one of the two 
parts being subsequently absorbed by the "black hole ," 
while the other returns to infinity in space, carrying with 
it part of the rotational energy and angular momentum of 
the "black hole." As was recently shown by Bardeen, 
Press, and Teukolsky[3J , this process is extremely un
likely under real astrophysical conditions: in order for 
it to occur, the two parts of the disintegrated particle 
should fly apart in definite directions and their relative 
velocity in their center-of-mass system should be 
v ~ 'l2C. The Penrose process could occur only in the 
collision between two relativistic objects (a neutron star 
and a collapser) whose masses have the same order of 
magnitude. 

Another process that also leads to the extraction of 
energy from a "black hole" was suggested by -
Zel'dovich[4] and, later, by Misner(5J . The essence of 
the process lies in the fact that a classical multipole 
wave with a definite angular-momentum value can, under 
certain conditions, be amplified upon being reflected 
from a rotating "black hole." The frequency of the wave 
does not change in the process, so that this effect has 
nothing in common with the Doppler effect. The process 
under consideration is astrophysically real, since the 
sources of such waves (electromagnetic and gravitational) 
can, for example, be bodies moving in stable orbits 
around the "black hole." Furthe rmore , it can be shown 
that if the test body revolves in a circular orbit in the 
eq uatorial plane of the "black hole" in the same sense 
as the latter and the radial coordinate of the orbit satis
fies the condition ll 

(1) 

then the frequencies of all the harmonics emitted by the 
body satisfy the amplification condition (20). The condi
tion (1) is satisfied by the coordinates of the majority of 
stable bound orbits, and, for a sufficiently fast rotation 
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of the "black hole" (a ~ 0.36 M), by the coordinates of 
all such orbits. Waves with definite angular-momentum 
values also arise in the multipole expansion of a plane 
wave incident on the "black hole." 

Zel'dovich's hypothesis is demonstrated for the model 
example of scalar waves by one of the present authors 
in [6J. The analytical formulas for the amplification 
factor obtained in[6J, as well as the numerical computa
tion carried out by Press and Teukolsky[7J for the par
ticular case a = M, show that in the case of a scalar field 
the amplification effect is extremely small: the energy 
flux in the wave increases, upon reflection of the wave, 
by not more than 0.4%. In view of this, the question 
arises as to the magnitude of the effect for the really 
existing classical waves: electromagnetic and gravita
tional. This problem is solved in the present paper, 
which is therefore a continuation of the work[6] . 

In the calculations, the stationary gravitational field 
of the "black hole ," a field which can be described by 
the Kerr metric (2), was considered as an external field, 
i.e., the inverse influence of the waves on the metric was 
not taken into account. The admissibility of such an ap
proximation for real problems has been demonstrated 
in [6J. By gravitational waves we mean the weak pertur
bations which are applied to the Kerr metric and which 
have a wave character. 

The calculations show that: a) the condition (20) for 
the existence of the amplification effect does not depend 
on the spin of the wave field (i.e., it is the same for 
scalar, electromagnetic, and gravitational waves); b) the 
maximum magnitude of the effect rapidly increases with 
increasing spin. The amplification factor for electro
magnetic waves 2 ) does not exceed a few percent, although 
it is nevertheless roughly an order of magnitude larger 
than for the scalar field. Gravitational waves, od'the 
other hand, can be amplified on relfe-etion under optimum 
conditions by more than a factor of two (the reflection 
coefficient R ~ 2.4 for l = n = 2; a - M; w - nUl. Thus, 
the effect under consideration turns out to be quite con
siderable for gravitational waves and, in particular, it 
Significantly influences the dynamics and magnitude of 
the gravitational radiation of particles moving in the 
vicinity of a "black hole." For example, it may turn out 
that there exist in the exosphere of a "black hole" the 
so- called "floating orbits" (for their definition, see [7} ), 
which are absent for a point particle in the case of scalar 
waves. Notice that the process under consideration is ir
irreversible: if the incident wave is amplified on reflec-
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tion (R > 1), then, as shown below', the surface area of 
the event horizon of the "black hole" always increases, 
which agrees with Hawking's theorem [8) • 

The obtained formulas are also applicable to the 
cases when w and n do not satisfy the condition (20) and 
they allow us to compute the partial cross sections for 
the capture by a "black hole" of waves with such param
eters. Besides being of interest in their own right, the 
obtained reflection coefficients are essential for the 
computation of the amount of electromagnetic and gravi
tational radiation emitted by a particle revolving around 
a "black hole," the probability for the creation of a 
photon or graviton pair in the Kerr metric, etc. Finally, 
the coefficient of amplification of the waves upon reflec
tion from the "black hole" is finite for all modes, from 
which follows the important conclusion that the Kerr 
metric is stable against spontaneous generation of class
ical electromagnetic and gravitational waves. 

2. The gravitational field of a rotating "black hole" 
can be described by the Kerr metric (it is assumed in 
the paper that G = n = c = 1): 

1 ~ 1 
ds' = -(Ll- a' sin' a)dt' - -dr' - p' de' - -sin' a[ (r' + a')' 

~ . Ll ~ 

4Marsin' a 
- Lla' sin' a]d<p' + dt d<p, 

p' 
(2) 

where p2 = r2 + a 2 cos211; ~ = r2 - 2Mr + a2; M is the 
mass of the "black hole," L = Ma (0 ~ a ~ M) is its 
angular momentum oriented in the direction II = 0; r1,2 
= M ± ,1M2 - a2; the electric charge of the "black hole" 
e = O. The amplification condition (20) preserves its 
form in the case of e i 0, but then in the formula (19) 
r1 = M + 1M,2 - a 2 - e 2 • 

The equation of the surface Shor of the event horizon 
is given by r = r1, or ~ = 0; the exosphere is located 
between the s urfaces ~ = 0 and ~ = a 2 sin 2 II. 

To derive the equations describing the electromagnetic 
and gravitational perturbations in the Kerr metriC, it is 
convenient to use the Newman-Penrose formalism [9J. It 
consists in the following: 

a) An isotropic tetrad, consisting of two real vectors, 
lI-L and nI-L , and one complex vector mI-L, is introduced. 
Only two of all the possible scalar products of these vec
tors are different from zero: ll-Lnl-L = -mI-Lm~ = 1. We 
can recover the initial metric from the given tetrad, 
using the formula: 

functions, of which we write out two: 

1Jlo' = -Ca~".lamJZYm·, 
(6) 

As was' recently shown by Teukolsky[l1J , in the Kerr 
metric, in contrast to the spherically symmetric 
Schwarzschild metric, it is possible to obtain wave 
equations with separable variables only for certain com
ponents ({i ct and I/i ct ' to wit, for the so- called radiation 
parts, ({io, ({i2, iJio, and i/!4, of the wave field. This is how
ever sufficient for the solution of the set problem, since 
it is precisely in terms of these field components that 
the energy flux at infinity (in space) is expressed. For 
the electromagnetic field, the flux in a unit solid angle 
dO 

( d'E ) r" (d'E) r' -- =lim-I<pol', -, -- =lim-I<p,I'. 
dt dQ in ,~~ 8n dt dQ o.t No. 2n 

(7) 

To compute the energy flux of the gravitational field, we 
can use the Landau-Lifshitz pseudotensor, which yields 
(iJio, iJi4 ~ e- iwt ): 

( d'E ) r' _ = lim--.I1Jl,I', 
dt dQ in .~~ 64nw 

d'E r' 
(-) =lim-, h",I'. 

dt dQ 0" .~,. 4nw 
(8) 

We shall henceforth be interested in only the compon
ents ({io and t/lo. The solution corresponding to the wave 
with the frequency w (w > 0) a Z component n of angular 
momentum has the form 

<po,1Jl, =F(r)P(a)ein.-'w., 

where F(r) and P(II) satisfy the homogeneous equa
tions [11) : 

(9) 

Ll-' dd (Ll'+' dF) +([(r'+a')'w'-4aMnwr+a'n'+2ia(r-M)ns 
r dr . 

- 2iM (r' - a') ws M-' + 2irws - >,}F = 0, (10) 

1 d ( '. dP) ('" n' ---- sinB- - a w sin a+---
sin a da da sin' a 

2ns cos a ) 
+ 2aws cos a + sin' a + s' ctg' a - s P + >'P = 0, (11) 

where s = 1 for electromagnetic and s = 2 for gravita
tional waves. For s = 0, these equations go over into the 
well-known equations for scalar waves (see, for exam
ple,[6)). Formally, s can assume any integral value. 

The equation (11), together with the boundary condi
tions IP(O)I < co, IP(1T) I < 00, constitutes an eigenvalue 
problem for the eigenvalues 

(3) where l is a whole number: l .~ max (Inl, s). For aw = 0 

where the round brackets denote symmetrization in the 
pair of indices. The specific form of these tetrads in the 
Kerr metric was found by Kinnersley[lOJ: 

[ r'+a' a] 1 
Z"= -d-' I,O'T ' n"=[r'+a',-Ll,O,aJ2j;2' 

1 i 
m"=--=---- [iaSina,O, 1,--' ] , 

1'2(r+ iacosa). 'sina 

(4) 

b) The three complex functions 

(5) 

are introduced in place of the six different components 
of the electromagnetic-field tensor F I-L IJ' Similarly, in
stead of the ten different components of the Weyl con
formal tensor Cctf3 15 (which coincides with the Riemann 
tensor in empty spice), one introduces five complex 
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.],.,"(0) = (/-s)(/+s+ 1), 

and the eigenfunctions are spinor spherical harmonics 
(see [12J ). For aw i 0, the eigenvalue s A are not analy
tically expressible in terms of l, n, and aw. The calcula
tion shows that for aw « 1 and for any s: 

2m' { 2 [ 3n' -I (I + 1) ] 
)."n = (/- s) (I + 8 + 1)- aW-/ (-I-+-1-) + a'w' "3 1 + '7(2~/-_-1:7)-;-;(2:::-/"7+-':::37') 

2s' ~ 3n' -I (I + 1) 

1(1+1) (2/-1)(21+3) 

(I' - s') (I' - n') [(I + 1)' - n'] [(I + 1)' - 8'] 
+28'L.(21_1)(21+1) - (/+1)'(21+1)(2/-¢3) ]}. (12) 

It remains to establish the boundary conditions for 
Eq. (10). The boundary condition for r - +00 has the 
form 

ABe'·' 
F(r)=-e-'·'+---. 

r r (Olr)" 
(13) 
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The first and second terms describe the incident and re
flected waves respectively. To find the reflection coeffi
cient R for the wave, it is sufficient to find IB/A j2. In 
fact, we can show with the aid of the Maxwell equations 
that if for r - 00 

[ A Be'"'] '1'0= ~e-i"'r+ ___ Pln (9)ein,,-iut 
r r (oor) , • (14) 

then 

(j), = [_ 2 ~ e'·' + o( .~)] P,.(n - 6)e''''-'·'(-1),-n[ (t.. - 2anoo + 2)' 

+4aoo(n-aoo)]-'I.. (15) 

so that we obtain for electromagnetic waves (s = 1) 

R "'" (dE/dt) •• , 
(dE/dt) .. 

4.l!d:.= 16. I ~I' . (16) 
j<p.j' (t..-2anoo+2)'+4aoo.(n-aoo) A 

USing the Bianchi identities, we can derive a similar ex
pression for R in the case of gravitational waves (s = 2). 

The physical boundary condition for Eq. (10) for 
r - rl follows from the fact that the surface r = rl is a 
surface-trap which can only capture physical objects. 
In [~) this condition was chosen in such a way that the 
group velocity of the wave for r - r13) was directed 
towards the surface-trap, i.e., 

. 1 F (r) _ e-·(O-nD),-;;; (17) 

for r - rl (y -_(0), where y is determined by the con
dition 

dy r' + a' 
---a;: = -6-' - 00 < y< 00, 

and 0 is the angular velocity of the rotating "black 
hole" : 

Q =a/ (r,'+a'). 

(18) 

(19) 

For a discussion of this boundary condition from a dif
ferent point of view, see[3J . The divergence of F(r) as 
r - rl (A - 0) is not physical; it arises as a result of 
the singularity in the tetrad (4) at A = O. All physical 
quantities measured in a freely falling reference system 
remain finite as r - rl; this was shown by Price [13J in 
the Schwarzschild metric (a = 0) for the case of waves 
with arbitrary integral spin. 

3. Investigation of the radial equation (10) with the 
boundary conditions (13) and (17) shows that for s = 1., 2, 
as well as for s = 0, the reflection coefficient R > 1 (i.e., 
the wave is amplified) if 

oo<nQ (20) 
(we recall that the phase of the wave has been chosen so 
that w > 0). Thus, the condition for existence of the 
amplification effect is the same for scalar, electromag
netic, and gravitational waves. It is evident that the 
effect does not exist in the Schwarzschild metric 
(a = 0 = 0). 

We shall show that in the process under conSideration 
M and a decrease in such a way that the surface area 
Shor of the event horizon of the "black hole" increases4 ). 

Let the energy flux in an incident wave of frequency w 
and multipole order n be equal to W. Then the energy 
flux in the reflected wave is equal to RW and 

dM dL n 
dt"=-(R-1)W, dt=-~(R-1)W. (21) 

Let us use the Christodoulou formula [2J , which ex
presses the mass M of the "black hole" in terms of its 
angular momentum L and "undiminishable" mass Mo 
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connected with the surface area of the event horizon by 
the formula 

Then 

Shor= 4n(r,' + a') = 16nM,>, 

M'. = M,> + L'/4M,>, 

dM=.( iJM,) d(Mo,)+(iJM) dL, 
iJM, -L {}L M. 

and (aM/aL)M == n. Consequently, 
o 

dShOb,16n~=32n __ M __ ( dM _Q~) 
dt dt 1- a'/r,' dt dt 

= 32n _M_W_ (_nQ __ 1) 
1- a'/r,' 00 

(R -1);;' O. 

(22) 

(23) 

(24) 

The process is reversible (dShor/dt = 0) only when a < M 
and w = nO, but in that case, as will be shown be low, 
R = 1 and dM/dt = O. However, by choosing the frequency 
w close to nO, we can make the wave-amplification proc
ess as close to being reversible as we wish. 

Below we investigate the behavior of R in the vicinity 
of the points w = 0 and w = nO. In the remaining region 
the reflection coefficient R is clearly analytic with 
respect to w and is consequently finite. The quantity R 
does not depend on the polarization of the incident wave. 
The method used to obtain the values of R is similar to 
the method employed in [6) by one of the present authors 
for the case s = O. All the formulas cited below are 
formally valid for any integral s, although only the values 
s = 0, 1, and 2 have a direct phYSical meaning. These 
formulas are also valid for w and n that do not satisfy 
the condition (20); in this case R < 1, Le., the incident 
wave is partly reflected and partly absorbed by the 
"black hole." 

For w - 0, we can assume in the first approximation 
that sAl = (l- s) (Z + s + 1). R then has the form (for 
some details of the derivation, see the Appendix): 

,R,n-1=(,R,rt-1)r (l-s)!(l+s)! J', 
(I!) , 

(25) 

where oRIn is the reflection coefficient for scalar waves 
that was found in [6J : 

R -1=4Q[oo(r _r)]21+1 (11)' . n' ( 4Q')_ 
, 'n "[(21)1]'[(21+1)!!]' 1+ F ' 

r/+a2 

Q=--(nQ-oo). 
r 1 - rz 

'_I 

(26) 

The formulas (25) and (26) include all the particular 
cases, including a = 0 and a = M, the region of applicabil
ity of these formulas being defined by the condition: 
wM« 1. For fixed l, the quantity IsRln - 11 increases 
with increasing s; for 1 »S2, ;tln ~ oRln . For p -I 0 

and w - 0, the quantitY1sRln -11 ~ w2l +1. The-various 
particular cases of the formula (26) are thoroughly in
vestigated in [6J • 

In the particular case when a = 0, i.e., for the 
Schwarzschild metric, the formula (25) for s = 1 coin
cides with Khar'kov's result [14)j while for s = 2 it coin
cides with Fackerell's result[15 

Let us now consider the case w - n fL Let a = 1 
- win O. It can be shown that if a < M, then sRZn - 1 ~ a 
in the region jalQl «1, where Q1 = an/(rl - r2) > O. 
Under the supplementary conditions a « M and n «Mia 
(in which case nOM « 1), the formulas (25) and (26) 
become applicable in the region under consideration and 
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enable us to determine the correct coefficient attached 
to a. 

Two substantially different cases can occur when 
a = M and w - n n. Let 

1l'=2n'-t.- (s+1/2)', (27) 

then for /)2 < 0 the reflection coefficient R is continuous 
and varies monotonically in the vicinity of the point 
a = 0: 

,R'n -1 = signa·lal'I·1411l1'(2n')"01 

IrCI, + s +1111 +. in) l'lr('j, - s + 1111 'I- in) I' 

r' (1+ 21111) 
x (28) 

If, on the other hand, 02 > 0 (and this condition is satis
fied, in particular, by all 1 A~ with n ~ 1 and all 2 Ag with 
n ~ 2), then in the region /a I « n -4 max (la/ 2; 1) we shall 
have 

( R _ 1) -, = sign a{ ch' n (n -II) en(n+.)(,lgn "-I) 
• In sh' 2nll 

+ ch' n (n + II) en(n-.)(,'g. "_I) 

sh'2nll 

2chn(n-ll)chn(n+ll) } 
__ -'--:-;:'::--:-'---'-enn(.lgn "-I) cosh, - 211 In (2n'lal») ,(29) 

sh~ 2,,11 

where 
1,(11) = 4arg r(1 + 2ill) + 2 arg r(1/2 + s + in - ill) 

+ 2 arg r (1/2 + s - in - ill). 

In the vicinity of the point a = 0 the reflection coeffi
cient R has an infinite number of oscillations in the 
region /a/n2 « 1 (provided 0 is not small in comparison 
with unity, which is an exceptional case). These oscilla
tions are, in terms of amplitude, important only if n = 1 
and lTO ~ 1; in the opposite case when a > 0, we have 

(30) 

For a < 0, we have min sRZn = 0, Le., the barrier can be 
totally transparent. The reflection coefficient is discon
tinuous at the point a = O. 

If a 1M, but M - a «M and n «v'M/(M - a), then the 
reflection coefficient is described by the formulas (28) 
and (29) in the region Q~l « /a/ «n-2 , While, as was 
indicated above, for /a I «Q~l, R - 1 ~ a. Thus, the re
flection coefficient is continuous at the point a = 0 when 
a :1M. 

Calculation of the magnitude of the coefficient R shows 
that for electromagnetic waves, R - 1 < 10% and, in 
particular, for Z = n = s = 1, a = M, and w = n - 0, the 
quantity lRu - 1 "" 2%. For gravitational waves, when 
I = n = s = 2, a = M, and w = 2n - 0, we shall have 2R22 
- 1 "" 1.37, Le., a gravitational wave can be amplified 
on reflection by a factor of more than two. For fixed s 
and for n - "", the effect decreases according to an 
n-power exponential law; for example, sRnn-1 

"" e- 1Tn (2-J3) when a = M, w = nn - 0, and n »S2. 

The authors are grateful to Ya. B. Zel'dovich for 
constant attention to the work and for valuable hints, and 
also to their colleagues at the Institute of Theoretical 
Physics and at the Astrophysics Division of the Institute 
of Applied Mathematics for a discussion of the work. 

APPENDIX 

The derivation of the formulas (25), (28), and (29) is 
similar to the derivation given in [8]. In particular, to 
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obtain the formula (25), we must find the solution to the 
equation 

[x(x+1»)'-'_ [x(x+1»)'+'-d { dF} 
dx dx 

+[Q' + iQs(1 + 2x)-(l- s) (l +s + 1)x(x+ 1»)F = 0, (A.l) 

wherE) x = (r - rl)/(rl - r2) (a t- M), which satisfies the 
boundary condition (17) for r - rl (x - 0). The Eq. 
(A.l) is obtained by neglecting in Eq. (10) all the terms 
containing w except the one which enters into Q (this can 
be done when wM « 1 and x « Z/w(rl - r2)). 

The required solution has the form 

( X )'Q 1 Q ( F= -;-:tT . [x(x+1»),G(-l-s,l-s+1,1-s-2i ; x+1), A.2) 

where G(a, f3, y; z) is the hypergeometric function. 

For x »max (l, Q), we obtain 5) 

F = C.XI-' + C.x-I-.-" (A.3) 

where 

C =(_1)1+. (2l) I . r(1-s-2iQ) 
! (I-s)l r(l+1-2iQ) , 

C _ 1 (l+s)l r(1-s-2iQ) 
• - 2 (2l+1)1 r(-2iQ-l) . 

The solution (A.2) should be matched in the region 
max (Q, 1) «x « Z/w(rl - r2) with the solution to the 
equation 

il'F 2s + 2 dF [, 
~+-x-d;'+ ro (r.-r,)' 

(A.4) 
+ 2isro(r.-r,) (l-S)(l+S+1)] 

x x' .F=O, 

that is expressible in terms of the confluent hypergeome
tric functions, or in terms of indefinite integrals of 
Bessel functions. 

1)For the explanation of the notation, see below after the formula (2). 
2)By definition, the amplification factor is equal to the difference be

tween the reflection coefficient R and unity if R > I. 
3)For w =1= nn, the quasi-classical approximation is applicable near the 

point r = r l in Eq. (10) and, therefore, a group velocity can properly 
be introduced for a wave of any frequency w =1= nn. 

4) A similar method was used by Zel'dovich in hi~ paper [4] to prove the 
existence of the effect of amplification of waves on reflection from a 
rotating conducting cylinder; see also Bekenstein's paper [16). 

s)In [6] a somewhat more complicated expression for C2 in the form 
(;2 = C2 + J3CJ, 1m J3 = 0, was used which also led to the correct an
swer, since only 1m (C2/C1) enters into the formula for R. 
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