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A nonlinear theory is developed of the interaction of a quasimonochromatic packet of elec­
trostatic waves with resonant particles in a weakly inhomogeneous plasma. Expressions 
are obtained for the distribution function in the resonance range of phase space and also 
for the nonlinear decrement (increment) of the wave. In particular, it is shown that the 
nonlinear growth rate at large distances from the front boundary is determined by the 
difference between the mean distribution functions of the trapped and untrapped resonant 
particles. A study has been made of the qualitative peculiarities of the nonlinear evolu­
tion of the packet in a weakly inhomogeneous plasma. 

1. INTRODUCTION 
As is well known[l,2] an infinite wave in an homogen­

eous plasma ceases to change after the establishment 
of the so-called "ergodic state" (mixing phase) in the 
resonant region of phase space. In an inhomogeneous 
plasma, owing to the change 'in the wave phase velocity, 
the composition of the resonant region varies continu­
ously, so that the damping (amplification) of the wave 
does not stop, generally speaking, even at times exceed­
ing the nonlinear time of the phase mixing. This ques­
tion was considered earlier in[3] within the framework 
of the initial-condition problem for infinite (quasi plane ) 
monochromatic waves. On the other hand, in a real 
situation it is frequently necessary to deal with wave 
packets. The latter case becomes of particular interest 
in connection with the experiments of Helliwell et al,l4] 
on magnetospheric propagation of packets of "whistlers" 
radiated by a transmitter on earth. The corresponding 
nonlinear theory of the evolution of such packets in a 
homogeneous plasma[5] has a far reaching analogy with 
electrostatic waves. This analogy, which is naturally 
conserved also in an inhomogeneous plasma, makes it 
possible to extend the theory developed for packets of 
electrostatic waves to the case of whistlers propagating 
in a real magnetosphere, where the effects of the in­
homogeneity of the medium are frequently very signifi­
cant. This analogy remains in force also for the so­
called "ionic whistlers" [6,7], which are registered in 
the form of quasimonochromatic pulsations of the geo­
magnetic field. Thus, besides being of independent in­
terest, the question discussed in the present paper is 
important also for an analysis of a number of active and 
passive experiments in a magnetospheric plasma. 

From the results obtained in this paper it will be 
seen that the physical effects that take place for packets 
whose length is comparable with the characteristic 
length determined by the inhomogeneity have many 
peculiarities that distinguish them from infinite waves[3] 
and packets in a homogeneous medium[5]. On the other 
hand, in the corresponding limiting cases we obtain the 
results of[3,5]. 

2. KINETIC EQUATIONS FOR RESONANT 
ELECTRONS 

We write down the basic equations in the form 
DF +:1' of _ elff(x,t) !£..~o 
at ax m oi; , 

1045 Sov. Phys.-JETP, Vol. 37, No.6, December 1973 

(2.1) 

Iff(x,t)~lffo(x,t)sin Uk(X')dX'-WI+<r] , (2.2) 

where w (assumed constant) and k(x) are connected by 
the dispersion relation w2 = wp (1 + 3k2rd); here wp(x) 
is the plasma frequency of the electrons, which is a 
slowly varying function of x. 

We are interested in the distribution function of the 
resonant particles, for which 

i; - '" / k ~ 1 / kT « W / k, (2.3) 

where T is the characteristic period of the oscillations 
of the velocity of the resonant particles in the wave 
field, and is defined by the expression 

(2.4) 

It is now convenient to change over in Eqs. (2.1) and 
(2.2) to new independent variables x, L and ~: 

2s=Sk(x')dx'-wt+'l', 2~~k(x)[i;-w/k(x)l (2.5) 

(the second relation is formally the total derivative of 
the first with respect to time). Then, taking condition 
(2.3) into account, the kinetic equation for the resonant 
particles can be written in the form 

_~~~~ iiF __ ( Sin2S +a) of =0 (2.6) 
k(x) ax as 2T' as' 

a~-(",2/2k')dk/d.r. (2.7) 

The quantity 0' (in the corres ponding units) is equal to 
the force of the inertia in a reference frame where the 
phase of the wave does not depend on the time: 
d [w/k(x)]/dt == a = 20'/k. We shall assume that the in­
homogeneity of the plasma is small enough, so that 
0' T2 « 1. This condition means that the effects due to 
the inhomogeneity become manifest quite slowly in com­
parison with the phase mixing time T. In the opposite 
limiting case CiT2» 1, the particles have time to go out 
of resonance before the nonlinear stage sets in. The 
linear theory is therefore applicable in the latter case. 

Neglecting, for simplicity, the group velocity of the 
packet Vg = 3( w/k) (krd)2 in comparison with w/k, we 
can assume that in the laboratory frame, in which (2.6) 
has been written out, the amplitude of the packet, and 
consequently T, depend little on the time. Assuming 
that the amplitude changes little during the time when 
the resonant particle passes through the entire length 
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of the packee), we can, by solving the kinetic equation, 
assume that T is independent of the time. According to 
the Liouville theorem, 

F(x, 6,~) =F(O, 60, ~o), (2.8) 

where x = 0 is the start of the packet and ~o and ~o 
are the initial values of the variables ~ and ~ with the 
function ~ (~o, k 0, x) etc. determined from the 'equations 
for the characteristics corresponding to (2.6): 

~=' di=~(Sin26 + (x)) f=S"k(X')dX' 
df 6, df 2't'(x) a, w 

o 
(2.9) 

The right-hand side of (2.8) is equal to the unperturbed 
distribution function ahead of the packet f(xo), where 
Xo is expressed in terms of ~ 0 and ko 

Xo = w I ko + 2~0 I ko 

Here ko is the value of the wave number at the start of 
the packet. Since we are interested only in the resonant 
region, for which ko/ko « vT, we can expand f in 
powers of k 0 and confine ourse I ves to the first two 
terms, so that (2.8) takes the form 

, a (. w) to =-. t x=- . ax ko 

(2.10) 

(2.11 ) 

The problem is thus reduced to a solution of the sys­
tem (2.9). At T = const and (} = 0 it coincides with the 
system of equations for particles mOving in the field of 
an electrostatic wave of constant amplitude 1/2T2 , and 
its energy integral takes the form K = const, where 

(2.12 ) 

The particles having I K I > 1 are trapped by the wave, 
while those with I K I < 1 are untrapped. The sign of K 

is chosen such as to coincide with the sign of ~. The 
solutions of the system (2.9) 

s(t, So, x), ~(t, So, x) at. 't = const, a = 0 

are expressed in terms of elliptic functions (see, 
e.g.,[21) and are periodic functions of t with period 
T - T. The corresponding averages with respect to 
time are 

n :-; 1 E(x) 
• - • - -- Ixl < 1; ,,- 2'txK(x)' "-H K(x) , 

(2.13 ) 
- ~ E(1/x)-(1-x-2 )K(1/x) 
6=0, 6'= 't'K(1/x) ,lxl>1. 

Here K( K) and E( K) are complete elliptic integrals of 
the first and second kind. 

We proceed now to the case when dT/ dx "" 0 and 
a "" O. Now K is a slowly varying function of x. Differ­
entiating (2.12) with respect to x and using the equations 
of motion (2.9), we obtain 

w d ( 1) . W d't' • m--a; -;> = 6' k(x) "dx'"- 2t1't't 

Averaging over the oscillations with the period T, we 
can replace ~ and ~ 2 by their mean values of dT/ dx = 0 
and (} = O. As a result we obtain for the untrapped parti­
cles (I KI < 1) 

and for the trapped particles (I K 1 > 1) 

~[E(l/x)-(l- x-')K(l/x) ] = O. 
dx 't 
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(2.14) 

(2.15 ) 

These equations generalize the corresponding laws of 
conservation of the adiabatic invariants in a homogene­
ous plasma, where (} = O. Relation (2.15) for an inhomo­
geneous plasma was obtained also in[Bl. 

We introduce further in place of K the new variables 
fJ. and II: 

fL=E(x)/x, Ixl<l; 

v = E(1I x) - (1- x-')K(1I x), Ixl > 1; 
(2.16 ) 

fJ. (K) increases from 1 to 00 when K decreases from 1 
to 0, with fJ.(K) = -fJ.(-K), sign fJ. = sign K. As to II(K), 
it is an even function with 11(1) = 1 and 11(00) = O. From 
(2.14) and (2.15) we obtain 

fLeX) flo 
----=-o(x), 
't(x) 'to 

vex) 
't(x) = const; 

(2.17 ) 

where fJ.o = fJ.(0), To = T(O), 
• k 

o(x)= 2:S a(x')k(x')dx'=-~ wInk,' (2.18 ) 
o 

We now trace the motion of the resonant particles 
moving from the region ahead of the packet (x < 0) 
towards its maximum, the coordinate of which is xm 
(see Fig. 1). At x < xm the function T(X) decreases 
with increasing x, Le., dT/dx < O. We assume also, for 
concreteness, that a(x) > 0 over the entire length of the 
packet. At the start of the packet practically all the 
particles are untrapped, Le., 1 Ko 1 < 1 for these parti­
cles. To be able to visualize better all the possible 
cases, it is useful to introduce the potential energy in 
the form U(~, x) = sin21;/2T2(x) +Q(~)~ (see Fig. 2). 
With increasing x (Le., the "time" t), the amplitude of 
the wave increases (at x < xm). If I fJ. I becomes very 
c lose to unity as the partic Ie moves, then the validity of 
the adiabatic approximation, on the basis of which (2.17) 
was derived, is violated. The particle then is either re­
flected from the potential wall2) and then fJ. reverses 
sign jumpwise, or crosses one of the separatrices 
fJ. = ± 1 and becomes trapped. 

We now analyze in greater detail the possible cases. 
For particles that remain trapped during the entire 
time of their motion from the start of the packet x = 0 
to the point x, the connection between the initial and 
final states is determind by re lation (2.17). For parti­
cles that reach the separatrices at the point x' and 
have become reflected, we have at fJ.o > 0 

flo 1 , 
-=--+o(x) 

To T(X') , 

fL 1 
--+o(x)=o(x')--­
T(X) T(X') . 

(2.19 ) 

(2.20 ) 

Equation (2.20) determines the function x'(fJ., x) which 
makes it pOSSible, together with (2.19) to determine the 
function fJ. o( fJ. , x). 

It should be noted that particle reflection is possible 
only under definite conditions. Indeed, noting that 
fJ. < -1 for the reflected partic les, we obtain from (2.20) 

FIG. I. FIG. 2. 

FIG. I. Motion of resonant particles relative to the packet. 
FIG. 2. Form of the effective potential energy U (t x) = sin2 ~/2T2(X) 

+ a(x)~ 
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a(x) - a(x') > ,_' (X) - ,_' (x'). 

Letting now x - x', we obtain 
da(x') d [ 1 ] 
~> di;' ,(x') , 

(2.21) 

which is the necessary condition for the reflection. If 
this condition is not satisfied, then the particles that 
have reached the separatrices are always captured by 
the wave (this holds true, in particular, in a homogene­
ous plasma, where do/dx = 0). On the other hand, even 
in the case when (2.21) is satisfied, some of the parti­
cles are captured by the wave (this will be discussed 
later on). We note also that when (2.21) is satisfied the 
partic les with Jl 0 < 0 cannot reach the separatrices at 
all (this can be easily verified with the aid of (2.17)). 

Assume now that a condition opposite to (2.21) is 
satisfied, viz., 

(2.22) 

In this case all the particles that have reached the 
separatrices at the point x' are trapped by the wave, 
and Jl 0 can be of either sign. It is easy to verify that 
for particles trapped by the wave the relations (2.19) 
and (2.20) are replaced by 

.i:':" ~ sign fLo + a(x') 
'0 ,(x') , 

v 

,(.r) ,(x') 
(2.23) 

Differentiating further (2.19) and (2.20) at constant 
To and x, and then eliminating dx', we obtain 

dfL 0'(x')-[1h(x')]' dfLo 

, 0'(x')+[1/,(x')]' '0 
(2.24) 

It follows similarly from (2.23) that 
dv [1h(x') ]' dfLo 

, [11T (x') ]' + sign fLoO' (x') --;.-
(2.25) 

Relations (2.24) and (2.25) determine the connection be­
tween the phase-space elements of the particles at the 
points x = 0 and x. Indeed, from the general expres­
sion for phase space in the (~, K) plane 

d· d" 
d' ds ~ " ~ -,-x'::-:(""'1---x-:-'-si--'n':-:~""') 7",,, 

we find that the value of the phase space between K and 
K + dK in the region of the trapped particles (I K I < 1) 
is given by 

dx "I' d~ 

,x' J (1 - x' sin' ~ \ 'I, 
_11:/2 

Analogous ly for the trapped particles (i K I > 1) we 
have 

dx ,,,,In(tWI) d~ 21 :'11 I. 
,x' J (1- x' sin'~) 'I, , 

_arcsln(t/IKi) 

(2.26) 

(2.27) 

In the case (2.21), when part of the particles reaching 
the separatrices are reflected, and some are trapped, 
it follows from (2.24) and (2.25) (where Jl 0 > 0) 

21 d; I + I d: I ~ I d~oo I, (2.28) 

Le., the sum of the phase spaces of the trapped and re­
flected particles (which were initially in the element 
dJlo/To) is equal to the initial phase space 3). 

In the case (2.22) (when all the particles that have 
reached the separatrices are trapped, and the particles 
arrive at the given element of volume 2dv/T from dif­
ferent regions of Jl 0, viz., Jl 0 = Jl~ > 0 and Jlo = Jl'O < 0), 
it follows from (2.25) that 

I dfL~: I + I d~:-I ~ 21 ~v I, (2.29) 
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Le., the phase space of the trapped particles is equal 
to the sum of the initial phase spaces. Relations (2.28) 
and (2.29) generalize the law of phase-space conserva­
tion to include the case when the phase trajectories of 
the particle become branched and move apart, or, to 
the contrary, come together. 

The foregoing results make it possible to determine 
uniquely the ergodic distribution functions in various 
regions. For particles that stayed trapped during their 
entire motion, the ergodic distribution function in terms 
of the variables (x, K) is obtained froII.!...(2.10) by !,e­
placing ~ 0 by the ergodic mean value ~ 0, where ~ o( Ko) 

is determined by the same formula as ~ in (2.13), but 
with K replaced by Ko[2]. Here Ko is a function of K 

(according to formulas (2.17) and (2.16)). If we use in 
place of K the variable Jl, then, for the untrapped parti­
cles the ergodic distribution function takes the form 

n/,' 
F(x,ft)=/o+-k-R(fLo). (2.30) 

0'0 

The function R in (2.30) is defined in parametric form: 

R(w) = 1/ xK(x), w ~ E(x) / x. (2.31) 

The main properties of R( w) are described in l3]. We 
note here that this is a monotonically increasing odd 
function, with 

2 4 n' 
R(w)~- In(w-t)' w-14:1; R(w)~-w--- w;}>1. 

n' 128w" 
(2.32) 

In addition to the data given in [3], it is expedient to de­
fine R( w ) additionally in the following manner: R( w) 
= 0 at I wi < 1 (relations (2.31) define R( w) only for 
I wi> 1). For particles that do not reach the separa­
trices in the course of their motion, the function 
Jlo( Jl, x) is determined from (2.17), and the region of 
values of Jl is defined by the following inequalities: 

fL>1, fL < min (-1, -,(x)/'o-,(x)o(x». 

For particles that experience reflection (we recall 
that this is possible only under condition (2.21)), and 
that in (2.30) it is necessary to substitute the function 
Jlo(Jl, x) defined by formulas (2.19) and (2.20). Then 

-T(X) / To - T(X)O(X) < fL < -1. 

To determine the distribution function of the trapped 
particles in the case of (2.21), we write down the parti­
cle conservation law with allowance for the branching 
out of the phase trajectories near the separatrix: 

21 d; IF(x,v)+1 d:IF(X'fL)~1 d:,o I F(O, fLo). 
Substituting here the expression for the distribution 
function F(x, Jl) of the reflected particles from (2.30), 
we obtain 

nlo' 
F(x,v)~F(O, fLo)~ lo+--R(fLo), 

kOLo 
(2.33 ) 

where the function Jlo( v, x) is determined from (2 _23) 
(we recall that Jlo > 0 under the condition (2.21)). 

In the case (2.22), the particle-number conservation 
law is 

21 d; IF(X,v)~ I d~:+ I F(O, fLo+) + I d~:-lF(O'fLo-), 
where Jl; > 0 and Jl'O < O. Substituting here (2.25), we 
get 

(2.34) 

where the function Jlii'(v, x) is determined from (2.23) 
and 
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s±=+{[ -c(:') r ±cr'(X') }/[ -c(:') r 
In particular, in a homogeneous plasma, where a'(x/) 
= 0, we obtain[Sl 

1 
F(x,v)=2[F(0, 1'.+)+ F(O, 1'.-)]= I •. 

We consider now the region lying behind the maxi­
mum of the packet, Le., at x > xm. In this case 

d 1 
---<0 
dx -c(x) 

and the untrapped particles, when they reach the 
separatrices, can only be reflected. This takes place 
only under the condition 

dcr d 1 
a;;>-a;; 'f(x)' (2.35) 

On the other hand, part of the trapped particles leaves 
the potential well and becomes untrapped (with iJ. < -1). 

Under a condition inverse to (2.35), the untrapped 
particles cannot reach the se para trices , and the trapped 
particles, leaving the potential wells, can have iJ. of 
either sign. The corresponding general expressions for 
the distribution functions behind the maxima will not be 
presented here, for the sake of brevity; they can be 
obtained by applying a reasoning analogous to that used 
above for the region ahead of the maximum. We shall 
need only the distribution function of the trapped parti­
cles in the case when the leading front of the packet is 
steep enough, i.e., where the condition (2.22) is satis­
fied. Then the expression for F(x, Il) coincides 
formally with (2.34). The point x I that figures in (2.23) 
then lies ahead of the maximum (x' < xm). 

3. EQUATION FOR THE FIELD OF THE WAVE 

We start from the equation4l 

au -
-at=-j8 (3.1) 

(the bar denotes averaging over the period of the wave), 
where U is the energy density of the wave, U = 6"~/8lT, 
and j is the current density of the particles mOving in 
the field of the wave. In the calculation of the right­
hand side of the wave in (3.1) we make use of the fact 
that 

_ 2e{t)~o 11/2 co. 

j8=---;p S dsJ d£(F-/)sin2£, (3.2) 
-:lIZ _00 

where f is the plasma distribution function in the ab­
sence of the wave field; in the resonant region we have 
for this function, the equation 

_ro_!1.+i!1._a~=O. (33) 
k(x) ax as as . 

(This equation is obtained from (2.6) by putting in it 
T = 00:) The solution of (3.3) is (under the same bound­
ary conditions as for the function F) 

2/0" 2 
1=1.+,k.[ £+--;cr(x)]. (3.4) 

It is easy to verify that the asymptotic form of the func­
tion F, obtained in the preceding section, takes the 
form (3.4) at large L and that only the resonant region 
contributes to (3.2), so that we can confine ourselves 
to the expressions obtained above for F and f. 

Subtracting further Eq. (3.3) from (2.6) and integrat­
ing with respect to ~ and ~, we obtain after simple 
transformations 
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n/2 00 

S dd d~6F=0, 6F=F- I, (3.5) 
~](/2 _00 

where it is recognized that OF = 0 at x = O. Multiplying 
further both halves of Eqs. (2.6) and (3.3) by x 2 and 
subtracting one from the other, we obtain after a number 
of transformations, with allowance for (3.5), 

ro () S " 1 . 
k (x) iJx 6F£ ds d£ = - 2-c' S sin 2£6F d6 d6. 

Comparing this expression with (3.2), we obtain j6" 
= (4w 2m/lTk4 )X, where 

a n/2 <XI •• 

'1.=Tx S d£S d6£(F-f). (3.6) 
_:r./2 _"'" 

To obtain now an equation for the amplitude in closed 
form, it remains to calculate the quantity X in (3.6). 
Substituting the expressions obtained in the preceding 
section for the distribution function in different regions 
of X, we obtain, after cumbersome but straightforward 
calculations, the following expression, which holds true 
in the region x < xm (xm is the coordinate of the maxi­
mum of the amplitude): 

8/; () { 1 SX [ 1; , J '1.=---- - R --,-+Tlcr(x)-cr(x)1 
k. ax T 0 T(X) 

(3.7) 

[ a ( 1 ) I acr(x') I] dx' 2 } 
x W T(X') - aT T(X') -~ . 

If the wave front is steep enough in the section (0, x), 
name ly, the condition (2.22) is satisfied, then, as can be 
easily verified, 

T-'(X) -T-'(X') >cr(x) -a(x'). 

The argument of the R-function is then less than unity 
(and more than zero), so that the term containing the 
integral with respect to x vanishes, and we obtain the 
same expression as in a homogeneous plasma[Sl: 

16/; aT-'(X) 
'1.=~--a-x-' 

Thus, under the condition (2.22) the wave front evolves 
with time in the same way as in a homogeneous plasma 
(for more details see[S,lOl). 

Assume now that (2.21) holds. We introduce the 
characteristic distance L from the start of the packet, 
for whic h I ~ ( L) - ~ 0 I is of the order of the width of the 
resonance region, i.e., I Q: I L ~ w/kT: 

L=2ro/nkTlal· (3.8) 

The quantity L can be called the characteristic length 
of the renewal of the resonant region owing to the in­
homogeneity of the plasma. By virtue of the condition 
O! T2 « 1, the length L greatly exceeds the nonlinear 
"ergodization" length Tw/k (i.e., the length over which 
an ergodic distribution function is established). At 
x - Xo « L (xo is the coordinate of the point where 
d [l/T(x)]/dx = da(x)/dx) the argument of the R-func­
tion in the expression (3.7) for X is close to unity. Us­
ing the corresponding asymptotic expression for the R 
function (see (2.32)) we obtain 

(3.9 ) 

At large distances from the start of the packet 
(x » L) the asymptotic expression for X takes the form 
(at da/dx» d(l/T)/dx) 

8k, S· dx' , 
'1.(x)= --k 2 I. a(x) -(-,-) a(x )k(x'). 

000 ~ x (3.10) 
x, 
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Comparing (3.10) and (3.9) we can verify that the effects 
of the inhomogeneity become manifest most strongly at 
x> L. 

Expression (3.10) can be written also in another form 
that is useful for a general analysis. To this end we in­
troduce the average distribution function of the trapped 
partic les at the point x: 

I d'd I 

FT= S F(x,v)-7 /5-7= S F(x,v)dv (3.11 ) . ., 
(where we used the expression for the phase volume of 
the trapped particles (2.27)). The total density of the 
trapped particles is expressed in terms of FT by the 
relation nT = (8/ 1TkT) FT. 

In the region before the maximum, under the condi­
tion (2.21), the distribution function of the trapped parti­
cles is determined by formula (2.33). Substituting here 
J.Lo(x, v) from (2.23) and calculating the asymptotic form 
of R(/.Lo) at To/T » 1, we obtain (at du/dx» d(l/T)/dx) 

- 40, 4'1" 'S' do(x') dx' 
FT=/o+--/o ---/0 --,---,. 

nk. nk. dx 'I"(x) 
(3.12) 

x" 

Taking into account the definition of the quantities 
fo and f~ in (2.11), we can write 

I.+~/.' =/(~+~) ""'I (~). 
nk. k. 11k, k 

Thus, (3.12) takes the form 

- ((i)) 4'1" 'S' do (x') dx' 
FT=I k --;;;;1. --;w- 'I"(x') . (3.13 ) 

., 
Taking (3.13) into account, we can rewrite the expres­
sion for X in the form 

4ka [- ( (j))] x(x)=--;.;-; FT(x)-j k . (3.14) 

The same expression can be obtained by considering the 
region lying behind the minimum. The quantity f( w/k) 
in this expression is, as can be easily verified, the 
average distribution function of the resonant untrapped 
particles at x » L (in the same sense as (3.11) is for 
the trapped ones): FUT(X) = f( w/k). 

Thus, energy exchange between the wave and the 
plasma at large distances from the start of the packet 
is determined by the difference between the average 
distribution functions of the trapped and resonant un­
trapped partic les. This result can be useful in the study 
of the evolution of waves of large length with slowly 
varying amplitude (cf. the note added in proof in(3]). 

4. EVOLUTION OF WAVE PACKET IN AN 
INHOMOGENEOUS PLASMA 

By way of a simple example we consider the evolu­
tion of a packet whose amplitude varies quite steeply in 
the front and rear regions and is almost constant be­
tween them (Fig. 3a), so that the condition (2.22) is 
satisfied in regions AB and CD, and condition (2.21) in 
region BC. In region AB, where the amplitude varies 
steeply over very small distances, the effects of the 
inhomogeneity are inessential, since this section will 
vary in the same manner as in a homogeneous medium, 
Le., it will become even steeper in a stable plasma, and 
will spread out, to the contrary, in an unstable one (for 
more details see[S,lO]). 

At x > Xo (xo is the coordinate of the point B), ef­
fects of inhomogeneity become important. At x - Xo 
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FIG. 3. Evolution of the shape of the 
packet: a) t= 0, b) t>O ('YL >0), c) t> 0 
('YL < 0). 

« L, using (3.9), we obtain the following equations fox: 
the wave amplitude: 

fJ8 x-x. 
Tt=-~ln-'-L-' 

~ = 64n-'1L'I"m' I a I, e = (f),o/ (f)om, 
'l"m = (m / e(f)omk ) 'I. 

(4.1 ) 

(4.2) 

(YL is a linear increment). At large distances from the 
start of the packet x - Xo» L, using (3.10), we obtainS) 

fJ ' • 
_8_= ~, S e'I'(x')dx', 

fJt 
(4.3) 

We consider now the evolution of the packet. Assume 
that E = 1 (x> xo) at t = O. It follows then from (4.1) 
that at x - Xo « L we have 

X-Xo 
e(x, t)= 1- ~tln-I-L-. (4.4) 

As to Eq. (4.3), it can be solved by successive approxi­
mation. In the first approximation we put in the right­
hand side E(x, t) = E(X, 0) = 1. Then 

e'(x, t) = 1 + ~,(X- x,)t. (4.5) 

Since the quantity E2 enters in the right hand side of 
(4.3) raised to the power 14, expression (4.5) has a high 
enough accuracy. The quantities {3 and {31 have the 
same sign as "YL. Therefore at "YL > 0 (Le., in an un­
stable plasma) the rear part of the packet is amplified 
more rapidly than the front part (see Fig. 3b). As to the 
packet in a stable plasma, it follows from the foregOing 
equations that the packet should have the form shown in 
Fig. 3c. It should be noted here, however, that since the 
maximum of the packet is located at the very start of 
the packet, it is necessary to take into account also 
particles that emerge from the trapping region. To take 
this circumstance into account, it is necessary to sub­
stitute in the general expression (3.14) the distribution 
function of the trapped particle behind the maximum, 
which was discussed at the end of Sec. 2. In this case 
the equation for the field amplitude becomes 

fJe'/ fJt = ~,e'l. (x - x.). (4.6) 

Solving (4.6), we obtain 

e'/' = 1 + '/,~, (x - x.)t. (4.7) 

Thus, Eqs. (4.3) and (4.5) pertain the an unstable plasma 
(vL> 0), and (4.6) and (4.7) pertain to a stable plasma 
(YL < 0). 

The expressions obtained above were derived under 
the assumption that the field varies little over the time 
of flight of the resonant particle through the entire 
region of the packet. It follows then from (4.3) and (4.6) 
that {31X « w/kx, Le., 

(4.8) 

This condition is compatible with the condition x - Xo 
at YLT « 1, as assumed throughout in this paper. 
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t) It is shown al the end of Sec. 4 that this assumption is valid at 
'l'L T 4; 1, whercYL is the linear decrement. 

2)ln the lahorJtory frame, reflection corresponds to the wave overtaking 
the particle 

3) The factor 2 in front of the first term in (2.28) corresponds to 
allowance f01 particles moving in opposite directions (we recall that 
for the trapped particles the value of v is the same for both signs of the 
velocity). 

4)We neglect here the spreading of the packet as a result of dispersion. As 
shown in [0], where dispersion effects are discussed for nonlinear 
evolution of a packet in a homogeneous plasma, the latter are quite 
small if th,' wave amplitude is not vety large (see condition (18) of [9]). 
It is impOJ tant that we do not consiner here the nonlinear frequency 
shift. This ]'tohlclI1 will he dealt with separately. 

S) In Ihe daivatioli of (4.2) and (4.3) we have assumed for simplicity that 
0< is conf>tant, and also neglected the difference between ko and k; this 
imposes a limitation on x, namely x 4; L (WT). 
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