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Magnetic anisotropy of alloys involving rare earth elements is considered. Anisotropic 
exchange between collectivized d-electrons and electrons of the f-shell of rare earth ions 
is calculated on the basis of a microscopic theory. The expression obtained describes the 
contribution to anisotropy in the case of alloys containing rare earth metals and metals of 
the iron group. Various types of concentration dependences of the anisotropy constants 
are discussed and their dependence on atomic number of the rare earth metal is consid
ered. 

1. The magnetic properties of alloys are much more 
varied than those of pure metals, a fact of great prac
tical interest. Recently there have been particularly in
tensive investigations of alloys and compounds of rare
earth elements with one another (ff alloys) and with 
elements of the iron group (df alloys). Since the main 
magnetic characteristics (the magnetic moments, the 
Curie points, and the magnetic anisotropy constants) of 
pure rare-earth metals are well explained within the 
framework of a theory based on the concept of the atomic 
character of f-electrons in a crystal, it is now timely to 
extend this theory to include alloys. 

When it comes to the magnetic moments J.i. (per atom 
of the alloy), the situation is trivial to a considerable 
extent, at least for the case of ff alloys, where the addi
tivity rule J.i.fJ2 = C1J.i.f + C2J.i.f2 holds (C1 and C2 are the 
relative concentration~ of the components). This addi
tivity may not hold for df alloys, owing to the change in 
the electronic structure of the d-bands of the collecti
vized magnetic electrons of the d-components in the 
alloy. The construction of an appropriate theory is 
presently hindered by the lack of information on this 
electronic structure, even for pure d-metals. 

Less trivial is the question of the Curie points. A 
generalization of the deGennes results[l] to the case of 
two-component ff alloys (assuming independence of the 
effective exchange integral of the concentration) is possi
ble on the basis of the theory of disordered alloys. There 
are, however, two essentially different variants with 
linear[2J and quadratic [3J dependence of the Curie point 
on the alloy-component concentration, respectively. The 
reason why the results of[2J and[3] differ lies in the 
difference in the methods of introducing an effective 
molecular field, and in the former case the expression 
COincides with the result obtained for fixed sublattices 
(see, for example, [4J for the case of ferrites). In addi
tion, in the experiments, starting with the work of 
Bozorth et al. [5J, one uses for ff alloys the empirical 
formula TN ~ (C 1G1 + C2G2)2/3, where Gi 
= (gi -1)2Ji(Ji + 1) is the deGennes factor. The possibil
ity of proving this formula is not indicated in any way in 
the theory. 

We consider in the present paper certain questions of 
the theory of magnetic anisotropy of alloys. The main 
purpose of our analysis is to classify the possible types 
of concentration dependence of the magnetic anisotropy 
of alloys with allowance for concrete microscopic mech
anisms. For the case of ff alloys, these mechanisms are 
the crystal field [6] and the anisotropic exchange [7 ,11], 
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whereas for df alloys there can appear also an additional 
mechanism connected with the anisotropic df exchange, 
the microscopic theory of which will also be considered 
here. As to the contribution made to the anisotropy of the 
the d-component itself, it will be introduced via a con
stant kd, regarded as a parameter, in view of the lack 
of an analytic theory of magnetic anisotropy for d-me
tals. 

2. We consider a system of collectivized d-electrons 
interacting with rare-earth ions. In the k-representa
tion, the d-electrons form bands [8], and if these bands 
are wide enough, the orbital moments are "quenched," 
The onset of anisotropic df exchange is possible only if 
the orbital momenta are partially "unquenched," by 
taking the spin-orbit interaction into account. We as
sume a weak spin -orbit interaction [10], much weaker 
than the electron energy in the quasiperiodic field of the 
lattice1). Allowance for the symmetry of the lattice, 
which we shall assume to be hexagonal, will be made 
already in the wave functions of the d-electrons. The 
degenerate levels of the d-states will then be split into 
two double levels and one single level, corresponding 
respectively to three possible irreducible representa
tions of the hexagonal-symmetry group. Assuming that 
the splitting is larger than the width of the bands subse
quently obtained by taking into account the quaSiperiodic 
potential, it suffices to consider the lower level, which 
is the only filled one. 

The term of greatest interest to us in the Hamiltonian 
of the df-exchange interaction is 

exch A exch A exch 
dGdl {1.)=-ldl (g-2)(s+I_+s_I+)=-I" (g-2){(sJ)-s,l,), 

2~F· ~e 

\1) 

where X- is the spin-orbit interaction constant in the ap
proximation of strongly bound electrons (X- ~ 10-13_10-14 

erg in the ions of the transition elements of the iron 
group), ~E is an enerf parameter [10J proportional to 
the splitting, and ~c is a combination of the radial in-

tegrals G~/ previously cited in [l1J . 

The physical meaning of (1) is that the orbital angular 
momenta lz which are "unquenched" as a result of the 
spin-orbit interaction and have eigenvalues in the site 
representation, undergo exchange interaction with the 
orbital component (g - 2)J of the f-electron angular mo
mentum. It is typical that r:xch in formula (1) contains 
only quadratic components gt 1 z (one 1 z comes from J'6so, 
and the second comes from the Coulomb-interaction 
operator « le2 /rl) ~ (g - 2)1' J, see [12J), The effect does 
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not appear if spin-orbit interaction is not taken into ac
count. 

3. It is not difficult to generalize the phenomenologi
cal theory of magnetic anisotropy to include alloys. 
Nonetheless, we consider it useful, in view of the almost 
complete lack of literature on this subject, to write out 
the corresponding formulas and to discuss them with 
allowance for the concrete results of the microscopic 
theory. 

In the study of alloys, particular importance attaches 
to the existence of two types of anisotropy, single-ion 
and tWO-ion, each of which leads to a different concen
tration dependence of the anisotropy constants. As is 
well known, the single-ion anisotropy is brought about by 
the crystal-field mechanism. All the mechanisms of the 
anisotropic exchange connected with pair interaction re
sult in two-ion anisotropy. 

Since the energy of the pair interaction in a disord
ered binary alloy, without allowance for short-range 
order, is determined by the formula[8] 

(2) 

we obtain for the anisotropy constant of the alloy, with 
allowance for both mechanisms2) 

(3) 

The results Of[6,7,1l] and of Sec. 2 of the present paper 
yield the following expressions for the second-order 
constants in crystals of hexagonal symmetry3) 

k/' = A,aJ (2/ - 1). 

k~xch= l;xc~nal (2J - 1), 

(4) 

where z is the number of nearest neighbors, n is the 
number of f electrons in the rare-earth ion, CI' is the 
Stevens coeffiCient, and A2 and PlXch are the crystal
field and exchange-interaction parameters. The constant 
kd is the only one for which we have no microscopic ex
pressions at present, and should be regarded as a cer
tain parameter. 

Relations (3) and (4) lead to some interesting conclu
sions and permit a classification of the possible types of 
concentration dependence of the anisotropy constant in 
alloys. A comparison of (3) and (4) with experiment 
makes it possible to separate the contributions of the 
crystal field and of the exchange interaction in concrete 
alloys. Greatest interest attaches in this case to re
search in a wide interval of concentrations, using the 
entire series of rare-earth metals as one or both com
ponents of the alloy. 

Let us discuss first ff alloys. By virtue of the rela
tions in (4), all the rare-earth elements are divided into 
two groups, depending on the sign of CI', which deter
mines also the sign of the anisotropy. The first group 
includes Ce, Pr, Nd, Tb, Dy, and Ho, while the second 
includes Pm, Sm, Er, and Tm (Gd, for which CI' = 0, 
stands alone). It follows then from (3) that for alloys 
within each group one should observe monotonic concen
tration dependences without a change in the sign of the 
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Qualitative dependence of the magnetic
anisotropy constant of df alloys on the d-com
ponent concentration, 1 kfr 1 - 1 kfxch 1 -
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anisotropy constant (provided that krAfB < krA, krB). To 

the contrary, for alloys of elements from different 
groups one should expect a reversal of the sign and the 
appearance of extrema in the function K(c). It is curious 
to note that the mixed constant krAfB should be larger 
for alloys made up of metals of the same group than of 
metals from different groups. 

Similar arguments hold also for df alloys. Typical 
curves for this case are shown in the figure. 

At present there exist only isolated experimental re
sults of the measurements of the magnetic-anisotropy 
constants in rare-earth alloys. Chikazumi et al. [14J in
vestigated only low concentrations of the rare-earth 
component in the alloy, at which only linear concentra
tion dependences of K could be observed. Of considerable 
interest is work by Levitin et al. [15J , who did observe a 
quadratic contribution to the concentration dependence 
for Gd-Dy alloys, but arrived at the conclusion that this 
contribution is connected with the dependence of the 
single-ion constant kr on the lattice parameter. To solve 
this problem it is necessary, above all, to perform addi
tional experimental research in this field. 

l)The case of strong spin-orbit interaction of the conduction electrons 
was considered by Levy [9J. 

2)Yang Shih [13 J obtained higher degrees of the concentration dependence 
of K (for the case of the cubic crystals) by choosing a different Hamil
tonian. 

3)Expressions (4) represent only the hitherto considered theoretical me
chanisms that do not exhaust all the possibilities. Moreover, there is no 
proof that they are the principal ones. 
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