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The properties of an excitonic insulator are considered near the point of the transition 
into the dielectric phase. It is shown that a formal analogy exists with the properties of 
a Bose condensate of real excitons. The following characteristic effects are investi­
gated for the case of crossed fields: condensation of the excitons into a state with non­
zero momentum, the origin of the dipole moment, and the corresponding abrupt change 
in the value of the dielectric constant. The interaction of the excitons with acoustic 
phonons is discussed. 

1. As is well known, the excitonic insulator is a phase 
that can exist at sufficiently low temperatures between 
the metallic and dielectric phases in a system with small 
forbidden gaps or overlaps between the valence band and 
the conduction band. In the present article we investigate 
the transition between the dielectric and excitonic insu­
lator phases in the presence of crossed electric E and 
strong magnetic H fields. (We recall that the exciton 
phase was observed experimentally by Brandt and 
Chudinov[ll specifically in a strong magnetic field.) 
It is shown that the speCific dispersion law of an ex­
citon in crossed fields should lead to a noticeable ther­
modynamic effect: the appearance of an additional di­
pole moment below the tranSition point and a corre­
sponding abrupt change in the dielectric constant. The 
magnitude of the discontinuity in the magnetic suscepti­
bility is also determined. 

The Hartree- Fock approximation has been used over 
the entire range of existence of this phase in all of the 
articles devoted to the theory of the excitonic insulator 
(see the review article by Halperin and Rice[2]). The 
applicability of this approach is obvious from a compari­
son with the theory of superconductivity only for the case 
of an excitonic insulator-semimetal transition with a 
weak interaction.[3] On the other hand, in the system we 
are considering the interaction is not small (the exci­
ton's binding energy Eo is of the order of the width d 
of the forbidden gap), and as a result the Hartree- Fock 
approximation becomes inapplicable. In this work it is 
shown that nevertheless there is a region where the 
Landau theory of phase transitions is valid, and also the 
expansion in powers of the ordering parameter is analo­
gous to the expansion in powers of the denSity in the 
Keldysh-Kozlov theory[4 of the Bose condensation of 
excitons. In view of the gaseous nature of the expansion, 
one is only able to obtain quantitative results near the 
transition point, where the density of the exciton back­
ground is small. In addition, the condition that the fluc­
tuations of the ordering parameter- namely, the den­
sity of excitons - be small leads to a strong restriction 
on the transition temperature T c , which must be small 
in comparison with the exciton's binding energy Eo. All 
this restricts the applicability of the theory to the region 
where the width of the forbidden gap is close to Eo. 

2. We consider a semiconductor with a narrow indi­
rect forbidden gap between the valence band v and the 
conduction band c. We shall assume the spectra of the 
electrons to be quadratic along the magnetic field. The 
magnetic field. The magnetic field must be strong enough 
so that the condition ,\« R is satisfied, where ,\ = (c/ eHt /2 

denotes the magnetic length, R = K2/me2 is the Bohr ra-
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dius of the exciton (K is the static dielectric constant, 
m is the reduced lon¥itudinal mass). As was shown by 
Elliott and Loudon,[S this condition permits us to neglect 
transitions to higher Landau bands. Near the band ex­
trema the electrons' spectrum will take the form 

where d is the distance between extrema of the nearest 
Landau bands (with the spin taken into account), mc ,v 
and mlc v denote the longitudinal and transverse masses 
of electrbns and holes, and V denotes the x-component 
of the Hall velocity V=c(EXH)/H2=(V, 0, 0) (the z axis 
is directed along H, and the y axis is along E). 

The exciton phase is characterized by the presence 
of an exciton background in the ground state, which 
manifests itself in an intermixing of the electronic 
states in the c and v bands and leads to the appear­
ance of nondiagonal elements, Gcv and Gvc , of the 
one-particle Green's function. We have the following 
system of Dyson's equations for these nondiagonal ele­
ments and also for the renormalized diagonal elements 
Gc and Gv of the Green's function: 

G" = G,(O)r"G" + G, (O)':;"G, 
( 1) 

G, = G,(O)+ G,(O)r"G, + G;O)r.voC", 

and there are analogous equations for Gvc and Gc . 
Here G6°:v= (E- EC ,v(Px, pz) ± iot1 are the unrenormalized 
Green's functions, and ~af3 are the matrix elements of 
the self-energy part. The Green's function is investi­
gated in the representation of wave functions z/!~~~~(r) 
by using the effective mass approximation for the zero 
Landau bands of the electrons near the extrema of the c 
and v bands. For the time being we shall assume the 
electric field to be equal to zero. 

The nondiagonal elements ~cv = ~;c only appear in 
the exciton phase and, just as in the work by Kozlov and 
Maksimov, [6] they play the role of the order parameter. 
In general the diagonal elements ~c and ~v are differ­
ent from zero even in the dielectric phase. In this con­
nection they are either proportional to the number of 
thermally excited or impurity carriers or else are pro­
portional to the square of the interaction U~, which 
simultaneously transfers two electrons from one band 
to the other. We shall primarily consider the case 
T = ° and neglect the influence of impurities. As for the 
interaction uXX, it is always small in the theory of large­
radius excitons and in addition, being a short-range in­
teraction, it acquires an additional degree of smallness 
associated with the scattering of electrons with parallel 
spins, which occurs in our case. As a result it turns out 
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that u~/ug:::(ao/,\,)4 and therefore this interaction can 
be neglected.I) Thus, one can assume that ~c and ~v 
are also different from zero only in the exciton phase. 

The exact equation for ~cv has the usual form: 

C{\v 
~ + ( 2) 

In these diagrams the cross-hatched circle corresponds 
to the quantity ~cv, the heavy line corresponds to Gcv , 
a wavy line represents the matrix element of the 
Coulomb interaction ug, and the cross-hatched four­
point diagram represents the totality of higher-order 
diagrams which do not contain any horizontal two-par­
ticle intersections. All of the diagrams constituting this 
four-point diagram, for example the diagram shown in 
Fig. la, are different from zero only in the exciton phase 
and, in addition, they contain lines bearing the frequency 
E that enters in ~cv' Thus, the two terms on the right 
hand side of Eq. (2) divide ~cv into two parts: ~cv=~o 
+~l' where ~o does not depend on the frequency and 
~l- 0 for E »d, p~/2m. Near the transition point, when 
~cv is small and Eo:::d, it is obvious that ~1:::~g/d2 
«~o, but it does not contain the smallness associated 
with the order of the interaction. Precisely such dia­
grams for ~c and ~v as are shown, for example, in 
Fig. lb are of the order of magnitude of ~5/d for an 
arbitrary number of interaction lines. 

From what has been said above it follows that, to the 
first order in ~o, in the first term on the right hand 
Side of Eq. (2) it is sufficient to restrict oneself to the 
expression Gcv=G~O)~o~) for Gcv , and we then obtain 
an equation which has the same form as in the Hartree­
Fock approximation: 

= ( 3) 

where the circles denote ~o and the thin lines denote 
the functions GtO) and Gt». After integrating over the 
frequencies and making the substitution ~o = (pV2m +d)i/i, 
we obtain for i/i, in analogy to [6], the Schrodinger equa­
tion for the relative motion of an exciton with energy d in 
the momentum representation. A solution of this equa­
tion exists for d < Eo, where Eo is the maximum (with 
respect to the center of mass momentum k) binding en­
ergy of the exciton. In the absence of any electric field 
this maximum is reached when k = O. Thus, </J = T}</Jk( pz) 
where </Jk(Pz) denotes the wave function of an exciton 
with momentum k in the zero Landau band (l/Jk(O) = 1), 
the constant T} is determined upon taking account of the 
higher- order terms of the expansion in powers of ~o, 
and the vector k must then be determined from the con­
dition that the thermodynamic potential be a minimum. 

In order to determine the quantity T} it is necessary 
to expand Gcv to third order in ~o, i.e., to also take the 
terms containing ~g, ~c~o, ~o~v, and ~l into account. 
Only the terms corresponding to ~g are usually taken 
into consideration[6] in the Hartree-Fock approximation. 
Since the terms of order ~g determine the value of T} 
without changing </Jk(Pz), it will be more convenient for 
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us to multiply both sides of the equation for ~o by iGcv 
and then integrate over frequency and momentum. Then, 
by carrying out the expansions indicated above we obtain 
the following equation: 

(4) 

(the circles correspond to ~o). 

In the diagrams of fourth order in ~o, the interaction 
is eliminated with the aid of Eq. (3). The block diagram 
corresponding to ~c has the form 

0=~+~ 
'::J c~c c~c + ( 5) 

and a similar expression holds for ~v. (The indices c 
and v are written down explicitly only where ambigui­
ties ma~ arise.) Just as in the theory of Keldysh and 
Kozlov, 4] the eight-pOint and six-point vertices appear­
ing in the last terms of Eqs. (4) and (5) correspond to the 
complete vertices for the scattering of two excitons and 
an electron by an exciton in the dielectric, which are 
not reducible to the antiparallel pair of lines G~O), Gt» . 
The four-point vertices in Eq. (5) correspond to the 
complete vertices rgg, r~ describing the interaction 
of two electrons from the same band as well as the 
complete vertex rg for the interaction of two elec­
trons from different bands. 

After substituting expression (5) into Eq. (4), let us 
denote the sum of the three terms containing the eight­
and six-point vertices by a1j4, where in the absence of 
any external magnetic fields the quantity a would co­
incide, to within a coefficient, with the quantity ,\, from [4] 

In the absence of an external field Eq. (4) coincides in 
analytic notation with the equation for the determination 
of the chemical potential Jl of the excitons when Eo-d 
is interpreted as the chemical potential of the excitons 
and 1j is interpreted, to within a coefficient, as their 
density. 

As was noted in [4] , the exciton-exciton vertex should 
not contain a pole corresponding to the formation of a 
bi-exciton with negative total energy ~l' It follows from 
the work of Kadomtsev and Kurdyavtsev[S] that bi­
excitons with ~l :::-Eo exist in the presence of a strong 
magnetic field as mv- 00. According to [S] the distance 
between holes turns out to be of the order of R/L 3/2 
(L=ln(R2/,\,2)), that is, for a finite value of mv the kine­
tic energy must be of the order of L3/mvR2:::EoLmv/mc' 
Therefore, the bi - excitons should decay for sufficiently 
large values of H, when L Z mv/ mc. 

The first two diagrams on the right hand side of Eq. 
(4) correspond to the usual Hartree-Fock approximation. 
This approximation was used within the framework of 
the Green's function technique in the work by Kozlov and 
Maksimov. [6] The third and fourth diagrams also contain 
Hartree- Fock terms originating from the first two dia­
grams of Eq. (5). And, finally, the diagrams giving a 
contribution to the quantity a take the correlations of 
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the electrons with the exciton background into account. 
It will be shown below that all of the fourth-order dia­
grams give contributions of the same order of magni­
tude. Thus, it is impossible to regard the exciton back­
ground, which arises in the ground state of the excitonic 
insulator and which is responsible for the intermixing of 
states in the c and v bands, as an external self-con­
sistent potential with a period corresponding to the dis­
tance between the extrema of the c and v bands. Near 
the transition point, this fact is essential only in connec­
tion with the determination of Gcv . However, for Eo- d 
'" Eo in the range of energies of order Eo, all matrix ele­
ments of the self-energy part of the Green's function be­
come of the order of Eo and have the same scale of vari­
ation in frequency. Therefore, the elementary excitations 
in this domain are no longer Single-particle excitations, 
but instead are closer to polarons with strong-coupling. 

Now let us return to the first-order equation for 2,;0 
and we shall now assume that E '" O. Although the exci­
ton's wave function I/!k(z) has been obtained in the coor­
dinate representation in article [5J (for k = 0), it will be 
more convenient for us to immediately determine 
2,;o(Pz, Px, pX) in the momentum representation. The in­
tegrals over the transverse momenta in Eq. (2) have 
the character of convolutions and are decomposed by the 
transformation 

:::, (p" p., px + kx) = S L. (p,) exp {i (Px + kxl2) k,A'} dk,. (6) 

The transformation (6), decomposing the integral with 
respect to Px, is investigated in [9J in regard to the 
equation for the vertex part. This transformation 
achieves the transition from the Landau representation 
with a definite value of Px to the representation of a 
definite two-dimensional transverse momentum, k = (kx 
ky), which is preserved in the c, v channels. Substitut­
ing (6) into (3) and integrating over the frequency, we 
obtain 

L ( )=SU.(P/-P,)L.(P/) dp,' 
• p, p.'2/2m + dk 2n' ( 7) 

where dk = d + V . k- MY2/2 is (according to tiOJ) the ex­
citation energy of a noninteracting electron- hole pair 
with transverse momentum k, and M = m~c + m~v' For 
A2kkz «1 the interaction Uk(kz) has a weak logarithmic 
dependence on the momenta (see [9J): 

U.(k,) "" (e'/x) In (Alk,1 max (Ak', 1)), 

where2) 

k'= Ik'l, k'=k-MV. 

Therefore, to within logarithmic accuracy one can sub­
stitute p~ = (2mdk)1I2 = Ri(l in the numerator of the inte­
gral (7). After integrating over pz we find that 

L.(p,) =I']U. (max {p" R.-'}) / U.(R.-') 

for dk=Ek, where Ek=me4Lk/2K2 (Lk=(K/e2)Uk(Ri(1) 
'''In(RWA2) is the Coulomb logarithm). 

The quantity Ak = dk-Ek represents the total ex- ex­
citation energy of an exciton with momentum k. In the 
absence of any electric field V=O, dk=d, and the mini­
mum value of Ak occurs at k=k'=O. When E "'0 the 
presence of the terms linear in k' leads to the result 
that the minimum value of Ak is reached at a certain 
value k = ko = ~ + MV with kxo, kko '" O. Thus, the excitons 
condense into a state with nonvanishing momentum ko 
and the distance between an electron and a hole is given 
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by p= A2(kJxH)/H. For Tj >0 the quantity k(Tj) must be 
determined from the condition that the thermodynamic 
potential n be a minimum. However, the difference be­
tween k(Tj) and k(O) = Ito is determined by terms of order 
Tj6 in the expansion n and therefore this difference need 
not be taken into consideration in our approximation. In 
this connection, the subscript "zero" on k and k' will 
usually be omitted in what follows. 

It is obvious that 2,;k=2,;ko0(k-ko) or in the Landau 
representation (with the fact that ky = 0 taken into con­
sideration) we have: 

L,(px, p,') ~ L.,6 (p,' - p. - kxJ. (8) 

Then from Eqs. (1) we obtain the result that Gc and Gv 
are diagonal in PX' This is explained by the fact that the 
exciton background with a definite k is described by a 
trave~.ng wave, but not by a standing wave, and therefore 
does not violate the homogeneity of the crystal over 
large (in comparison with interatomic) distances. 

In connection with the integration over frequencies in 
Eq. (4), it is necessary to make the substitution E~ E 
+ VPx, which corresponds to a transformation to a coor­
dinate system which is moving with the Hall velocity V. 
The electric field vanishes in this coordinate system, 
and the dependence of the spectrum on Px disappears. 
The dependence on kx remains due to the presence of 
the o-function (8), but the energies of the c-electrons 
acquire an additional constant term Vkx . Furthermore, 
since the choice of the origin of the energy scale inside 
the forbidden gap is arbitrary, we obtain the same inte­
grals as for the case when E = 0, but the effective gap is 
given by dk=d+V'k-M~V2/2,where M~ =m~c+m~v' 

Now we see that all of the integrals over the longi­
tudinal momenta converge in the region pz '" (mdk)1I2 , 
just as in Eq. (7), and with the slow variation of Uk 
and 2,;k taken into consideration we obtain the result 
that the contribution of any diagram is proportional to 
(EWdk)n, that is, all the diagrams of a given order in 
2,;0 are of the same order of magnitude. 

By evaluating the integrals in the first terms of Eq. 
(4), we obtain the following result term by term: 

rid. -- =l']d.Uk---n -dk -- +b+a , (md.) '/', m , ( ::l ( md. ) 'f, ) 

2 2dk ., 4 2 . (9) 

We shall denote the coefficient associated with _Tj4 in 
Eq. (9) by (2Cr1dk(mkk/2)1/2, where C is a dimension­
less coefficient. This coefficient consists of a positive 
term which does not explicitly contain the interaction 
term and two negative terms: band a. 

The quantity b corresponds to the diagrams contain­
ing only four-point vertices and arising from the first 
two terms on the right hand side of expression (5) for 
2,;c and 2,;v. We note without presenting the proof that 
in the essential range of frequencies the total contribu­
tion of the four vertices rgg, rg~, r~g, and r~ is 
negative and does not exceed the value 2Ug~ in magni­
tude; whence one can easily show that 0 < b < ';I:;d( md/2)1/2 . 
We have not been able to make any estimates with regard 
to the value of a; therefore, as mentioned in [4J the quan­
tity C may be both positive and negative, and also in 
general C '" 1. 

The negative sign for C gives a phase transition of the 
first kind, which occurs for a certain d >Eo. In this case 
the exciton phase corresponds to the formation of a drop 
of the excitonic liquid in the normal exciton gas. Thanks 
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to the appreciable anisotropy of the polarizability of the 
excitons, the formation of a partially ordered structure 
of the liquid crystal type is also probable in the presence 
of a strong magnetic field. 

In connection with the variation of the external param­
eters (fields, temperature, pressure, impurity concen­
tration) the sign of C may change, and the line of first­
order phase transitions may turn into a line of second­
order phase transitions and conversely. The gas approxi­
mation which we are using is, of course, not valid in the 
presence of a transition of the first kind; therefore, in 
what follows we shall assume that C >0. For C >0 we 
obtain 1)2 =C(€k-dk)/dk from Eq. (9). 

In order to determine the corrections to the density 
of the thermodynamic potential n, it is necessary to 
calculate the average of the interaction Hamiltonian 
Hint. This average is given by 

i ~ dp,de 1 
(Hin ,) = -"""2 .l..J ~.b(e, p,) Go. (e, P')(2n) 2 2nP' 

.,b 

where 1/21TA2 is the degeneracy of the Landau level. In 
this expression the terms containing products of the di­
agonal elements of Land G vanish upon integrating 
over the frequency because the diagrams corresponding 
to these terms contain closed loops consisting of lines 
corresponding to Green's functions of a single type. Thus, 
(Hint> is determined to second order in 1) by the diagram 
shown on the left hand side of Eq. (4). The corresponding 
quantity in Eq. (9) must be multiplied by -(21TA2r 1, and we 
then obtain 

(Hin,) = -"I'd. IV., 

where Vk = (21TA2Rkf 1 is the characteristic volume of an 
exciton with momentum k(Rk = (2m €kf 1). Integrating 
with respect to e2, we obtain 

6Q = -'/'C-'TJ'd. I v •. 
The obtained expression for on enables us to deter­

mine the thermodynamic characteristics of an excitonic 
insulator. By differentiating on twice with respect to H, 
we obtain the following result for the abrupt change in 
the value of the magnetic susceptibility (when E = 0): 

6x= 'j,C(ft·)'ld.V., 
ft' = a(eo-d) I aH = -adl aH + 2eol LH. 

Furthermore, since the average distance p = A2(kx 
- MV) between the electrons and holes does nor vanish 
in the new phase for E '" 0, the transition is accom­
panied by the appearance of a dipole moment: 

P, = - (iJoQ / aE,),= -ek,f.'TJ' /2V •. ( 10) 

The differentiation is carried out at constant 
v=(an/ak)E, that is, in our approximation for constant, 
zero velocity of the excitons. Therefore, it is natural 
that Py is proportional to -ekx A2, i.e., proportional to 
the exciton's dipole moment at constant velocity. [lOJ 
It is seen from expression (10) that the exciton denSity 
is equal to 1)2/2. Differentiating Py with respect to Ey , 
we obtain the following result for the discontinuity in the 
dielectric constant: 

(11) 

U sing the condition dk = €k it is easy to show that kx'\ 
=-eEymR2A/L at the transition point. The discontinuity 
of the dielectric constant is maximal when k is close to 
an inflection point of the funct i on €(k), that is, when 
k'\ '" 1. In this case OK/ K '" 10- 1 to 10-2 r 1d the order of 
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magnitude of the electric field is given by 

m a' / E '" L(mR'),e)-' _lO'L_o -- V cm. 
m R'A 

where ao= 1/moe2 is the atomic size. We find that 
E '" 100 V / cm for BixSb1- x alloys[ll with H'" 105 Oe. 

When E '" 0 the phase transition point is displaced 
towards larger values of d. The magnitude of the criti­
cal electric field is determined by the expression 

_ eo (d-eo )'1,_ L-'I'H" ft' H,-H,o 1'1' 
E-- -- --- ----

, eA eoL meR. ft H,o • 

where JJ- = e/mc and Hco is the critical field for E = O. 

We also note that anomalies should be observed in 
the acoustic phonon spectrum in the exciton phase. In 
fact, when 1) '" 0 the renormalized states c contain im­
purity states v with amplitude 'I and conversely. There­
fore, the forbidden band and the exciton excitations turn 
from indirect transitions into vertical transitions with a 
probability 1)2. This makes it possible to have both di­
rect optical transitions with a frequency of the order 
of Ek and the interaction of the exciton modes with the 
the acoustic modes. In contrast to the case of a dielec­
tric, the exciton mode in an excitonic insulator does not 
have a gap (neglecting the matrix elements U~ [7J) [ and 
the spectrum, in analogy to the case of a Bose gas, 4J has 
the form 

e. = [t'.k' I M. + (k'i 2M.)']"', 

where Mk denotes the mass along k (Mz = mc + mv, and 
according to[lOJ Ml is given by Ml = R?,\2L). Therefore, 
the interaction of the exciton and phonon spectra must 
have the form shown in Fig. 2. On this figure the dashed 
lines I and II indicate the noninteracting spectra of the 
phonons and excitons. The region of a strong interaction 
of the terms is determined from the condition k = 2Mksk, 
where sk denotes the speed of sound in the direction k. 
In this region there are bound exciton-phonon vibrations 
which are analogous to a spin-acoustic resonance by the 
normal modes, and external sound radiation should ex­
perience strong attenuation. It is obvious that what has 
been said above only pertains to the case of a singlet 
ground state. 

The theory discussed above can also be applied to 
the case of nonzero temperatures T, provided that 
T «To where To is the characteristic temperature 
above which the critical fluctuations of the exciton 
density become essential. In order to estimate To let 
us calculate the contribution of the singular part of the 
vertex rg in the second term of Eq. (5) for Lc. For 
T = 0 this contribution vanished upon integrating over the 
frequency. For T > 0 at zero frequency we have 

r '" '" eo 1 
'" Vot'.(T)+k'!2M. 

where ~(T) = €o(T)-d, and Eo(T) = €o(1-0'(T/d)1/2e- d/ T) 

w 

k 

FIG. 2 
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denotes the exciton's binding energy at the temperature 
T (0'''' 1). Integrating with respect to k, we find that the 
residue of the regular contribution is given by 6~c 
'" LT /( to( t od)1/2. This quantity is small in comparison 
with the terms of order 112d '" ~ which we have taken into 
account provided 11 »T/To, where To = toiL. 

At temperatures TZTo our expansion is not valid for 
any value of 11. Nevertheless, for 11« 1 the dependence 
of the exciton momentum on the electric field, which is 
determined by energies of the order of to, is not modi­
fied. But instead of the abrupt change in the dielectric 
constant given by expression (11), there must be a 
singularity of the form 6K/K"'A(kxA)2(~/to)-0' with the 
same exponent 0' as for the singularity in T c - T in 
the expression for the speCific heat of an imperfect Bose 
gas. 

Note added in proof (20 December 1972). The probability for the excitation of an 
exciton by a long-wavelength field is proportional to the absolute value squared 
of the exciton's wave function. i.e .• V 0- 1 = (21TA2Rotl. Therefore, the probability of 
direct transitions is determined by the dimensionless parameter" = I)'Ro'/A', Here 
the large value of Ro'lA' may compensate for the smallness of 1)'-

J)It was shown in [7] that the influence of this interaction is fundamental 
in nature. However, in view of the smallness of ao/A it is restricted to a 
narrow neighborhood of the phase transition point. 

2) According to the article by Gor'koy and Dzyaloshinskil, [10] the depend­
ence of the matrix elements of the interaction and the binding energy 
on the transverse momentum, i.e., the lifting of the Landau degeneracy, 
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is explained by the separation of the centers of the electron and hole 
orbits by the vector p = A 2 (k' X H)/H. 
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