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A simple model is proposed which describes the generation of coherent phonons at the 
point junction between two metallic films located at the site of tunnel-structure break
down. The generation mechanism is due to the Vavilov-Cerenkov effect for electrons in 
the metal when the drift velocity exceeds the velOCity of sound. The length of the region 
of interaction between the electrons and sound wave does not significantly exceed the 
wave length of sound and hence interference occurs between sound waves excited at 
various points within the junction and leaving the interaction region. This results in an 
oscillating dependence of the phonon emission intensity on the electron drift velocity and 
consequently in oscillations of the junction conductivity. 

As is well known [lJ, when the electron drift velocity 
v exceeds the speed of sound s in a metal, the electron 
flow becomes strongly decelerated as the result of co
herent phonons along the entire path of the beam. The 
mechanism of this radiation is due to the Cerenkov 
effect [2J, and in this case the charged-particle velocity 
should be taken to mean the drift velocity v of the elec
trons rather than the Fermi velocity vF »v. If the 
electron free path is much larger than the radiation 
wavelength, then the wave vectors are arranged along 
the generators of a cone with apex angle e = cos-\s/v). 
If the region of interaction between the electrons and the 
sound-wave field is finite, the wave-vector cone of the 
emitted waves has a finite thickness. In addition, there 
appears a unique interference effect, which has been ob
served experimentally earlier[3J and is manifest in os
cillations of the conductivity of a pOint contact between 
two metals. We propose here a simple theoretical model 
explaining this effect. 

The point contact produced by short-circuiting a film 
tunnel structure can be represented in the form of an 
opening of radius r in a thin dielectric partition between 
two metals (Fig. 1a). The length of the channel joining 
the two metals is equal to the thickness L1 of the dielec
tric and is usually smaller than its width. If a potential 
difference V is applied between the metals, then the elec
tric field E will be essentially inhomogeneous in the reg
ions of radius r adjacent to the contact channel from the 
left and from the right. Inside the channel, the field is 
practically homogeneous and has a maximum value of the 
order of V /r. The current density is also maximal inside 
the channel and falls off rapidly to the left of the entry to 
the channel and to the right of the emergence from the 
channel. 

We consider the generation of coherent phonons within 
a channel of length L when electrons move through the 
channel with supersonic drift velocities. Since the thres
hold value of the angle e is zero, we calculate the ampli
tude of the sound wave emerging from the interaction 
region x = L (Fig. 1b), assuming cos en = L The number 
n = 0, 1, 2, •• , corresponds to the n-th threshold value 
of the drift velOCity, which will be determined later on. 
The phase of the sound wave excited at the point x inside 
the channel and arriving at the point x = L will lag the 
phase of the wave excited at the point x = L by an amount 

~tp(x)=ro(L-x) (+--+), (1) 

where w is the frequency of the soundo 

Consequently, an elementary wave excited at the point 
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x will have the following form on emerging from the con
tact: 

dA(x, t) =A cos[rot- ~tp(x)ldx/ L, (2) 

where A is the amplitude of the wave and is proportional 
to the intensity of the electron-phonon interaction. The 
resultant oscillation at the point x = L is obtained by 
summing all the partial waves (2): 

A L 1 1 
A.cos(rot-<p)=IJcos [rot-ro(L-X) (-;--;;) ]dX, (3) 

o 

from which we can easily obtain1) 

sintp 
A.=A--, 

<P 

tp = roL(v - s) /2sv. 

(4) 

(5) 

The intensity I of the generated sound is proportional 
to AL: 

(6) 

The intenSity has zero value whenever cp = n1T, n = 1, 2, 
••. , corresponding to threshold-velocity values 

vn =s(1-ns/vL)-'''''s(1+ns/vL) (7) 

(w = 21TV). The last expression is valid at small ns/vL. 

The threshold velocities begin with the sound velocity 
s, and initially the intervals between them are 

~v=s2/vL. (8) 

Every time that v increases, the phase cp changes by 1T, 
a new Cerenkov-radiation cone is produced and is im
bedded in the preceding one (Fig. 1c), and at this instant 
the apex angle of the m-th cone is equal to 
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FIG. I 
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8 m ~ arccos [ 1- (n - m)s / \lL], m < n. (9) 

Whenever the drift velocity reaches a new threshold, 
a new energy-dissipation channel is produced, and at the 
given current it leads to an increase in the voltage and 
consequently in the resistance of the contact (Fig. 2). 
Each value of Wq corresponds to a definite value of the 
velocity Sq. It is easily seen from (7) that the experi
mentally measured value of Vo yields Sq' and the oscilla
tion period is q = wis. In the general case of an arbitrary 
phonon spectrum, it is necessary to take into account 
all the frequencies and to integrate with respect to fre
quency. Then, however, by virtue of the rapid decrease 
of the Cerenkov-radiation energy with increasing wave
length (W ~ A -3) (2], the effect will be maximal for the 
short-wave photons, which are thus favored. 

We can Simplify (7)-(9) by assuming that the density 
of the phonon states has sharp maxima at definite ener
gies Wk. It is precisely in this case that one can observe 
sufficiently distinct oscillations of the conductivity of 
point contacts [3]. Let the phonon spectrum consist of 
two peaks Wl and W2 corresponding to the limiting ener
gies for the transverse and longitudinal phonons (see, 
for example, the phonon spectrum of lead [5] ), corre
sponding to sound velocities Sl = sTA and Sz = sLA' Then 

and 

V n .' ~ s,(1- 2na / L)-' "" s.(1 + 2na / L); k ~ 1,2, n = 0,1,2, ... 

(10) 
Consequently, we obtain two series of oscillations, and 
the number of oscillations in each series does not ex
ceed I./2a - 1. If we neglect the small change of the 
dynamic resistance of the contact in the investigated 
range of voltages, then we can establish a simple con
nection between the drift velocity and the voltage on the 
contact v ~ eY tPF' and then the period of the oscillations 
with respect to voltage is ~nsk/L. 

Let us compare the consequences of the proposed 
model with the experimental data[3]. Figure 3 shows the 
current-voltage characteristic (CYC) (curve a) and its 
second derivative (curve b) for a point contact produced 
when a Pb-PbO-Pb tunnel junction is short-circuited. 
Up to the voltage Yl = 5.3 mY and the current 11 = 14 mA, 
the CYC is linear, and its second derivative is equal to 
zero. The threshold drift velocity vTA, which is equal to 

i, I, V, , I 
VTA~-~--~--"'1D cm/sec, 

en enS en(pl) 
(11) 

(n is the electron density in Pb, and pl is the product of 
the reSistivity by the mean free path) corresponds to 
the velocity sTA of the transverse sound in Pb. 

As shown earlier [6], in the nonlinear region R(Y) 
= A + CY, and the CYC of the point junction can be ap
proximate by the expression 

Al 
v (I) ~ 1 _ GI ' GI < 1, (12) 

where A and C are constants, with C proportional to the 
intenSity of the electron-phonon interaction. To first 
order, the derivatives of the evc are equal to 

~; ""A[1+2(GI)+3(Cl)'], (13) 

d'V . 
di' "" 2AG[1 +3(GI) J. (14) 

As soon as the second threshold value of the drift 
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FIG.2 FIG. 3 
FIG. 2. Schematic form of the current-voltage characteristic and of 

its first and second derivatives. 
FIG. 3. a-Current-voltage characteristic of Pb-Pb contact. The con

tact diameter is 2r = 1100 A, and the film thickness is 1500 A. The first 
threshold value of I, corresponds to zero level, the second 12 coincides 
with the position of the sixth maximum on the I axis. The horizontal lines 
indicate the positions of the maxima on the I axis. b-Second-harmonic 
voltage of the modulating signal as a function of the contact voltage V. 
The total sweep along the ordinate axis corresponds to V2 = 7.5 p.V; 
2.:lI = 2i is double the oscillation amplitude; T = I.SoK, and H = 10 kOe 
is used to suppress the supercond uctivity of Pb. 

velocity vLA is reached, corresponding to the current 
Iz = 23.5 mA and the voltage Yz = 9.7 mY in Fig. 3, the 
monotonic component of d2y Idr experiences a kink 
corresponding to a jump-like increase of the coefficient 
C. The second threshold value of the drift velocity is 
approximately equal to the velocity of the longitudinal 
sound sLA in Pb. The vz(Y) oscillations dealt with in the 
present paper are superimposed on the background des
cribed above, and become observable only at sufficiently 
low temperature kT ~ t:.Y, where .:lY is the period of 
the oscillations with respect to the voltage. 

The most prominent feature of the effect is its thres
hold character. According to the proposed model there 
should be no oscillations at v < vTA' and a new series of 
oscillations with period vLA/vTA times larger than the 
preceding period should appear when v > vLA' This is 
precisely what is observed in experiment (Fig. 3). The 
presence of the threshold allows us to reject certain 
other possible mechanisms of phonon generation, for 
example bremsstrahlung, although its presence can ap
parently likewise be observed in more sensitive experi
ments. The average period of the oscillation current in 
the first series (1-6 in Fig. 3; vTA < v < vLA) is equal 
to All = 1.16 mA, and in the second series (6-9) we have 
t:.lz = 2 mAo In accordance with formula (10), their ratio 
is equal to the ratio of the threshold velocities, t:.lz/t:.I l 

~ vLA/vTA = 1.7. 

Let us determine the effective length L over which 
phonon interference takes place. It follows from (10) 
that 

L~2a~~2a,!.:......= 125A 
!:iI, !:iI, 

(15) 

for the considered contact (Fig. 3), where a is the lattice 
constant, equal to 5 A for Pb. The obtained value of L 
is of the same order of magnitude as the thickness of the 
dielectric layer (~50 A), and exceeds the latter by a 
factor 2.5. This is not surprising, since the emission of 
coherent phonons in a real contact (Fig. 1a) occurs also 
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in regions adjacent to the left and to the right of the 
channel joining the two metals. We note that L is smaller 
by one order of magnitude than the characteristic dimen
sions of the junction, namely, of the junction diameter 
and of the metal-film thickness, and also of the mean 
free path l. 

To estimate the amplitude of the effect, we introduce 
an expression for the second-harmonic voltage of the 
modulating signal, which is usually measured in the ex
periment (Fig. 3b). We assume that the CVC consists of 
two parts, a monotonic component V(t) and a small os
cillating increment V oscsin(n1), where V osc is the 
amplitude of the oscillations on the CVC, and n = 21TI Dol 
is the "frequency," which is inversely proportional to the 
oscillation period Dol. Since the resistance of the point 
constant is much smaller than the internal resistance of 
the source, what is usually given in a real measuring 
circuit is the current :1: 

:l=l+isin ",t, (16) 

and one measures the voltage on the sample: 

r(:!) = V(l + i sin 6)t) + Von,sin[Q(l + i sin illt) J. (17) 

Here I is the dc component of the current through the 
sample, and i and ware respectively the amplitude and 
frequency of the modulating signal. 

Usually i « I, but frequently i ~ n-1 (see Fig. 3a) 
and the expansion of (17) in a Taylor series, from which 
the proportionality of the second-harmonic voltage V2 to 
the second derivative of the CVC follows, is not suitable 
in this case. We represent instead the oscillating factor 
in the second term of the sum (17) in the form 

sin[Q(1 + i sin ",t)]= lo(Qi)sin Q/ + ~ 12m (Qi)2 sin Q/ cos 2m",t 
,1--1 

+ 1:/,m-,(Qi)2cosQ/sin(2m-1)"'t, 
(18) 

with no limitations whatever imposed on the modulation 
amplitude. In (18), J m is a Bessel function of order m. 

It follows from (18) that the second-harmonic voltage 

(19) 

is by far not proportional to the second derivative of the 
CVC. Thus, for example, at m = Q'2 n (Q'2 n is the n-th 
root of the Bessel function of second' order) we have 
V2 = 0, even though the second derivative of the CVC 
differs from zero. At an arbitrary form of the CVC, it 
can be expanded in a Fourier series of its harmonic 
component, in each of which it is necessary to employ 
the transformation (18). As a result, when the modula
tion amplitude becomes comparable with the dimension 
of the inhomogeneity along the corresponding axis, the 
form of the observed V2(V) or v2(1) curves, which are 
usually called "tunnel spectra," will be significantly 
altered by relatively small variations of the modulating
signal amplitude. 

This fact must be taken into account when using large 
amplitudes of the modulating signal in experiments. Only 
under the condition 

i«.Qi-'=/H/2n or v«.Q.-'=AV/2n (20) 

is the second-harmonic amplitude proportional to the 
second derivative of the CVC. In (20), i and v are the 
amplitudes of the modulating Signals, while Dol and Do V 
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are the characteristic dimensions of the CVC nonlinear
ity along the current and voltage axes, respectively. 

Returning to an estimate of the amplitude of the effect 
observed in the experiment (Fig. 3), we make use of the 
fact that the amplitude of the second-harmonic voltage 
oscillations in the second series is :s; 10-6 V, ni 
= (21TI M)(DoII 4) = 1.57, and J2(1.57) ~ 0.25. Consequently, 
the amplitude of the oscillating increment of the CVC is 
V osc ::s 2 x 10-6 V and amounts to only ~ 10-4 of the mono
tonic component of the voltage across the junction. The 
smallness of the effect is not surprising from the pOint 
of view of the proposed model. Indeed, the deviation of 
the CVC from a linear dependence and the associated 
kinks in the average line, shown dashed in Fig. 3b, are 
due mainly to the production of incoherent phonons in 

I metallic films at distances ~ l [3 ,6]. The OSCillations, on 
. the other hand, are due to interference of coherent 
phonons produced by electrons in the channel over a 
relatively short segment L « l, where the drift velOCity 
can be regarded as approximately constant. 

In connection with the last remark, let us make more 
precise the meaning of the concepts "drift velocity" v, 
used in the present paper. According to the universally 
accepted definition v = j len. But usually the word "drift" 
is taken to mean the diffuse advance of a particle in the 
direction of the driving force, and the distances consid
ered are much larger than the mean free path l. In the 
proposed model, to the contrary, everything occurs in a 
short segment of the path (L « l) between two colliSions, 
and in this segment we have V approximately constant 
and the distribution function can be represented in the 
form f(E + p. v), where E(P) is the energy of the quasi
particles. In this situation, a more accurate designation 
for v would probably be not "drift velocity," but, for ex
ample, "loss rate." 

The author is grateful to I. M. Lifshitz for a useful 
discussion of the work. 

l)We omit a factor sin (). which appears in the right-hand side of (4) when 
a more rigorous analysis is made, and corresponds to the fact that the 
radiation intensity near the threshold is low. Its absence does not influ
ence the threshold velocities obtained below. 
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