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The stimulated and self-consistent problems of interaction between a monoenergetic 
electron beam and plasma waveguide with non-uniform density are considered. The 
dependence of the gain of a slow charge-density wave on the magnitude and sign of the 
denSity gradient, and the efficiency of transformation of the wave into a quaSi-transverse 
wave in the plasma-beam waveguide, are determined analytically and numerically. 

In devising methods of controlling beam instabili
ties[1,2] it is necessary to bring about controlled varia
tion of the plasma density to ensure amplification or 
attenuation of these instabilities. This is the reason for 
the recently begun theoretical [3-6J and experimental [6-9] 

investigations of the dependence of beam-plasma interac
tion characteristics on the degree of inhomogeneity of 
the plasma. 

Physically, the possibility of controlling beam insta
bilities with plasma density gradients is based on the de
pendence of the dispersion properties of the medium and 
the energy losses in the elementary radiation act on the 
plasma density[lJ and gradient [10J . A consequence of 
this dependence is the change in the collective character
istics of the interaction between the beam and an inhomo
geneous plasma, Le., in the increments (gains). For ex
ample, in the case of irregular oscillations described by 
the quasilinear theory[3] plasma inhomogeneity causes 
a decrease in the increments and leads to production of 
field-accelerated particles at positive values of the den
sity gradient. 

In many applications it is of interest to investigate the 
conditions for efficient excitation or cutoff of regular 
oscillations in an inhomogeneous plasma. This paper is 
devoted to these questions. 

We consider a uniform-density monoenergetic particle 
beam of radius a traveling parallel to the axis of a cylin
drical waveguide having conducting walls of the same 
radius and filled with an inhomogeneous plasma. The ex
ternal magnetic field is parallel to the waveguide axis 
and the plasma density gradient; its intenSity is rather 
high: wH »w~ »wh, where wH' wp and wb are the 
gyrofrequency, the plasma Langmuir frequency, and the 
beam frequency, respectively. 

The complete system of equations for this problem in 
the hydrodynamic approximation is 

modv p I dt = -eE Il - movvp, mlldvb I dt = -eE II , 

mil"" moY', "I "" (1- '11')-'1., ,fI "" Vo Ie, 
anb a 1 aH 
Tt + Tz(nbvb) = 0, rotE=-~Tt, 

1 aE 4ne 
rot H = ~Tt - -c-(npvp + [b), 

nb = no + N, Vb = Vo + V, 

(1) 

where mo is the electron mass, 11 is the collision fre
quency, and vp,b and np,b are the respective velocities 
and densities of the beam particles and the plasma par
ticles. 

We seek a solution of system (1) by separating the 
variables. The field Ez , for example, is in the form 
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811 = (:f11(z)Jo(Anr/a)exp(-iwt), where An are the roots of 
the Bessel function (Jo(An) = 0), and an unknown function 
811 (z) describes the dependence of the field E lion the 
longitudinal coordinate z. By substituting the fie Ids thus 
chosen in the initial equations (1) we reduce the problem 
of finding the field amplitudes, velocities and densities 
to that of solving a system of first-order total differen
tial equations with variable coefficients. 

dg.J. + k.J.8 11 = ikoJ'6.J.' 
dz 

k.J.J'6.J. = -ikoe(z)811 - 4nc-'eJb, Jb"" noV + VoN, 

(~iW+Vo~)V=-~811' e(z)""l- w.'(z! , 
- dz m w(w+!v) 

( -iW+ Vo~)N+no~V=o, k.J. ... An, ko""~' 
dz dz a c 

(2a) 

(2b) 

where Vo and no are the equilibrium values of the beam 
velocity and density. 

Equations (2) have four linearly independent solutions 
corresponding to guided waves in the plasma-beam sys
tem. These waves are in general are neither purely 
longitudinal nor purely transverse .1) However, when 
no «np,2) which is the most important case in practice, 
two of these waves differ from the transverse waves in 
the anisotropic plasma waveguide without the beam by 
corrections on the order of no/np. These solutions will 
henceforth be called quasitransverse waves, while the 
two remaining solutions (which vanish in the limit as 
no - 0) will be referred to as quasilongitudinal waves or 
beam-charge-density waves. The effect of inhomogeneity 
on the dispersion and excitation of quasitransverse waves 
and on the amplification and transformation of quasi
longitudinal waves is studied below. 

We consider first the dependence of the natural-fre
quency spectrum of the plasma resonator on the degree 
of plasma inhomogeneity. In the Simplest case of a con
stant plasma density gradient (np(z) = n(1 + z/L)) the 
solution of system (2) at no = 0 is (see [l1J , Sec. 27): 

, { (1) [ 2k.J. -] (,)[2k.J. -]} 8 11 (z)=[e(z)]-" G,HI ml'-e(z) +G,HI 17I1'-e(z) , 

(3) 

Calculating 8 1 (z) with the aid of (3) and (2), we obtain the 
equation for the spectrum from the conditions (:f .L(z = ±l) 
= 0 at the resonator end faces: 

H: l) (k_)H:" (k+)- Ho(l) (k+)Ho(2) (k_) = 0, 

k± "" 2k.J.[ -e(±l) 1'" Ile'l· (4) 

In the presence of weak inhomogeneity, (1I1w « maAn l 
« Lll), explicit expressions for the natural frequencies 
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Wmn of the resonator under consideration can be found 
from (4) by iteration: 

Illmn,=(~)2 Illp'(O)[ 1+(e' lt~a )'] -iVlllmn. 
nn1 2 r2 An 

Here m and n are the indices of the longitudinal and 
transverse wave numbers, respectively. 

(5) 

Thus, the plasma inhomogeneity increases the natural 
frequencies of the plasma resonator, while the corre
sponding frequency shift is, as expected, independent of 
the sign of the density gradient. Relation (5) is valid on 
the condition that the point of plasma resonance at which 
the plasma frequency wp(z) is equal to the working fre
quency W does not lie wIthin the resonator. In the con
trary case, a damping term appears in the right-hand 
side of (5) and is due to absorption of the quasitransverse 
waves ([l1J , Secs. 20 and 27). 

We consider now the problem of such a resonator ex
cited by a given modulated current of the external beam 
Ib(z, t) == Ioexp[ikMz - iwMt], wM == kMVo. The current 
forced solution of system (2) is then of the form 

+' 
ltilok.'Dt (z) S D (') (k ') d ' D 55!i OOu =. 2. Z exp i f,l.Z Z, 

IllM slll(k_ - k+) _I 

where 

'I ,.) [ ( Zo - Z ) 'I,] D.(z)==(z-zo) 'Ht 2ki -e-' - , s= 1,2, 

and Zo is a complex number determined by solving the 
equation E(Zo) = O. 

(6) 

The last expression permits us to find the dependence 
of the pattern of the beam-excited field on the degree of 
plasma inhomogeneity and the beam modulation fre
quency wM: 

where 

t; == z - z., 
ki le(z.) 1'1. 

~' == .....,..,,..=.,--,-:.......:.-..,--
41e'l (z. -zo)' 

, 
<D(t)== S exp(i<jJ')d<jJ, 

and z* is the coordinate of the point at which the local 
phase velocity of the wave is equal to the beam velocity 
(Vph(z*) = Yo). 

As seen from (7), the oscillation minimum of the 
beam-excited field corresponds to the vicinity of the 
point Z = z*, where 1~!;12 «1. The most interesting ap
plications arise from the dependence of the beam energy 
losses 

z.+t 

w== S dz/oEll 
z .. -' 

on the plasma density gradient. Using (7) we obtain the 
following expression for this quantity: 

W(.P)-W(oo) { 1 le'lkil'~4, 
4IkJl'le'l, le' lk.cI'»4, 

where W(oo) represents the losses in a homogeneous 
resonator, and 9: == wL/Vo• 

(8) 

Thus the presence of inhomogeneity in the plasma 
only causes a decrease in the losses when the density 
gradient or the length of the interaction region is large 
enough (j E' Ik1Z2 > 4); in a relatively short system (at 
low density gradients: I E'lk ll2 < 4) the inhomogeneity 

241 SOy. Phys.·JETP, Vol. 37, No.2, August 1973 

does not affect the losses. This result explains qualita
tively the experimentally observed C7 ,9J increase in the 
collective losses of the modulated beam as the degree of 
plasma inhomogeneity decreases. 

We consider next the effect of inhomogeneity on the 
efficiency of amplification of regular charge-density 
waves in the plasma. This self-consistent problem re
quires simultaneous solution of the complete system of 
equations (2a) and (2b). 

Expressing the beam current Ib in terms of the field /5 
it ll from (2b) 

Ill,' S· 'S··" ,,~ [iW " ] T.=-iko-;;;: dz dz itll(z )exp -v.;(z-z ) (9) 

and substituting (9) in (2a), we obtain the following fourth
order differential equation for the amplitude A(~) 
== it II (~)exp(-i 0 of the field it II (z): 

A'<> + (46'+ 2ie)A") + (6i8+ ",_a' - 8)A") 

+ 2U", - 8')A' = J.tA, 

(10) 

We assume that the plasma density inhomogeneity is 
not too large (.p » 1), so that efficient energy exchange 
between the beam and field is assured by Cerenkov am
plification of the slow charge-density wave.3 ) In this 
case analytic solutions for Eq. (10) can be obtained in 
the follOwing limiting cases: 

1. A large linear plasma density and not too small 
density gradients 

",» a', 'a'.P ~ 1. (11a) 

2. Low linear plasma density and small gradients 

'" ~ a', a'.P» 1. (llb) 

In the first case, as a - 0, the longitudinal field com
ponent of the quasitransverse wave is small, and conse
quently this wave is not coupled with the beam charge
density waves. Integration of Eq. (10) gives the follOwing 
expressions for the amplitudes of the beam waves: 

{

B H't) [_2 ( )'''] +C H(') [~_( )'1,] t t le'l ",e ttl e'l ",e , 

ieA(z)= 

B'lt[ m(-",e)'I.] +C,Kt [~(-",e)''']' 

Ree>O; 

(12a) 

Ree< O. 

(12b) 

It is easily seen that at small gradients Eq. (12b)re
duces to the well-known result for the longitudinal wave 
amplitude buildup in a homogeneous plasma. At higher 
values of the density gradient, the total gain in the same 
interaction interval decreases (at sufficiently high beam 
density the argument of the exponential is proportional 
to the square root of the coordinate): 

X(oo,l)==ln IA(oo,I)1 =20>/ 1/ "'., le(z)I»18'11; (13a) 
IA(oo,-I)1 Vo V I£(z) I 

X(.P 1)== In IA(.P,I) I =2(-"'-~)'I' le(z)I~le'll, (13b) 
, IA(.P,-I)1 le'l Vo ' 

where z is the coordinate of the center of the interaction 
region (z -I < Z < z + n. For inhomogeneities strong 
enough that the inequality JJ.ILw2/V~ < 1 is satisfied, the 
amplification of the charge-density wave ceases. 

We note that the result (13a) for a homogeneous 
plasma with growing density follows from the first term 
of (12b) in the region Z »zo, while for decaying density 
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it follows from the second term of the same formula at 
z «zo; in the region Re E > 0 the amplified wave goes 
over into a slow charge-density wave in both cases. 

The difference between the analytic dependences of 
the beam-amplified slow longitudinal wave amplitude on 
the coordinate at different directions of the gradient 
(amplification anisotropy) can be attributed to the differ
ence in the conditions of radiation from the beam elec
trons and of the reaction of this radiation on the beam. 
In fact, as shown in [ISJ , the hydrodynamic instability of 
the beam in a homogeneous plasma is based on the 
Cerenkov radiation4 l, the reaction of which to the motion 
of the beam particles is amplified by the coherence of 
the elementary radiators within the bunches formed by 
the modulating signal and between these bunches. The 
total field induced by the radiation of the beam particle 
turns out to be proportional to the local value of the 
amplitude of the modulating field and to the local inten
sity of spontaneous particle radiation (i.e. to the plasma 
density at the given point in space). Therefore, at posi
tive density gradients, when both effects (spatial growth 
of the amplitude of the amplified field and increase in the 
intensity of the spontaneous radiation) are mutually rein
forcing, the resultant losses of beam energy to radiation, 
which determine the amplification efficiency, are larger 
than in the case of decaying plasma density. ) 

The magnitude of the amplification anisotropy effect 
is determined by the ratio of the amplification factors. 

R 

Here Zt are the coordinates of the centers of the ampli
fication regions for positive and negative density grad
ients, respectively: E(Z.) = E(z_). It is easily seen that 
the degree of amplification anisotropy increases when 
the density gradient increases and the interaction region 
approaches the plasma resonance point; the amplifica
tion anisotropy effect is small in the region where the 
WKB method applies. At relatively low values of the 
linear plasma density, when the conditions of (l1b) are 
satisfied, the plasma density region of greatest interest 
is the one in which the phase velOCity of the quasitrans
verse wave in the waveguide without the beam is close 
to the beam velocity Vo. In this region the gain for a 
slow charge-density wave reaches a maximum propor
tional to the cube root of the linear beam density. 
Recognizing that the plasma parameters vary slowly, 
we can find this coefficient by the WKB method6 ): 

, 
A(G)~Aoexp[iJ x(£')d~']' 

a'+ (e-!l)c')[(1+x)'-~21 ~o. (14) 

Under the conditions of the experiment, a matter of 
great interest is the dependence of the total gain at a 
given length and that of the cutoff conditions on the de
gree of plasma inhomogeneity. To elucidate these mat
ters we carry out the integration in (14), using the fact 
that the parameter j.J./a2 is small. Thus, we find: 

3l'3 2 'I, , -(" 

X'+(P,z)=z;;;-(:,) V:~'I J F(x')dx'; 

" 
F(x) "" [x' + '/2 + l'x' + '/,1'" - [x' + 1/2 _. l'x' + '/,],\ 

xo~_2-'I,; x(z)""le'I(z-z.)/2'1,3(!la')'\ (15) 

while z* == Zo- a 2/E' is the coordinate of the synchron-
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ism point. It is clear from this expression that the pres
ence of inhomogeneity has a telling effect on the ampli
fication everywhere except in the immediate vicinity of 
the synchronism point where Ixl < 1; and so, even at 
x ~ 3 the local gain is smaller by a factor 2.5 than its 
maximum value for an homogeneous plasma, while the 
integral gain is smaller by a factor 1.5. The condition 
for absence of attenuation of the instability can be repre
sented in the follOwing form: 

The left-hand side of this inequality ensures exponential 
growth of the amplitude, while the right-hand side means 
that it is possible to ignore the effect of plasma inhomo
geneity on the amplification in the resonance region. At 
higher values of w this condition is Violated, and this is 
apparently the reason for the relatively low intensity of 
short-wave excitation in the plasma-beam experiments. 

The condition for the applicability of the WKB method 
proves to be most rigid near the boundary ')f the ampli
fication region (E + a 2 + (j.J.a 4/ /3 = 0), where the differ
ence AK between the wave numbers of the slow beam wave 
and the quasitransverse wave is proportional to a small 
parameter: AK. ~ (V/W)I/2j.J.l/6. In this region the ampli
fication is resistive: the beam wave builds up with an 
increment of 1m K ~ Y2 AK and the quasitransverse wave 
decays with the same decrement. As v - 0 the difference 
between these waves vanishes, meaning a possibility of 
their mutual transformation, which can be Significant 
when the plasma denSity is decaying. 

In the general case, when the problem lacks the small 
parameters for estimating the dependence of the ampli
fication and transformation efficiencies on the degree of 
plasma inhomogeneity, a numerical solution of the initial 
system of equations (2) is necessary. A digital computer 
was used for this purpose. The values chosen for the 
inhomogeneity parameters (~), the linear plasma density 
(a), the beam density (j.J.) and the beam velocity ({3) values 
were close to the experimental ones: j.J. = 10-2, {3 = 0.2, 
a = 1.4. Here the main difficulty is that of chOOSing the 
right boundary conditions to guarantee that the slow 
charge-density wave amplification effect that we are 
interested in emerges in its pure form. In the electro
dynamics of transparent media the problem of unique
ness is solved with the Sommerfeld radiation conditions. 
An analogous condition is necessary in our problem to 
isolate the amplified wave in the non-equilibrium plasma
beam system. Such isolation is accomplished relatively 
easily in the coordinate region where the WKB method 
applicability conditions are satisfied. If the plasma den
sity in that region is not too high, then the difference in 
the wave numbers of the fast charge-density wave and 
the slow one is finite (no degeneracy), and so the field 
pattern of the slow wave is of the form 

0" ~ -ilL(e + a') -'N, 0 J. ~ ia0", 
. ( !l ) 'I, 

V~, e+a' N, (16) 

where N and V are the modulation indices of the beam 
denSity and the beam velocity respectively. Assuming 
that N is known, we find the remaining values of the 
initial amplitudes from (16) and substitute them in the 
right-hand side of the first-order equations (2) in the 
capacity of initial conditions. 

It must be emphasized that in the case in question the 
coordinate dependence of the field amplitude is calcula-
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FIG. I FIG. 2 

FIG. I. Gain Je(£, n vs the coordinate ~ at (\'2 = 0.5; 11 = v/w = 10-2. 
1-£ = 80; 2-£ = 40; 3-£ = 20; 4-£ = 10. 

FIG. 2. GainJ4(£, n vs the coordinate ~ at (\'2 = 0.5; 11 = v/w = 10-2. 
1-£ = 80; 2-£ = 40; 3-£ = 20; 4-£ = 10. 
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FIG. 3. GainJC(£, 0 vs the coordinate ~ in the nonresonant region 
at (\'2 = 0.25; 11 = v/w = 10-2. 1-£ = 40; 2-£ = 20; 3-£ = 10; 4-£ = 5. 

FIG. 4. Total gain X+(£, I) over a given length (2wl/V 0 = 80) vs the 
magnitude and sign of the plasma density gradient; 11 = v/w = 10-2, (\'2 = 
0.5. 

ted with any practical degree accuracy; only the initial 
conditions, which were derived by uSing the idea of the 
WKB method, are approximate. The corresponding rela
tive error then decreases with the coordinate ~, since 
the amplitude of the slow beam wave increases exponen
tially at the same time that the amplitudes of the re
maining waves in this coordinate region (Re E < 0) are 
either falling off (fast beam wave) or building up at a 
lower exponential rate (quasitransverse waves). 

The results of these numerical calculations are illus
trated in Figs. 1-4. The first three show the dependence 
on the coordinate ~ 0 of the integral gains for the ampli
tude AN of the variable beam density component 
(X(p,~) := In{IAN(P, ~)IIlAN(P, -l)I}), corresponding to 
different sets of plasma parameters. As expected, in the 
coordinate region where the amplification conditions are 
not satisfied there is no increase in amplitude (see Figs. 
1 and 2); in the nonresonant region (far from the quasi
longitudinal and quasitransverse wave synchronization 
region) the total gain at the given length (Xjp, l)-Fig. 3) 
decreases in rough proportion to the square root of the 
characteristic inhomogeneity length P. The plots in 
Fig. 4 show the dependence of the amplification aniso
tropy on the magnitude and the sign of the density grad
ient. Clearly, when the gradient is increased the degree 
of anisotropy grows, in full accord with the physical 
considerations mentioned above. 

These numerical experiments also make it possible to 
estimate the efficiency of transformation of the beam
amplified slow charge-density wave into a quasitrans
verse wave in the plasma waveguide. As shown above, 
there is no transformation in a plasma with a large linear 
density (Ql2,2'« 1) and in a weakly inhomogeneous plasma 
waveguide in the regi?:n where the WKB method is appli
cable (E + (liz + (J.LQl4)1 3 -10). To estimate the efficiency 
of this process near the boundary of the amplification 
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region, where the quasi classical approximation is in
applicable, the waveform of the pulse N was analyzed 
simultaneously with the gain calculation. The results of 
this analysis show that in the vicinity of the transforma
tion point the modulus of the transformation coefficient 
with respect to density does not exceed the error in the 
numerical experiment (3-4%) at a relatively weak in
homogeneity P ?; 20. When the gradients for the linear 
density decay are larger it is not practical to distinguish 
the transformation effect from the background of the 
errors in the initial conditions, since both the gain and 
the size of the transformation region turn out to be too 
small. In addition, when the gradients are large it is 
necessary to take into account the field of the incident 
quasitransverse wave. The order of the transformation 
coefficient with respect to density TN can be estimated 
from the results~of[14J for a steplike density profile. In 
the limiting case J.L « 1 and f3~iE±1 « (lI2 we find 

TN= J4a'(I8-I-18+1) (l'T;}-a) , 

(18+1- a') (18_1- a') (l'18+1+ l'18_1) (l' 18+1- a)' 

8+ - 8(!; > 0), 8_ - e(!; < 0). (17) 

For J.L ~ 10-2 and IE+I ~ IE-I ~ 1 this formula gives 
values for TN of the order of several per cent, depend
ing on both the magnitude and the Sign of the plasma 
density gradient (transformation anisotropy 7 »). 

The main conclUSions of the preceding discussion can 
be formulated as follows: 

1. As expected, the presence of inhomogeneity de
creases the effectiveness of beam-plasma interaction, 
viz., the losses of the modulated beam by excitation of 
quasitransverse waves in the plasma waveguide 
(L < k l 12 ) and the total gain for the density wave at a 
given interaction length decrease (see Fi~S. 1-3). When 
the gradients are large enough (wbLl < Vol, the amplifi
cation cuts off, as there is no exponential growth of the 
field amplitude (see curves 4 in Figs. 1- 3). 

2. Anisotropy of the amplification and of the trans
formation are observed in an inhomogeneous plasma-the 
gains and transform-coefficients depend on the Sign of 
the plasma denSity gradient (see Fig. 4), because the 
beam particle radiation intensity in the elementary act 
of emitting Cerenkov and transition quanta, respectively, 
and their bunching efficiency by the radiation field (dur
ing amplification) all depend on the relative orientation 

, of the directions of plasma density growth and beam 
velocity. 

3. When the plasma denSity gradients are relatively 
small (p ~ 20), the transformation of the beam-ampli
fied quasilongitudinal wave into a quasitransverse wave 
in the plasma waveguide under the conditions of the given 
numerical experiment (J.L ~ v/w ~ 10-2) turns out to be 
weak: the amplitude of the quasitransverse wave at the 
exit of the amplification region does not exceed three or 
four percent of the quasilongitudinal wave amplitude. 

The authors thank Ya. B. Fai'nberg and S. S. Moiseev 
for their comments on the results of the work. 

1lThe longitudinal plasma waves can be neglected when the condition: 
vmo V~ > wT is satisfied (see [11], sees. 20 and 27), where T is the 
plasma temperature. 

2)The typical values of the experimental parameters for non-relativistic 
beams are such [no"" (10'2 - 1O-3)np, T - (10-3 - 10-4)mo V~, v/w "" 
10-2 - 10-3] that these inequalities can be satisfied. 

3)In the case of strong inhomogeneity, a field can be excited by the 
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transition radiation of the beam particles [ 10, 12, 14] , 
4)The connection between plasma-beam instabilities and the elementary 

Cerenkov radiation from a charge in the plasma was emphasized ear
lier(see [1,16,17]). 

5lIn the quasilinear case [3,4] the anisotropy effect is caused by removal 
of field energy by the beam particles as a result of their being accel
erated by the field at positive values of the density gradient. 

6lplots of the coordinate dependence of the quasiclassical gains for sev
eral values of the inhomogeneity parameters are given in [5]. 

7) At present there is no lack of information regarding the transformation 
of the natural waves of a weakly inhomogeneous equilibrium plasma 
(see [11,18-20]); the anisotropy of particle transition radiation is pointed 
out, in particular, in [20]. 
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