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A one-dimensional lattice electron gas is considered with a nOninteger number of elec
trons per unit cell. It is shown that for certain values of the electron interaction con
stants the system undergoes a metal-dielectric transition and charge alternation oc
curs in the dielectric phase. 

The appearance of organic one-dimensional semicon
ductors on the basis of the salts of tetracyanoquinonedi
methane (TCNQ)(l) has raised a number of problems in 
the theory of one-dimensional systems. These semicon
ductors vary greatly, both in physical properties and in 
their structure. There is a number of complexes with 
charge transfer based on TCNQ, in which the electronic 
structure and the properties are similar to the elec
tronic structure of organic semiconductors with conju
gated bonds. The latter contain as a rule a single elec
tron per cell and are Mott dielectrics at all possible 
values of the electronic parameters. (2,3) The entire 
complex of their physical properties can be described 
on the basis of the one-dimensional Hubbard Hamilton
ian:(4) 

fix = p L. (ana+a n +." + a:+.,ana )+ ~ L. ana+anoa!-oan-,. (1) 

Here a~a and ana are the Fermi operators of creation 
and annihilation of electrons at the center n with spin 
a. The parameters y and f3 are determined by experi
ment. Thus, for example, for the system TCNQ-MNP 
(N-methyl-phenazine), Epstein et al.(4) obtained the 
values y = 0.17 eVand f3 = 0.021 eV. 

However, there exist complexes with charge transfer 
on the basis of TCNQ for which the number of electrons 
per unit center (or per unit cell) is not equal to unity. 
For example, for the salt TCNQ3Cs 2, there is 73 elec
tron per molecule of TCNQ, for the salt TCNQ2-quino
line, ?'2 electron, and so on. It turns out that in all these 
cases an analysis of the system on the basis of the 
Hamiltonian (1) is inadequate and one must take into 
account the interaction of electrons in more detail. The 
purpose of the present note is to point out the possibil
ity of a Mott metal-dielectric transition for certain 
definite values of the electronic parameters for systems 
of such a type. 

We consider the Hamiltonian (1), but assume that the 
total number of electrons M is less than the number of 
centers N (Le., p = MIN < 1). We investigate the en
ergy of the ground state and the spectrum of the system 
in the limit as y - 00. In this limit, the electrons are 
each located at its center, the total energy of the system 
is equal to zero and the ground state is strongly degen
erate. For p < 1 there is added to the spin degeneracy 
of the system a degeneracy connected with the possibil
ity of distributing the electrons over the different cen
ters. This latter degeneracy is removed with the help 
of the kinetic-energy operator in (1). It is essential that 
the operator eigenstates considered here do not contain 
ionic configurations. Thus a condition is satisfied, for 
example, by a one-determinant function (in the n-repre-
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sentation) made up of single-electron eigenfunctions of 
the kinetic energy Hamiltonian with all the different 
quasimomenta. The spin part of this function should be 
so chosen that it satisfies the condition of antisymmetry 
upon simultaneous permutation of the coordinate and 
spin of two particles (the total spin of the system equal 
to zero). Obvious ly, a function constructed in this 
fashion has no ionic terms. 

In other words. the eigenstates of the system are 
identical in the limit as y - "" with the states of the 
Hamiltonian 

(2) 

where c~ and cn are the Fermi creation and annihila
tion operators of the electron (but without spin). By 
changing the statistics of the particles, we take into ac
count their strong repulsion at a single center. Similar 
considerations were used by Girardeau(5) in the theory 
of one -dimensional Bose gas of impenetrable partic les . 
The total number of electrons is equal to Np. The con
tribution to the energy of the ground state is equal here 
to 

£. 2 
--=--sinnp 
NI~I n . 

(3 ) 

It is difficult to obtain the next term of the expansion 
in f3/y in the energy by such a method; however, it can 
be obtained by starting from the exact equations for this 
Hamiltonian. [2,3) The corresponding calculations give 

E 2. 41n21f11 (2 p. ) 
NI~I =-~smnp--V-'- p -Tnsm2np + ... 

The last term in (4) is connected with the lifting of the 
spin degeneracy. At p = 1, Eq. (4) transforms into an 
expression for the energy of the ground state of the 
Heisenberg antiferromagnetic Hamiltonian. 

The study of the spectrum of excited states can be 
carried out in the same way. In particular, at large 
y I f3 the excitation spectrum (1) is identical with the 
excitation spectrum of the Hamiltonian (6), Le., with the 
spectrum of an ideal lattice gas without spin. This spec
trum begins with zero: 

e(k) =21'flllcosk-cosnpl. n<k<np, (5) 
and consequently the system is a metal. 

The situation can change if we take into account the 
repulsion of the electrons not only at a single center. 
We now consider the following Hamiltonian: 

(6) 

The second term in (6) describes the repulsion of elec-
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trons located at neighboring centers. For definiteness, 
we consider the case p '" 12, which is characteristic for 
the system TCNQ; -M+ (M+ is any donor). 

For the study of the properties of the ground state 
and the spectrum of excitations, we make y very large 
(y / f3, y /Y 12 - 00). According to considerations devel
oped above, the first-approximation Hamiltonian will 
take the form 

N N 

H. = ~ L, (Cn +Cn+1 + Cn:.c n ) + v" L, Cn +cnC~+1Cn+1. (7) 
n=1 

The operators cn and c; have the same meaning as in 
(2). The Hamiltonian (7) was studied in detail by exact 
methods. [6,7] It is most important for us here that at 
Y12'" 2/1 f31 the system characterized by (7) changes 
from a metal to a dielectric (Y 12 < 21 (31--metal, Y 12 

> 21 f31-dielectric). The gap in the dielectric phase is 
equal to[7] 

I1E = n sh 6 ~ ch-,(2n + 1) n' VIZ 
6 l..J 26' ch6=2iji\. (8 ) 

As e - 0, the gap ~E rapidly approaches zero.[7] 
Thus, we see that a one-dimensional system described 
by (6) can undergo a metal-dielectric tranSition, depend
ing on p, Y 12/ {3, and Y / {3. In the dielectric phase there 
is an alternation of electron density. Such an alterna
tion has evidently been observed in the system TCNQ;
ditoluolchromium + in [8]. The detailed theory of the 
transition at finite y has not been constructed and is a 
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thing of the future. The same can be said of the pOSSi
bility of Peierls distortion of the lattice in such systems. 
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